1.National and Local Joint Engineering Laboratory for Synthetic Technology of High-Performance Polymer, Jilin University, Changchun 130012, China
zhangyunhe@jlu.edu.cn
Scan for full text
Wen-Han Xu, Ya-Dong Tang, Hong-Yan Yao, et al. Dipolar Glass Polymers for Capacitive Energy Storage at Room Temperatures and Elevated Temperatures. [J]. Chinese Journal of Polymer Science 40(7):711-725(2022)
Wen-Han Xu, Ya-Dong Tang, Hong-Yan Yao, et al. Dipolar Glass Polymers for Capacitive Energy Storage at Room Temperatures and Elevated Temperatures. [J]. Chinese Journal of Polymer Science 40(7):711-725(2022) DOI: 10.1007/s10118-022-2728-y.
Dipolar glass polymers exhibit outstanding dielectric properties and energy storage performances through enhanced dipolar polarization provided by free rotation of dipoles. Due to the steric hindrance of main-chain type dipoles, the side-chain type dipoles will become an effective route to explore high performance dipolar glass polymers.
Dielectric polymers are the materials of choice for high energy density film capacitors. The increasing demand for advanced electrical systems requires dielectric polymers to operate efficiently under extreme conditions, especially at elevated temperatures. However, the low permittivity and relatively low operating temperature of dielectric polymers limit the high-temperature capacitive energy storage applications. Fortunately, dipolar glass polymers are demonstrated as the preferred materials to achieve high dielectric constant, low dielectric loss and high energy density at elevated temperatures. In this review, we critically elaborate on the recent progress of dipolar glass polymers based on orientational polarization from molecular engineering. In addition, the general design considerations and various dipole moment entities of dipolar glass polymers are described in detail. High dipolar moment, high dipole density and rotation freedom of dipoles are essential for dipolar glass polymers to gain superior dielectric and energy storage properties. Challenges and future opportunities for dipolar glass polymers towards high-temperature energy storage applications are also provided.
Dipolar glass polymersOrientational polarizationCapacitive energy storageDielectric constantHigh-temperature
Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q. M . A dielectric polymer with high electric energy density and fast discharge speed . Science , 2006 . 313 334 -336 . DOI:10.1126/science.1127798http://doi.org/10.1126/science.1127798 .
Ho, J. S.; Greenbaum, S. G . Polymer capacitor dielectrics for high temperature applications . ACS Appl. Mater. Interfaces , 2018 . 10 29189 -29218 . DOI:10.1021/acsami.8b07705http://doi.org/10.1021/acsami.8b07705 .
Li, Q.; Yao, F. Z.; Liu, Y.; Zhang, G.; Wang, H.; Wang, Q . High-temperature dielectric materials for electrical energy storage . Ann. Rev. Mater. Res. , 2018 . 48 219 -243 . DOI:10.1146/annurev-matsci-070317-124435http://doi.org/10.1146/annurev-matsci-070317-124435 .
Luo, H.; Zhou, X.; Ellingford, C.; Zhang, Y.; Chen, S.; Zhou, K.; Zhang, D.; Bowen, C. R.; Wan, C . Interface design for high energy density polymer nanocomposites . Chem. Soc. Rev. , 2019 . 48 4424 -4465 . DOI:10.1039/C9CS00043Ghttp://doi.org/10.1039/C9CS00043G .
Guo, M.; Jiang, J.; Shen, Z.; Lin, Y.; Nan, C. W.; Shen, Y . High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency . Mater. Today , 2019 . 29 49 -67 . DOI:10.1016/j.mattod.2019.04.015http://doi.org/10.1016/j.mattod.2019.04.015 .
Palneedi, H.; Peddigari, M.; Hwang, G. T.; Jeong, D. Y.; Ryu, J . High-performance dielectric ceramic films for energy storage capacitors: progress and outlook . Adv. Funct. Mater. , 2018 . 28 1803665 DOI:10.1002/adfm.201803665http://doi.org/10.1002/adfm.201803665 .
Prateek; Thakur, V. K.; Gupta, R. K . Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects . Chem. Rev. , 2016 . 116 4260 -317 . DOI:10.1021/acs.chemrev.5b00495http://doi.org/10.1021/acs.chemrev.5b00495 .
Shen, Y.; Zhang, X.; Li, M.; Lin, Y.; Nan, C. W . Polymer nanocomposite dielectrics for electrical energy storage . Natl. Sci. Rev. , 2017 . 4 23 -25 . DOI:10.1093/nsr/nww066http://doi.org/10.1093/nsr/nww066 .
Choi, J.; Kang, J.; Lee, C.; Jeong, K.; Im, S. G . Heavily crosslinked, high-k ultrathin polymer dielectrics for flexible, low-power organic thin-film transistors (OTFTs) . Adv. Electron. Mater. , 2020 . 6 2000314 DOI:10.1002/aelm.202000314http://doi.org/10.1002/aelm.202000314 .
Chen, J.; Shen, Z.; Kang, Q.; Qian, X.; Li, S.; Jiang, P.; Huang, X. Chemical adsorption on 2D dielectric nanosheets for matrix free nanocomposites with ultrahigh electrical energy storage. Sci. Bull. 2021, DOI: 10.1016/j.scib.2021.10.011
Zhou, W.; Li, T.; Yuan, M.; Li, B.; Zhong, S.; Li, Z.; Liu, X.; Zhou, J.; Wang, Y.; Cai, H.; Dang, Z. M . Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance . Energy Storage Mater. , 2021 . 42 1 -11 . DOI:10.1016/j.ensm.2021.07.014http://doi.org/10.1016/j.ensm.2021.07.014 .
Wang, S.; Chen, J.; Zhu, Y.; Jiang, P.; Huang, X . High field dielectric properties of silk fibroin films . Acta Polymerica Sinica (in Chinese) , 2021 . 52 1148 -1155 . DOI:10.3321/j.issn:0256-7679.2003.01.014http://doi.org/10.3321/j.issn:0256-7679.2003.01.014 .
Huang, X.; Sun, B.; Zhu, Y.; Li, S.; Jiang, P . High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications . Prog. Mater. Sci. , 2019 . 100 187 -225 . DOI:10.1016/j.pmatsci.2018.10.003http://doi.org/10.1016/j.pmatsci.2018.10.003 .
Li, Q.; Liu, F.; Yang, T.; Gadinski, M. R.; Zhang, G.; Chen, L. Q.; Wang, Q . Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures . Proc. Natl. Acad. Sci. U. S. A. , 2016 . 113 9995 -10000 . DOI:10.1073/pnas.1603792113http://doi.org/10.1073/pnas.1603792113 .
Dang, Z. M.; Yuan, J. K.; Yao, S. H.; Liao, R. J . Flexible nanodielectric materials with high permittivity for power energy storage . Adv. Mater. , 2013 . 25 6334 -6365 . DOI:10.1002/adma.201301752http://doi.org/10.1002/adma.201301752 .
Li, Q.; Chen, L.; Gadinski, M. R.; Zhang, S.; Zhang, G.; Li, H. U.; Iagodkine, E.; Haque, A.; Chen, L. Q.; Jackson, T. N.; Wang, Q . Flexible high-temperature dielectric materials from polymer nanocomposites . Nature , 2015 . 523 576 -579 . DOI:10.1038/nature14647http://doi.org/10.1038/nature14647 .
Ho, J.; Jow, T. R . High field conduction in biaxially oriented polypropylene at elevated temperature . IEEE Trns. Dielectr. Electr. Insul. , 2012 . 19 990 -995 . DOI:10.1109/TDEI.2012.6215104http://doi.org/10.1109/TDEI.2012.6215104 .
Rabuffi, M.; Picci, G . Status quo and future prospects for metallized polypropylene energy storage capacitors . IEEE Trans. Plasma Sci. , 2002 . 30 1939 -1942 . DOI:10.1109/TPS.2002.805318http://doi.org/10.1109/TPS.2002.805318 .
Liu, P.; Yen, R.; Bloembergen, N . Dielectric breakdown threshold, two-photon absorption, and other optical damage mechanisms in diamond . IEEE J. Quantum Electron. , 1978 . 14 574 -576 . DOI:10.1109/JQE.1978.1069857http://doi.org/10.1109/JQE.1978.1069857 .
Ho, J.; Ramprasad, R.; Boggs, S . Effect of alteration of antioxidant by UV treatment on the dielectric strength of BOPP capacitor film . IEEE Trns. Dielectr. Electr. Insul. , 2007 . 14 1295 -1301 . DOI:10.1109/TDEI.2007.4339492http://doi.org/10.1109/TDEI.2007.4339492 .
Zhu, L.; Wang, Q . Novel ferroelectric polymers for high energy density and low loss dielectrics . Macromolecules , 2012 . 45 2937 -2954 . DOI:10.1021/ma2024057http://doi.org/10.1021/ma2024057 .
Wei, J.; Zhu, L . Intrinsic polymer dielectrics for high energy density and low loss electric energy storage . Prog. Polym. Sci. , 2020 . 106 101254 DOI:10.1016/j.progpolymsci.2020.101254http://doi.org/10.1016/j.progpolymsci.2020.101254 .
Zhu, L . Exploring strategies for high dielectric constant and low loss polymer dielectrics . J. Phys. Chem. Lett. , 2014 . 5 3677 -3687 . DOI:10.1021/jz501831qhttp://doi.org/10.1021/jz501831q .
Baer, E.; Zhu, L . 50th Anniversary perspective: dielectric phenomena in polymers and multilayered dielectric films . Macromolecules , 2017 . 50 2239 -2256 . DOI:10.1021/acs.macromol.6b02669http://doi.org/10.1021/acs.macromol.6b02669 .
Zhang, Q . M.; Bharti, V.; Zhao, X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer . Science , 1998 . 280 2101 -2104 . DOI:10.1126/science.280.5372.2101http://doi.org/10.1126/science.280.5372.2101 .
Bharti, V.; Zhao, X. Z.; Zhang, Q . M.; Romotowski, T.; Tito, F.; Ting, R. Ultrahigh field induced strain and polarization response in electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer . Mater. Res. Innov. , 1998 . 2 57 -63 . DOI:10.1007/s100190050063http://doi.org/10.1007/s100190050063 .
Lu, Y.; Claude, J.; Neese, B.; Zhang, Q.; Wang, Q . A modular approach to ferroelectric polymers with chemically tunable curie temperatures and dielectric constants . J. Am. Chem. Soc. , 2006 . 128 8120 -8121 . DOI:10.1021/ja062306xhttp://doi.org/10.1021/ja062306x .
Chung, T. C.; Petchsuk, A . Synthesis and properties of ferroelectric fluoroterpolymers with curie transition at ambient temperature . Macromolecules , 2002 . 35 7678 -7684 . DOI:10.1021/ma020504chttp://doi.org/10.1021/ma020504c .
Wei, J.; Zhang, Z.; Tseng, J. K.; Treufeld, I.; Liu, X.; Litt, M. H.; Zhu, L . Achieving high dielectric constant and low loss property in a dipolar glass polymer containing strongly dipolar and small-sized sulfone groups . ACS Appl. Mater. Interfaces , 2015 . 7 5248 -5257 . DOI:10.1021/am508488whttp://doi.org/10.1021/am508488w .
Bonardd, S.; Alegria, Á.; Ramirez, O.; Saldías, C.; Leiva, Á.; Kortaberria, G . New poly(itaconate)s with bulky pendant groups as candidates for “all-polymer” dielectrics . React. Funct. Polym. , 2019 . 140 1 -13 . DOI:10.1016/j.reactfunctpolym.2019.04.010http://doi.org/10.1016/j.reactfunctpolym.2019.04.010 .
Bonardd, S.; Alegría, Á.; Saldías, C.; Leiva, Á.; Kortaberria, G . Increasing the temperature range of dipolar glass polymers through copolymerization: a first approach to dipolar glass copolymers . Polymer , 2020 . 203 122765 DOI:10.1016/j.polymer.2020.122765http://doi.org/10.1016/j.polymer.2020.122765 .
Zhang, Z.; Wang, D. H.; Litt, M . H.; Tan, L. S.; Zhu, L. High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide) . Angew. Chem. Int. Ed. , 2018 . 57 1528 -1531 . DOI:10.1002/anie.201710474http://doi.org/10.1002/anie.201710474 .
Bonardd, S.; Moreno-Serna, V.; Kortaberria, G.; Díaz Díaz, D.; Leiva, A.; Saldías, C . Dipolar glass polymers containing polarizable groups as dielectric materials for energy storage applications. A minireview . Polymers , 2019 . 11 317 DOI:10.3390/polym11020317http://doi.org/10.3390/polym11020317 .
van den Berg, O.; Wübbenhorst, M.; Picken, S. J.; Jager, W. F . Characteristic size of molecular dynamics in polymers probed by dielectric probes of variable length . J. Non-Cryst. Solids , 2005 . 351 2694 -2702 . DOI:10.1016/j.jnoncrysol.2005.03.063http://doi.org/10.1016/j.jnoncrysol.2005.03.063 .
Thakur, Y.; Lin, M.; Wu, S.; Cheng, Z.; Jeong, D. Y.; Zhang, Q. M . Tailoring the dipole properties in dielectric polymers to realize high energy density with high breakdown strength and low dielectric loss . J. Appl. Phys. , 2015 . 117 114104 DOI:10.1063/1.4915942http://doi.org/10.1063/1.4915942 .
Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S . Advanced polyimide materials: syntheses, physical properties and applications . Prog. Polym. Sci. , 2012 . 37 907 -974 . DOI:10.1016/j.progpolymsci.2012.02.005http://doi.org/10.1016/j.progpolymsci.2012.02.005 .
Ding, Y.; Hou, H.; Zhao, Y.; Zhu, Z.; Fong, H . Electrospun polyimide nanofibers and their applications . Prog. Polym. Sci. , 2016 . 61 67 -103 . DOI:10.1016/j.progpolymsci.2016.06.006http://doi.org/10.1016/j.progpolymsci.2016.06.006 .
Zhuang, Y.; Seong, J. G.; Lee, Y. M . Polyimides containing aliphatic/alicyclic segments in the main chains . Prog. Polym. Sci. , 2019 . 92 35 -88 . DOI:10.1016/j.progpolymsci.2019.01.004http://doi.org/10.1016/j.progpolymsci.2019.01.004 .
Koning, C.; Teuwen, L.; Meijer, E. W.; Moonen, J . Synthesis and properties of α,θ-diaminoalkane based polyimides . Polymer , 1994 . 35 4889 -4895 . DOI:10.1016/0032-3861(94)90748-Xhttp://doi.org/10.1016/0032-3861(94)90748-X .
Li, L.; Kikuchi, R.; Kakimoto, M . A.; Jikei, M.; Takahashi, A. Synthesis and characterization of new polyimides containing nitrile groups . High Perform. Polym. , 2005 . 17 135 -147 . DOI:10.1177/0954008305044460http://doi.org/10.1177/0954008305044460 .
Wang, D. H.; Riley, J. K.; Fillery, S. P.; Durstock, M. F.; Vaia, R. A.; Tan, L. S . Synthesis and characterization of unsymmetrical benzonitrile-containing polyimides: viscosity-lowering effect and dielectric properties . J. Polym. Sci.,Part A: Polym. Chem. , 2013 . 51 4998 -5011 . DOI:10.1002/pola.26927http://doi.org/10.1002/pola.26927 .
Treufeld, I.; Wang, D. H.; Kurish, B. A.; Tan, L. S.; Zhu, L . Enhancing electrical energy storage using polar polyimides with nitrile groups directly attached to the main chain . J. Mater. Chem. A , 2014 . 2 20683 -20696 . DOI:10.1039/C4TA03260Hhttp://doi.org/10.1039/C4TA03260H .
Wang, D. H.; Kurish, B . A.; Treufeld, I.; Zhu, L.; Tan, L. S. Synthesis and characterization of high nitrile content polyimides as dielectric films for electrical energy storage . J. Polym. Sci., Part A: Polym. Chem. , 2015 . 53 422 -436. .
Wei, J.; Meng, X.; Chen, X.; Bai, Y.; Song, J.; Yan, N.; Zhu, L.; Shen, A . Facile synthesis of fluorinated poly(arylene ether nitrile) and its dielectric properties . J. Appl. Polym. Sci. , 2018 . 135 46837 DOI:10.1002/app.46837http://doi.org/10.1002/app.46837 .
Li, Y.; Wang, H.; Shi, Z.; Mei, J.; Wang, X.; Yan, D.; Cui, Z . Novel high-k polymers as dielectric layers for organic thin-film transistors . Polym. Chem. , 2015 . 6 6651 -6658 . DOI:10.1039/C5PY00891Chttp://doi.org/10.1039/C5PY00891C .
Bendler, J. T.; Boyles, D. A.; Edmondson, C. A.; Filipova, T.; Fontanella, J. J.; Westgate, M. A.; Wintersgill, M. C . Dielectric properties of bisphenol a polycarbonate and its tethered nitrile analogue . Macromolecules , 2013 . 46 4024 -4033 . DOI:10.1021/ma4002269http://doi.org/10.1021/ma4002269 .
van de Leur, R. H. M . An extended analysis of the dielectric properties of poly[(2-cyanoethyl vinyl ether)-co-(vinyl alcohol)] . Polymer , 1994 . 35 2691 -2700 . DOI:10.1016/0032-3861(94)90294-1http://doi.org/10.1016/0032-3861(94)90294-1 .
Bedekar, B . A.; Tsujii, Y.; Ide, N.; Kita, Y.; Fukuda, T.; Miyamoto, T. Dielectric relaxation of cyanoethylated poly(2,3-dihydroxypropyl methacrylate) . Polymer , 1995 . 36 4735 -4740 . DOI:10.1016/00323-8619(59)92886-http://doi.org/10.1016/00323-8619(59)92886- .
Bonardd, S.; Robles, E.; Barandiaran, I.; Saldías, C.; Leiva, Á.; Kortaberria, G . Biocomposites with increased dielectric constant based on chitosan and nitrile-modified cellulose nanocrystals . Carbohydr. Polym. , 2018 . 199 20 -30 . DOI:10.1016/j.carbpol.2018.06.088http://doi.org/10.1016/j.carbpol.2018.06.088 .
Tasaka, S.; Inagaki, N.; Miyata, S.; Chiba, T . Electrical properties of cyanoethylated polysaccharides . Sen'i Gakkaishi , 1988 . 44 546 -550 . DOI:10.2115/fiber.44.11_546http://doi.org/10.2115/fiber.44.11_546 .
Kim, J.-Y.; Kim, H.; Kim, T.; Yu, S.; Suk, J. W.; Jeong, T.; Song, S.; Bae, M. J.; Han, I.; Jung, D.; Park, S. H . A chlorinated barium titanate-filled polymer composite with a high dielectric constant and its application to electroluminescent devices . J. Mater. Chem. C , 2013 . 1 5078 -5083 . DOI:10.1039/c3tc30767khttp://doi.org/10.1039/c3tc30767k .
Bonardd, S.; Alegria, A.; Saldias, C.; Leiva, A.; Kortaberria, G . Polyitaconates: a new family of “all-polymer” dielectrics . ACS Appl. Mater. Interfaces , 2018 . 10 38476 -38492 . DOI:10.1021/acsami.8b14636http://doi.org/10.1021/acsami.8b14636 .
Bonardd, S.; Alegria, Á.; Saldías, C.; Leiva, Á.; Kortaberria, G . Synthesis of new poly(itaconate)s containing nitrile groups as high dipolar moment entities for the development of dipolar glass polymers with increased dielectric constant. Thermal and dielectric characterization . Eur. Polym. J. , 2019 . 114 19 -31 . DOI:10.1016/j.eurpolymj.2019.02.013http://doi.org/10.1016/j.eurpolymj.2019.02.013 .
Tong, H.; Ahmad, A.; Fu, J.; Xu, H.; Fan, T.; Hou, Y.; Xu, J . Revealing the correlation between molecular structure and dielectric properties of carbonyl-containing polyimide dielectrics . J. Appl. Polym. Sci. , 2019 . 136 47883 DOI:10.1002/app.47883http://doi.org/10.1002/app.47883 .
Tong, H.; Fu, J.; Ahmad, A.; Fan, T.; Hou, Y.; Xu, J . Sulfonyl-containing polyimide dielectrics with advanced heat resistance and dielectric properties for high-temperature capacitor applications . Macromol. Mater. Eng. , 2019 . 304 1800709 DOI:10.1002/mame.201800709http://doi.org/10.1002/mame.201800709 .
Ren, W.; Pan, J.; Dan, Z.; Zhang, T.; Jiang, J.; Fan, M.; Hu, P.; Li, M.; Lin, Y.; Nan, C. W.; Shen, Y . High-temperature electrical energy storage performances of dipolar glass polymer nanocomposites filled with trace ultrafine nanoparticles . Chem. Eng. J. , 2021 . 420 127614 DOI:10.1016/j.cej.2020.127614http://doi.org/10.1016/j.cej.2020.127614 .
Lee, J.; Lee, B.; Park, J.; Oh, J.; Kim, T.; Seo, M.; Kim, S. Y . Synthesis and phase transition behavior of well-defined poly(arylene ether sulfone)s by chain growth condensation polymerization in organic media . Polymer , 2018 . 153 430 -437 . DOI:10.1016/j.polymer.2018.08.040http://doi.org/10.1016/j.polymer.2018.08.040 .
Faye, A.; Furtos, A.; Brisson, J . Synthesis of high molecular weight polyetherethersulfone-allyl copolymers of controlled glass transition . Macromol. Chem. Phys. , 2016 . 217 2125 -2138 . DOI:10.1002/macp.201600229http://doi.org/10.1002/macp.201600229 .
Yue, C.; Sun, T.; Pang, J.; Han, X.; Cao, N.; Jiang, Z . Synthesis and performance of comb-shape poly(arylene ether sulfone) with flexible aliphatic brush . Polymer , 2020 . 210 122953 DOI:10.1016/j.polymer.2020.122953http://doi.org/10.1016/j.polymer.2020.122953 .
Weiber, E . A.; Meis, D.; Jannasch, P. Anion conducting multiblock poly(arylene ether sulfone)s containing hydrophilic segments densely functionalized with quaternary ammonium groups . Polym. Chem. , 2015 . 6 1986 -1996 . DOI:10.1039/C4PY01588Fhttp://doi.org/10.1039/C4PY01588F .
Suga, T.; Wi, S.; Long, T. E . Synthesis of diazocine-containing poly(arylene ether sulfone)s for tailored mechanical and electrochemical performance . Macromolecules , 2009 . 42 1526 -1532 . DOI:10.1021/ma802249ahttp://doi.org/10.1021/ma802249a .
Lee, K. H.; Cho, D. H.; Kim, Y. M.; Moon, S. J.; Seong, J. G.; Shin, D. W.; Sohn, J. Y.; Kim, J. F.; Lee, Y. M . Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking . Energy Environ. Sci. , 2017 . 10 275 -285 . DOI:10.1039/C6EE03079Chttp://doi.org/10.1039/C6EE03079C .
Li, N.; Lee, S. Y.; Liu, Y. L.; Lee, Y. M.; Guiver, M. D . A new class of highly-conducting polymer electrolyte membranes: aromatic ABA triblock copolymers . Energy Environ. Sci. , 2012 . 5 5346 -5355 . DOI:10.1039/C1EE02556Bhttp://doi.org/10.1039/C1EE02556B .
Park, S. A.; Jeon, H.; Kim, H.; Shin, S. H.; Choy, S.; Hwang, D. S.; Koo, J. M.; Jegal, J.; Hwang, S. Y.; Park, J.; Oh, D. X . Sustainable and recyclable super engineering thermoplastic from biorenewable monomer . Nat. Commun. , 2019 . 10 2601 DOI:10.1038/s41467-019-10582-6http://doi.org/10.1038/s41467-019-10582-6 .
Liu, J.; Li, X.; Ma, S.; Zhang, J.; Jiang, Z.; Zhang, Y . Enhanced high-temperature dielectric properties of poly(aryl ether sulfone)/BaTiO3 nanocomposites via constructing chemical crosslinked networks . Macromol. Rapid Commun. , 2020 . 41 2000012 DOI:10.1002/marc.202000012http://doi.org/10.1002/marc.202000012 .
Liu, J.; Zhang, Y.; Wang, Z.; Ding, J.; Yu, S.; Zhang, Y.; Jiang, Z . Optimizing electric field distribution via tuning cross-linked point size for improving the dielectric properties of polymer nanocomposites . Nanoscale , 2020 . 12 12416 -12425 . DOI:10.1039/D0NR00124Dhttp://doi.org/10.1039/D0NR00124D .
Xu, W.; Liu, J.; Chen, T.; Jiang, X.; Qian, X.; Zhang, Y.; Jiang, Z.; Zhang, Y . Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature . Small , 2019 . 15 1901582 DOI:10.1002/smll.201901582http://doi.org/10.1002/smll.201901582 .
Liu, J.; Shen, Z.; Xu, W.; Zhang, Y.; Qian, X.; Jiang, Z.; Zhang, Y . Interface-strengthened polymer nanocomposites with reduced dielectric relaxation exhibit high energy density at elevated temperatures utilizing a facile dual crosslinked network . Small , 2020 . 16 2000714 DOI:10.1002/smll.202000714http://doi.org/10.1002/smll.202000714 .
Dünki, S. J.; Cuervo-Reyes, E.; Opris, D. M . A facile synthetic strategy to polysiloxanes containing sulfonyl side groups with high dielectric permittivity . Polym. Chem. , 2017 . 8 715 -724 . DOI:10.1039/C6PY01917Jhttp://doi.org/10.1039/C6PY01917J .
Wang, C.; Zhang, Z.; Pejić, S.; Li, R.; Fukuto, M.; Zhu, L.; Sauvé, G . High dielectric constant semiconducting poly(3-alkylthiophene)s from side chain modification with polar sulfinyl and sulfonyl groups . Macromolecules , 2018 . 51 9368 -9381 . DOI:10.1021/acs.macromol.8b01895http://doi.org/10.1021/acs.macromol.8b01895 .
Wei, J.; Ju, T.; Huang, W.; Song, J.; Yan, N.; Wang, F.; Shen, A.; Li, Z.; Zhu, L . High dielectric constant dipolar glass polymer based on sulfonylated poly(ether ether ketone) . Polymer , 2019 . 178 121688 DOI:10.1016/j.polymer.2019.121688http://doi.org/10.1016/j.polymer.2019.121688 .
Zhu, Y. F.; Zhang, Z.; Litt, M. H.; Zhu, L . High dielectric constant sulfonyl-containing dipolar glass polymers with enhanced orientational polarization . Macromolecules , 2018 . 51 6257 -6266 . DOI:10.1021/acs.macromol.8b00923http://doi.org/10.1021/acs.macromol.8b00923 .
Zhang, Z.; Zheng, J.; Premasiri, K.; Kwok, M. H.; Li, Q.; Li, R.; Zhang, S.; Litt, M. H.; Gao, X. P. A.; Zhu, L . High-κ polymers of intrinsic microporosity: a new class of high temperature and low loss dielectrics for printed electronics . Mater. Horizons , 2020 . 7 592 -597 . DOI:10.1039/C9MH01261Chttp://doi.org/10.1039/C9MH01261C .
Sekitani, T.; Someya, T . Stretchable, large-area organic electronics . Adv. Mater. , 2010 . 22 2228 -2246 . DOI:10.1002/adma.200904054http://doi.org/10.1002/adma.200904054 .
Yang, C. Y.; Wnek, G. E. Synthesis and reactions of silyl ketene acetal-modified polysiloxanes . Preparation and preliminary dielectric characterization of some new polysiloxanes . Polymer , 1992 . 33 4191 -4196 . DOI:10.1016/0032-3861(92)90626-8http://doi.org/10.1016/0032-3861(92)90626-8 .
Zhu, Z.; Einset, A. G.; Yang, C. Y.; Chen, W. X.; Wnek, G. E . Synthesis of polysiloxanes bearing cyclic carbonate side chains. Dielectric properties and ionic conductivities of lithium triflate complexes . Macromolecules , 1994 . 27 4076 -4079 . DOI:10.1021/ma00093a007http://doi.org/10.1021/ma00093a007 .
Racles, C.; Alexandru, M.; Bele, A.; Musteata, V. E.; Cazacu, M.; Opris, D. M . Chemical modification of polysiloxanes with polar pendant groups by co-hydrosilylation . RSC Adv. , 2014 . 4 37620 -37628 . DOI:10.1039/C4RA06955Bhttp://doi.org/10.1039/C4RA06955B .
Madsen, F. B.; Javakhishvili, I.; Jensen, R. E.; Daugaard, A. E.; Hvilsted, S.; Skov, A. L . Synthesis of telechelic vinyl/allyl functional siloxane copolymers with structural control . Polym. Chem. , 2014 . 5 7054 -7061 . DOI:10.1039/C4PY00919Chttp://doi.org/10.1039/C4PY00919C .
Dünki, S. J.; Tress, M.; Kremer, F.; Ko, S. Y.; Nüesch, F. A.; Varganici, C. D.; Racles, C.; Opris, D. M . Fine-tuning of the dielectric properties of polysiloxanes by chemical modification . RSC Adv. , 2015 . 5 50054 -50062 . DOI:10.1039/C5RA07412Fhttp://doi.org/10.1039/C5RA07412F .
Sheima, Y.; Yuts, Y.; Frauenrath, H.; Opris, D. M . Polysiloxanes modified with different types and contents of polar groups: synthesis, structure, and thermal and dielectric properties . Macromolecules , 2021 . 54 5737 -5749 . DOI:10.1021/acs.macromol.1c00362http://doi.org/10.1021/acs.macromol.1c00362 .
Wang, Y.; Huang, X.; Li, T.; Wang, Z.; Li, L.; Guo, X.; Jiang, P . Novel crosslinkable high-k copolymer dielectrics for high-energy-density capacitors and organic field-effect transistor applications . J. Mater. Chem. A , 2017 . 5 20737 -20746 . DOI:10.1039/C7TA06005Jhttp://doi.org/10.1039/C7TA06005J .
Xu, H.; Chen, S.; Chen, S.; Qiao, R.; Li, H.; Luo, H.; Zhang, D . Constructing high-performance dielectrics via molecular and phase engineering in dipolar polymers . ACS Appl. Energ. Mater. , 2021 . 4 2451 -2462 . DOI:10.1021/acsaem.0c02962http://doi.org/10.1021/acsaem.0c02962 .
Qiao, Y.; Yin, X.; Zhu, T.; Li, H.; Tang, C . Dielectric polymers with novel chemistry, compositions and architectures . Prog. Polym. Sci. , 2018 . 80 153 -162 . DOI:10.1016/j.progpolymsci.2018.01.003http://doi.org/10.1016/j.progpolymsci.2018.01.003 .
Kumler, W. D.; Fohlen, G. M . The dipole moment and structure of urea and thiourea . J. Am. Chem. Soc. , 1942 . 64 1944 -1948 . DOI:10.1021/ja01260a054http://doi.org/10.1021/ja01260a054 .
Wu, S.; Burlingame, Q.; Cheng, Z. X.; Lin, M.; Zhang, Q. M . Strongly dipolar polythiourea and polyurea dielectrics with high electrical breakdown, low loss, and high electrical energy density . J. Electron. Mater. , 2014 . 43 4548 -4551 . DOI:10.1007/s11664-014-3374-0http://doi.org/10.1007/s11664-014-3374-0 .
Lorenzini, R. G.; Kline, W. M.; Wang, C. C.; Ramprasad, R.; Sotzing, G. A . The rational design of polyurea & polyurethane dielectric materials . Polymer , 2013 . 54 3529 -3533 . DOI:10.1016/j.polymer.2013.05.003http://doi.org/10.1016/j.polymer.2013.05.003 .
Mannodi-Kanakkithodi, A.; Treich, G. M.; Huan, T. D.; Ma, R.; Tefferi, M.; Cao, Y.; Sotzing, G. A.; Ramprasad, R . Rational co-design of polymer dielectrics for energy storage . Adv. Mater. , 2016 . 28 6277 -6291 . DOI:10.1002/adma.201600377http://doi.org/10.1002/adma.201600377 .
Sharma, V.; Wang, C.; Lorenzini, R. G.; Ma, R.; Zhu, Q.; Sinkovits, D. W.; Pilania, G.; Oganov, A. R.; Kumar, S.; Sotzing, G. A.; Boggs, S. A.; Ramprasad, R . Rational design of all organic polymer dielectrics . Nat. Commun. , 2014 . 5 4845 DOI:10.1038/ncomms5845http://doi.org/10.1038/ncomms5845 .
Thakur, Y.; Zhang, B.; Dong, R.; Lu, W.; Iacob, C.; Runt, J.; Bernholc, J.; Zhang, Q. M . Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering . Nano Energy , 2017 . 32 73 -79 . DOI:10.1016/j.nanoen.2016.12.021http://doi.org/10.1016/j.nanoen.2016.12.021 .
Wang, Y.; Zhou, X.; Lin, M.; Zhang, Q. M . High-energy density in aromatic polyurea thin films . Appl. Phys. Lett. , 2009 . 94 202905 DOI:10.1063/1.3142388http://doi.org/10.1063/1.3142388 .
Wang, Y.; Zhou, X.; Chen, Q.; Chu, B.; Zhang, Q . Recent development of high energy density polymers for dielectric capacitors . IEEE Trns. Dielectr. Electr. Insul. , 2010 . 17 1036 -1042 . DOI:10.1109/TDEI.2010.5539672http://doi.org/10.1109/TDEI.2010.5539672 .
Thakur, Y.; Lin, M.; Wu, S.; Zhang, Q. M . Aromatic polyurea possessing high electrical energy density and low loss . J. Electron. Mater. , 2016 . 45 4721 -4725 . DOI:10.1007/s11664-016-4759-zhttp://doi.org/10.1007/s11664-016-4759-z .
Cheng, Z.; Lin, M.; Wu, S.; Thakur, Y.; Zhou, Y.; Jeong, D. Y.; Shen, Q.; Zhang, Q. M . Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors . Appl. Phys. Lett. , 2015 . 106 202902 DOI:10.1063/1.4921485http://doi.org/10.1063/1.4921485 .
Banihashemi, A.; Hazarkhani, H.; Abdolmaleki, A . Efficient and rapid synthesis of polyureas and polythioureas from the reaction of urea and thiourea with diamines under microwave irradiation . J. Polym. Sci., Part A: Polym. Chem. , 2004 . 42 2106 -2111 . DOI:10.1002/pola.20060http://doi.org/10.1002/pola.20060 .
Wu, S.; Li, W.; Lin, M.; Burlingame, Q.; Chen, Q.; Payzant, A.; Xiao, K.; Zhang, Q. M . Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density . Adv. Mater. , 2013 . 25 1734 -1738 . DOI:10.1002/adma.201204072http://doi.org/10.1002/adma.201204072 .
Feng, Y.; Hasegawa, Y.; Suga, T.; Nishide, H.; Yang, L.; Chen, G.; Li, S . Tuning conformational H-bonding arrays in aromatic/alicyclic polythiourea toward high energy-storable dielectric material . Macromolecules , 2019 . 52 8781 -8787 . DOI:10.1021/acs.macromol.9b01785http://doi.org/10.1021/acs.macromol.9b01785 .
Ma, R.; Sharma, V.; Baldwin, A. F.; Tefferi, M.; Offenbach, I.; Cakmak, M.; Weiss, R.; Cao, Y.; Ramprasad, R.; Sotzing, G. A . Rational design and synthesis of polythioureas as capacitor dielectrics . J. Mater. Chem. A , 2015 . 3 14845 -14852 . DOI:10.1039/C5TA01252Jhttp://doi.org/10.1039/C5TA01252J .
Wu, S.; Lin, M.; Burlingame, Q.; Zhang, Q. M . Meta-aromatic polyurea with high dipole moment and dipole density for energy storage capacitors . Appl. Phys. Lett. , 2014 . 104 072903 DOI:10.1063/1.4865931http://doi.org/10.1063/1.4865931 .
Eršte, A.; Fulanović, L.; Čoga, L.; Lin, M.; Thakur, Y.; Zhang, Q. M.; Bobnar, V . Stable dielectric response of low-loss aromatic polythiourea thin films on Pt/SiO2 substrate . J. Adv. Dielectr. , 2016 . 06 1650003 DOI:10.1142/S2010135X1650003Xhttp://doi.org/10.1142/S2010135X1650003X .
Li, Z.; Treich, Gregory M.; Tefferi, M.; Wu, C.; Nasreen, S.; Scheirey, S. K.; Ramprasad, R.; Sotzing, G. A.; Cao, Y . High energy density and high efficiency all-organic polymers with enhanced dipolar polarization . J. Mater. Chem. A , 2019 . 7 15026 -15030 . DOI:10.1039/C9TA03601Fhttp://doi.org/10.1039/C9TA03601F .
Zhang, T.; Chen, X.; Thakur, Y.; Lu, B.; Zhang, Q.; Runt, J.; Zhang, Q. M . A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature . Sci. Adv. , 2020 . 6 eaax6622 DOI:10.1126/sciadv.aax6622http://doi.org/10.1126/sciadv.aax6622 .
Feng, Y.; Yang, L.; Qu, G.; Suga, T.; Nishide, H.; Chen, G.; Li, S . Optimizing the interdomain spacing in alicyclic polythiourea toward high-energy-storable dielectric material . Macromol. Rapid Commun. , 2020 . 41 2000167 DOI:10.1002/marc.202000167http://doi.org/10.1002/marc.202000167 .
Liu, Y.; Chen, J.; Jiang, X.; Jiang, P.; Huang, X . All-organic cross-linked polysiloxane-aromatic thiourea dielectric films for electrical energy storage application . ACS Appl. Energ. Mater. , 2020 . 3 5198 -5207 . DOI:10.1021/acsaem.9b02521http://doi.org/10.1021/acsaem.9b02521 .
Bendler, J. T.; Edmondson, C. A.; Wintersgill, M. C.; Boyles, D. A.; Filipova, T. S.; Fontanella, J. J . Electrical properties of a novel fluorinated polycarbonate . Eur. Polym. J. , 2012 . 48 830 -840 . DOI:10.1016/j.eurpolymj.2012.02.001http://doi.org/10.1016/j.eurpolymj.2012.02.001 .
Yuan, X.; Matsuyama, Y.; Chung, T. C. M . Synthesis of functionalized isotactic polypropylene dielectrics for electric energy storage applications . Macromolecules , 2010 . 43 4011 -4015 . DOI:10.1021/ma100209dhttp://doi.org/10.1021/ma100209d .
Stoops, W. N . The dielectric properties of cellulose . J. Am. Chem. Soc. , 1934 . 56 1480 -1483 . DOI:10.1021/ja01322a011http://doi.org/10.1021/ja01322a011 .
Lao, J.; Xie, H.; Shi, Z.; Li, G.; Li, B.; Hu, G . H.; Yang, Q.; Xiong, C. Flexible regenerated cellulose/boron nitride nanosheet high-temperature dielectric nanocomposite films with high energy density and breakdown strength . ACS Sustain. Chem. Eng. , 2018 . 6 7151 -7158 . DOI:10.1021/acssuschemeng.8b01219http://doi.org/10.1021/acssuschemeng.8b01219 .
Zhang, Z.; Litt, M. H.; Zhu, L . Nature of ferroelectric behavior in main-chain dipolar glass nylons: cooperative segmental motion induced by high poling electric field . Macromolecules , 2018 . 51 1967 -1977 . DOI:10.1021/acs.macromol.7b02719http://doi.org/10.1021/acs.macromol.7b02719 .
Sheng, S.; Li, T.; Jiang, J.; He, W.; Song, C . Synthesis and properties of novel polyamides containing sulfone-ether linkages and xanthene cardo groups . Polym. Int. , 2010 . 59 1014 -1020 . DOI:10.1002/pi.2820http://doi.org/10.1002/pi.2820 .
Wang, Y. J.; Liu, X. L.; Huang, Z. Z.; Jiang, J. W.; Sheng, S. R . Synthesis and characterization of novel aromatic polyamides containing 3-trifluoromethyl-substituted triphenylamine . J. Macromol. Sci. Part A-Pure Appl. Chem. , 2017 . 54 534 -542 . DOI:10.1080/10601325.2017.1320769http://doi.org/10.1080/10601325.2017.1320769 .
Damaceanu, M. D.; Rusu, R. D.; Cristea, M.; Musteata, V. E.; Bruma, M.; Wolinska-Grabczyk, A . Insights into the chain and local mobility of some aromatic polyamides and their influence on the physicochemical properties . Macromol. Chem. Phys. , 2014 . 215 1573 -1587 . DOI:10.1002/macp.201400213http://doi.org/10.1002/macp.201400213 .
Javadi, A.; Shockravi, A.; Kamali, M.; Rafieimanesh, A.; Malek, A. M . Solution processable polyamides containing thiazole units and thioether linkages with high optical transparency, high refractive index, and low birefringence . J. Polym. Sci., Part A: Polym. Chem. , 2013 . 51 3505 -3515 . DOI:10.1002/pola.26752http://doi.org/10.1002/pola.26752 .
Hsiao, S. H.; Liou, G. S.; Kung, Y. C.; Yen, H. J . High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides . Macromolecules , 2008 . 41 2800 -2808 . DOI:10.1021/ma702426zhttp://doi.org/10.1021/ma702426z .
Damaceanu, M. D.; Rusu, R. D.; Nicolescu, A.; Bruma, M.; Rusanov, A. L . Organosoluble asymmetric aromatic polyamides bearing pendent phenoxy groups . Polym. Int. , 2011 . 60 1248 -1258 . DOI:10.1002/pi.3070http://doi.org/10.1002/pi.3070 .
Liaw, D. J.; Chang, F. C.; Leung, M. K.; Chou, M. Y.; Muellen, K . High thermal stability and rigid rod of novel organosoluble polyimides and polyamides based on bulky and noncoplanar naphthalene-biphenyldiamine . Macromolecules , 2005 . 38 4024 -4029 . DOI:10.1021/ma048559xhttp://doi.org/10.1021/ma048559x .
Sava, I.; Iosip, M. D.; Bruma, M.; Hamciuc, C.; Robison, J.; Okrasa, L.; Pakula, T . Aromatic polyamides with pendent acetoxybenzamide groups and thin films made therefrom . Eur. Polym. J. , 2003 . 39 725 -738 . DOI:10.1016/S0014-3057(02)00295-1http://doi.org/10.1016/S0014-3057(02)00295-1 .
Xu, D.; Zhou, C.; Zhang, Y.; Pang, J.; Jiang, Z.; Zhang, H . Rational design and preparation of a strong and tough high-k material . React. Funct. Polym. , 2020 . 156 104730 DOI:10.1016/j.reactfunctpolym.2020.104730http://doi.org/10.1016/j.reactfunctpolym.2020.104730 .
Xu, D.; Xu, W.; Seery, T.; Zhang, H.; Zhou, C.; Pang, J.; Zhang, Y.; Jiang, Z . Rational design of soluble polyaramid for high-efficiency energy storage dielectric materials at elevated temperatures . Macromol. Mater. Eng. , 2020 . 305 1900820 DOI:10.1002/mame.201900820http://doi.org/10.1002/mame.201900820 .
Zhou, C.; Xu, W.; Zhang, B.; Zhang, Y.; Shen, C.; Xu, Q.; Liu, X.; Bertram, F.; Bernholc, J.; Jiang, Z.; Shang, Y.; Zhang, H . Curly-packed structure polymers for high-temperature capacitive energy storage . Chem. Mater. , 2022 . 34 2333 -2341 . DOI:10.1021/acs.chemmater.1c04220http://doi.org/10.1021/acs.chemmater.1c04220 .
Tang, Y.; Xu, W.; Niu, S.; Zhang, Z.; Zhang, Y.; Jiang, Z . Crosslinked dielectric materials for high-temperature capacitive energy storage . J. Mater. Chem. A , 2021 . 9 10000 -10011 . DOI:10.1039/D1TA00288Khttp://doi.org/10.1039/D1TA00288K .
0
Views
15
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution