a.Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
b.Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
fanzhen2018@tongji.edu.cn (Z.F.)
jzdu@tongji.edu.cn (J.Z.D.)
Scan for full text
Cong-Yu Wang, Min Sun, Zhen Fan, et al. Intestine Enzyme-responsive Polysaccharide-based Hydrogel to Open Epithelial Tight Junctions for Oral Delivery of Imatinib against Colon Cancer. [J]. Chinese Journal of Polymer Science 40(10):1154-1164(2022)
Cong-Yu Wang, Min Sun, Zhen Fan, et al. Intestine Enzyme-responsive Polysaccharide-based Hydrogel to Open Epithelial Tight Junctions for Oral Delivery of Imatinib against Colon Cancer. [J]. Chinese Journal of Polymer Science 40(10):1154-1164(2022) DOI: 10.1007/s10118-022-2726-0.
We developed an intestine enzyme-responsive hydrogel to co-deliver anticancer drug (hydrophobic imatinib) and permeation enhancer (sodium deoxycholate) with long-term controlled release and enhanced intestinal permeability through oral administration (6-fold enhancement of in vivo anticancer effects compared to free imatinib mesylate). This intestine enzyme-responsive hydrogel has great potentials for cancer treatment.
Imatinib has been widely used as a selective kinase inhibitor for treating a variety of cancers, and this molecule is very hydrophobic so it is usually modified with mesylate salt in clinic to increase bioavailability. However, pH-dependent aqueous solubility and relatively high dosage of imatinib mesylate greatly reduce the clinical outcomes. To solve this problem, we developed an intestine enzyme-responsive hydrogel to efficiently encapsulate hydrophobic imatinib with long-term controlled release and enhanced intestinal permeability through oral administration. Methacrylic anhydride-modified carboxymethyl chitosan (MA-CMCS) was synthesized ,via, amidation reaction and then MA-CMCS was crosslinked with photoinitator under UV-irradation to form a three-dimensional hydrophilic polymer network. The intestine enzyme responsiveness was endowed with imatinib-loaded hydrogel through hydrolyzation of glucosidic bond, which could achieve enzyme-triggered long-term drug release of up to 2 days. Furthermore, sodium deoxycholate was embedded into the hydrogel to synchronously open epithelial tight junctions with improved intestinal permeability. ,In vitro, studies revealed similar lethality against colon cancer cell for both imatinib mesylate and imatinib-loaded hydrogels. Moreover, significantly enhanced ,in vivo, tumor inhibition (6-fold higher compared to imatinib mesylate) was achieved after oral administration with imatinib-loaded hydrogels. Overall, this enzyme-responsive hydrogel could achieve long-term synchronous release of kinase inhibitor (imatinib) and tight junction permeation enhancer (sodium deoxycholate) at intestine with enhanced therapeutic efficiency, which could provide an effective approach to improve the bioavailability of hydrophobic anticancer chemodrugs with oral administration.
Carboxymethyl chitosanImatinibHydrogelsOral deliveryTight junctions
Miller, K. D.; Nogueira, L.; Mariotto, A. B.; Rowland, J. H.; Yabroff, K. R.; Alfano, C. M.; Jemal, A.; Kramer, J. L.; Siegel, R. L . Cancer treatment and survivorship statistics, 2019 . CA Cancer J. Clin. , 2019 . 69 363 -385. .
Wild, C.; Weiderpass, E.; Stewart, B. W. World cancer report: cancer research for cancer prevention. IARC Press, 2020.
Khan, F. A.; Albalawi, R.; Pottoo, F. H . Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment . Med. Res. Rev. , 2022 . 42 227 -258 . DOI:10.1002/med.21809http://doi.org/10.1002/med.21809 .
Bukowski, K.; Kciuk, M.; Kontek, R . Mechanisms of multidrug resistance in cancer chemotherapy . Int. J. Mol. Sci. , 2020 . 21,3233 .
Ortiz, R.; Quinonero, F.; Garcia-Pinel, B.; Fuel, M.; Mesas, C.; Cabeza, L.; Melguizo, C.; Prados, J . Nanomedicine to overcome multidrug resistance mechanisms in colon and pancreatic cancer: recent progress . Cancers , 2021 . 13 2058 DOI:10.3390/cancers13092058http://doi.org/10.3390/cancers13092058 .
Xie, Y. H.; Chen, Y. X.; Fang, J. Y . Comprehensive review of targeted therapy for colorectal cancer . Sig. Transduct. Target. Ther. , 2020 . 5 22 DOI:10.1038/s41392-020-0116-zhttp://doi.org/10.1038/s41392-020-0116-z .
Hammond, W . A.; Swaika, A.; Mody, K. Pharmacologic resistance in colorectal cancer: a review . Ther. Adv. Med. Oncol. , 2016 . 8 57 -84 . DOI:10.1177/1758834015614530http://doi.org/10.1177/1758834015614530 .
Zhang, J.; Yang, P. L.; Gray, N. S . Targeting cancer with small molecule kinase inhibitors . Nat. Rev. Cancer , 2009 . 9 28 -39 . DOI:10.1038/nrc2559http://doi.org/10.1038/nrc2559 .
Baranowska-Kortylewicz, J.; Abe, M.; Pietras, K.; Kortylewicz, Z. P.; Kurizaki, T.; Nearman, J.; Paulsson, J.; Mosley, R. L.; Enke, C. A.; Ostman, A . Effect of platelet-derived growth factor receptor-β inhibition with STI571 on radioimmunotherapy . Cancer Res. , 2005 . 65 7824 -7831 . DOI:10.1158/0008-5472.CAN-04-3991http://doi.org/10.1158/0008-5472.CAN-04-3991 .
Codullo, V.; Cova, E.; Pandolfi, L.; Breda, S.; Morosini, M.; Frangipane, V.; Malatesta, M.; Calderan, L.; Cagnone, M.; Pacini, C.; Cavagna, L.; Recalde, H.; Distler, J. H . W.; Giustra, M.; Prosperi, D.; Colombo, M.; Meloni, F.; Montecucco, C. Imatinib-loaded gold nanoparticles inhibit proliferation of fibroblasts and macrophages from systemic sclerosis patients and ameliorate experimental bleomycin-induced lung fibrosis . J. Control. Release , 2019 . 310 198 -208 . DOI:10.1016/j.jconrel.2019.08.015http://doi.org/10.1016/j.jconrel.2019.08.015 .
El-Mezayen, N. S.; El-Hadidy, W. F.; El-Refaie, W. M.; Shalaby, T. I.; Khattab, M. M.; El-Khatib, A. S . Hepatic stellate cell-targeted imatinib nanomedicine versus conventional imatinib: a novel strategy with potent efficacy in experimental liver fibrosis . J. Control. Release , 2017 . 266 226 -237 . DOI:10.1016/j.jconrel.2017.09.035http://doi.org/10.1016/j.jconrel.2017.09.035 .
Vlahovic, G.; Rabbani, Z. N.; Herndon, J. E., 2nd; Dewhirst, M. W.; Vujaskovic, Z . Treatment with Imatinib in NSCLC is associated with decrease of phosphorylated PDGFR-β and VEGF expression, decrease in interstitial fluid pressure and improvement of oxygenation . Br. J. Cancer , 2006 . 95 1013 -1019 . DOI:10.1038/sj.bjc.6603366http://doi.org/10.1038/sj.bjc.6603366 .
Willig, J. B.; Vianna, D. R. B.; Beckenkamp, A.; Beckenkamp, L. R.; Sevigny, J.; Wink, M. R.; Buffon, A.; Pilger, D. A . Imatinib mesylate affects extracellular ATP catabolism and expression of NTPDases in a chronic myeloid leukemia cell line . Purinergic Signal. , 2020 . 16 29 -40 . DOI:10.1007/s11302-019-09686-xhttp://doi.org/10.1007/s11302-019-09686-x .
Fan, Y.; Du, W.; He, B.; Fu, F.; Yuan, L.; Wu, H.; Dai, W.; Zhang, H.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q . The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin . Biomaterials , 2013 . 34 2277 -2288 . DOI:10.1016/j.biomaterials.2012.12.012http://doi.org/10.1016/j.biomaterials.2012.12.012 .
Szakács, Z.; Béni, S.; Varga, Z.; Örfi, L.; Kéri, G.; Noszál, B . Acid-base profiling of imatinib (gleevec) and its fragments . J. Med. Chem. , 2005 . 48 249 -255 . DOI:10.1021/jm049546chttp://doi.org/10.1021/jm049546c .
Nugent, S.; Kumar, D.; Rampton, D.; Evans, D . Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs . Gut , 2001 . 48 571 -577 . DOI:10.1136/gut.48.4.571http://doi.org/10.1136/gut.48.4.571 .
Li, Y.; Yang, B.; Zhang, X . Oral delivery of imatinib through galactosylated polymeric nanoparticles to explore the contribution of a saccharide ligand to absorption . Int. J. Pharm. , 2019 . 568 118508 DOI:10.1016/j.ijpharm.2019.118508http://doi.org/10.1016/j.ijpharm.2019.118508 .
Ramazani, F.; Chen, W.; Van Nostrum, C. F.; Storm, G.; Kiessling, F.; Lammers, T.; Hennink, W. E.; Kok, R. J . Formulation and characterization of microspheres loaded with imatinib for sustained delivery . Int. J. Pharm. , 2015 . 482 123 -130 . DOI:10.1016/j.ijpharm.2015.01.043http://doi.org/10.1016/j.ijpharm.2015.01.043 .
Chen, K. H.; Miao, Y. B.; Shang, C. Y.; Huang, T. Y.; Yu, Y. T.; Yeh, C. N.; Song, H. L.; Chen, C. T.; Mi, F. L.; Lin, K. J.; Sung, H. W . A bubble bursting-mediated oral drug delivery system that enables concurrent delivery of lipophilic and hydrophilic chemotherapeutics for treating pancreatic tumors in rats . Biomaterials , 2020 . 255 120157 DOI:10.1016/j.biomaterials.2020.120157http://doi.org/10.1016/j.biomaterials.2020.120157 .
O’Brien, S.; Guilhot, F.; Larson, R.; Gathmann, I.; Baccarani, M.; Cervantes, F . The IRIS International study: Imatinib versus interferon and low-dose Ara-C in patients with newly-diagnosed chronic phase chronic myeloid leukemia . New Engl. J. Med. , 2003 . 348 994 -1004 . DOI:10.1056/NEJMoa022457http://doi.org/10.1056/NEJMoa022457 .
Druker, B.; Guilhot, F.; O’Brien, S . Five-year follow-up of imatinib therapy for chronic-phase chronic myeloid leukemia . New Engl. J. Med. , 2006 . 355 2408 -2417 . DOI:10.1056/NEJMoa062867http://doi.org/10.1056/NEJMoa062867 .
Morishima, Y.; Ogura, M.; Nishimura, M.; Yazaki, F.; Bessho, M.; Mizoguchi, H.; Chiba, S.; Hirai, H.; Tauchi, T.; Urabe, A . Efficacy and safety of imatinib mesylate for patients in the first chronic phase of chronic myeloid leukemia: results of a Japanese phase II clinical study . Int. J. Hematol. , 2004 . 80 261 -266 . DOI:10.1532/IJH97.04074http://doi.org/10.1532/IJH97.04074 .
Miyazawa, K.; Nishimaki, J.; Katagiri, T.; Sashida, G.; Shoji, N.; Kawakubo, K.; Suzuki, A.; Shimamoto, T.; Gotoh, A.; Kuriyama, Y . Thrombocytopenia induced by imatinib mesylate (Glivec) in patients with chronic myelogenous leukemia: is 400 mg daily of imatinib mesylate an optimal starting dose for Japanese patients . Int. J. Hematol. , 2003 . 77 93 DOI:10.1007/BF02982610http://doi.org/10.1007/BF02982610 .
Carneiro, B. A.; Kaplan, J. B.; Giles, F. J . Tyrosine kinase inhibitor therapy in chronic myeloid leukemia: update on key adverse events . Expert Rev. Hematol. , 2015 . 8 457 -479 . DOI:10.1586/17474086.2015.1041910http://doi.org/10.1586/17474086.2015.1041910 .
Benny, O.; Menon, L. G.; Ariel, G.; Goren, E.; Kim, S. K.; Stewman, C.; Black, P. M.; Carroll, R. S.; Machluf, M . Local delivery of poly lactic-co-glycolic acid microspheres containing imatinib mesylate inhibits intracranial xenograft glioma growth . Clin. Cancer. Res. , 2009 . 15 1222 -1231 . DOI:10.1158/1078-0432.CCR-08-1316http://doi.org/10.1158/1078-0432.CCR-08-1316 .
Gupta, B.; Poudel, B. K.; Tran, T. H.; Pradhan, R.; Cho, H. J.; Jeong, J. H.; Shin, B. S.; Choi, H. G.; Yong, C. S.; Kim, J. O . Modulation of pharmacokinetic and cytotoxicity profile of imatinib base by employing optimized nanostructured lipid carriers . Pharm. Res. , 2015 . 32 2912 -2927 . DOI:10.1007/s11095-015-1673-7http://doi.org/10.1007/s11095-015-1673-7 .
Kimura, S.; Egashira, K.; Nakano, K.; Iwata, E.; Miyagawa, M.; Tsujimoto, H.; Hara, K.; Kawashima, Y.; Tominaga, R.; Sunagawa, K . Local delivery of imatinib mesylate (STI571)-incorporated nanoparticle ex vivo suppresses vein graft neointima formation . Circulation , 2008 . 118 S65 -70. .
Palama, I . E.; Cortese, B.; D'Amone, S.; Arcadio, V.; Gigli, G. Coupled delivery of imatinib mesylate and doxorubicin with nanoscaled polymeric vectors for a sustained downregulation of BCR-ABL in chronic myeloid leukemia . Biomater. Sci. , 2015 . 3 361 -372 . DOI:10.1039/C4BM00289Jhttp://doi.org/10.1039/C4BM00289J .
Marulanda, K.; Mercel, A.; Gillis, D. C.; Sun, K.; Gambarian, M.; Roark, J.; Weiss, J.; Tsihlis, N. D.; Karver, M. R.; Centeno, S. R.; Peters, E. B.; Clemons, T. D.; Stupp, S. I.; McLean, S. E.; Kibbe, M. R . Intravenous delivery of lung-targeted nanofibers for pulmonary hypertension in mice . Adv. Healthc. Mater. , 2021 . 10 e2100302 DOI:10.1002/adhm.202100302http://doi.org/10.1002/adhm.202100302 .
Huang, Y. K.; Tian, H. R.; Zhang, M. Z.; He, J. L.; Liu, J.; Ni, P. H . Monoclonal antibody-conjugated polyphosphoester-hyd-DOX prodrug nanoparticles for targeted chemotherapy of liver cancer cells . Chinese J. Polym. Sci. , 2021 . 39 1392 -1402 . DOI:10.1007/s10118-021-2582-3http://doi.org/10.1007/s10118-021-2582-3 .
Kang, H.; Stiles, W. R.; Baek, Y.; Nomura, S.; Bao, K.; Hu, S.; Park, G. K.; Jo, M. J.; I, H.; Coll, J. L.; Rubin, B. P.; Choi, H. S . Renal clearable theranostic nanoplatforms for gastrointestinal stromal tumors . Adv. Mater. , 2020 . 32 e1905899 DOI:10.1002/adma.201905899http://doi.org/10.1002/adma.201905899 .
Brown, T. D.; Whitehead, K. A.; Mitragotri, S . Materials for oral delivery of proteins and peptides . Nat. Rev. Mater. , 2019 . 5 127 -148. .
Gong, H. Y.; Chen, Y. G.; Yu, X. S.; Xiao, H.; Xiao, J. P.; Wang, Y.; Shuai, X. T . Co-delivery of doxorubicin and afatinib with pH-responsive polymeric nanovesicle for enhanced lung cancer therapy . Chinese J. Polym. Sci. , 2019 . 37 1224 -1233 . DOI:10.1007/s10118-019-2272-6http://doi.org/10.1007/s10118-019-2272-6 .
Sun, M.; Li, D.; Wang, X.; He, L.; Lv, X.; Xu, Y.; Tang, R . Intestine-penetrating, pH-sensitive and double-layered nanoparticles for oral delivery of doxorubicin with reduced toxicity . J. Mater. Chem. B , 2019 . 7 3692 -3703 . DOI:10.1039/C9TB00212Jhttp://doi.org/10.1039/C9TB00212J .
Sun, M.; Hu, H.; Sun, L.; Fan, Z . The application of biomacromolecules to improve oral absorption by enhanced intestinal permeability: a mini-review . Chin. Chem. Lett. , 2020 . 31 1729 -1736 . DOI:10.1016/j.cclet.2020.02.035http://doi.org/10.1016/j.cclet.2020.02.035 .
Peers, S.; Montembault, A.; Ladaviere, C . Chitosan hydrogels for sustained drug delivery . J. Control. Release , 2020 . 326 150 -163 . DOI:10.1016/j.jconrel.2020.06.012http://doi.org/10.1016/j.jconrel.2020.06.012 .
Sakai, M.; Imai, T.; Ohtake, H.; Azuma, H.; Otagiri, M . Simultaneous use of sodium deoxycholate and dipotassium glycyrrhizinate enhances the cellular transport of poorly absorbed compounds across Caco-2 cell monolayers . J. Pharm. Pharmacol. , 1999 . 51 27 -33 . DOI:doi:10.1211/0022357991772051http://doi.org/doi:10.1211/0022357991772051 .
Moghimipour, E.; Ameri, A.; Handali, S . Absorption-enhancing effects of bile salts . Molecules , 2015 . 20 14451 -14473 . DOI:10.3390/molecules200814451http://doi.org/10.3390/molecules200814451 .
Alvarez Echazu, M. I.; Olivetti, C. E.; Anesini, C.; Perez, C. J.; Alvarez, G. S.; Desimone, M. F . Development and evaluation of thymol-chitosan hydrogels with antimicrobial-antioxidant activity for oral local delivery . Mater. Sci. Eng. C , 2017 . 81 588 -596 . DOI:10.1016/j.msec.2017.08.059http://doi.org/10.1016/j.msec.2017.08.059 .
Sun, M.; He, L.; Wang, X.; Tang, R . Acid-breakable TPGS-functionalized and diallyl disulfide-crosslinked nanogels for enhanced inhibition of MCF-7/ADR solid tumours . J. Mater. Chem. B , 2019 . 7 240 -250 . DOI:10.1039/C8TB02742Khttp://doi.org/10.1039/C8TB02742K .
Jaiswal, S.; Dutta, P . K.; Kumar, S.; Koh, J.; Pandey, S. Methyl methacrylate modified chitosan: synthesis, characterization and application in drug and gene delivery . Carbohydr. Polym. , 2019 . 211 109 -117 . DOI:10.1016/j.carbpol.2019.01.104http://doi.org/10.1016/j.carbpol.2019.01.104 .
Zha, Q.; Wang, X.; Cheng, X.; Fu, S.; Yang, G.; Yao, W.; Tang, R . Acid-degradable carboxymethyl chitosan nanogels via an ortho ester linkage mediated improved penetration and growth inhibition of 3-D tumor spheroids in vitro . Mater. Sci. Eng. C , 2017 . 78 246 -257 . DOI:10.1016/j.msec.2017.04.098http://doi.org/10.1016/j.msec.2017.04.098 .
Wang, S.; Attah, R.; Li, J.; Chen, Y.; Chen, R . A pH-responsive amphiphilic hydrogel based on pseudopeptides and poly(ethylene glycol) for oral delivery of hydrophobic drugs . ACS Biomater. Sci. Eng. , 2018 . 4 4236 -4243 . DOI:10.1021/acsbiomaterials.8b01040http://doi.org/10.1021/acsbiomaterials.8b01040 .
Ding, Y . F.; Sun, T.; Li, S.; Huang, Q.; Yue, L.; Zhu, L.; Wang, R. Oral colon-targeted konjac glucomannan hydrogel constructed through noncovalent cross-linking by cucurbit[8]uril for ulcerative colitis therapy . ACS Appl. Bio Mater. , 2019 . 3 10 -19. .
Meng, F. D.; Ni, Y. X.; Ji, S. F.; Fu, X. H.; Wei, Y. H.; Sun, J.; Li, Z. B . Dual thermal- and pH-responsive polypeptide-based hydrogels . Chinese J. Polym. Sci. , 2017 . 35 1243 -1252 . DOI:10.1007/s10118-017-1959-9http://doi.org/10.1007/s10118-017-1959-9 .
Wang, Y. Q.; Dou, X. Y.; Wang, H. F.; Wang, X.; Wu, D. C . Dendrimer-based hydrogels with controlled drug delivery property for tissue adhesion . Chinese J. Polym. Sci. , 2021 . 39 1421 -1430 . DOI:10.1007/s10118-021-2584-1http://doi.org/10.1007/s10118-021-2584-1 .
Cho, I. S.; Ooya, T . Cell-encapsulating hydrogel puzzle: polyrotaxane-based self-healing hydrogels . Chem. Eur. J. , 2020 . 26 913 -920 . DOI:10.1002/chem.201904446http://doi.org/10.1002/chem.201904446 .
Yin, Y.; Li, X.; Ma, H.; Zhang, J.; Yu, D.; Zhao, R.; Yu, S.; Nie, G.; Wang, H . In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy . Nano Lett. , 2021 . 21 2224 -2231 . DOI:10.1021/acs.nanolett.0c05039http://doi.org/10.1021/acs.nanolett.0c05039 .
Tian, R.; Qiu, X.; Yuan, P.; Lei, K.; Wang, L.; Bai, Y.; Liu, S.; Chen, X . Fabrication of self-healing hydrogels with on-demand antimicrobial activity and sustained biomolecule release for infected skin regeneration . ACS Appl. Mater. Interfaces , 2018 . 10 17018 -17027 . DOI:10.1021/acsami.8b01740http://doi.org/10.1021/acsami.8b01740 .
Xiao, Y.; Lu, C.; Liu, Y.; Kong, L.; Bai, H.; Mu, H.; Li, Z.; Geng, H.; Duan, J . Encapsulation of Lactobacillus rhamnosus in hyaluronic acid-based hydrogel for pathogen-targeted delivery to ameliorate enteritis . ACS Appl. Mater. Interfaces , 2020 . 12 36967 -36977 . DOI:10.1021/acsami.0c11959http://doi.org/10.1021/acsami.0c11959 .
Xu, K.; Li, L.; Cui, M.; Han, Y.; Karahan, H. E.; Chow, V. T. K.; Xu, C . Cold chain-free storable hydrogel for infant-friendly Oral delivery of amoxicillin for the treatment of pneumococcal pneumonia . ACS Appl. Mater. Interfaces , 2017 . 9 18440 -18449 . DOI:10.1021/acsami.7b01462http://doi.org/10.1021/acsami.7b01462 .
Xu, X.; Xia, X.; Zhang, K.; Rai, A.; Li, Z.; Zhao, P.; Wei, K.; Zou, L.; Yang, B.; Wong, W. K . Bioadhesive hydrogels demonstrating pH-independent and ultrafast gelation promote gastric ulcer healing in pigs . Sci. Transl. Med. , 2020 . 12 eaba8014 DOI:10.1126/scitranslmed.aba8014http://doi.org/10.1126/scitranslmed.aba8014 .
Marslin, G.; Revina, A. M.; Khandelwal, V. K.; Balakumar, K.; Prakash, J.; Franklin, G.; Sheeba, C. J . Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity . Int. J. Nanomedicine , 2015 . 10 3163 -3170. .
Roman, D . L.; Roman, M.; Som, C.; Schmutz, M.; Hernandez, E.; Wick, P.; Casalini, T.; Perale, G.; Ostafe, V.; Isvoran, A. Computational assessment of the pharmacological profiles of degradation products of chitosan . Front. Bioeng. Biotech. , 2019 . 7 214 DOI:10.3389/fbioe.2019.00214http://doi.org/10.3389/fbioe.2019.00214 .
Fu, D.; Han, B.; Dong, W.; Yang, Z.; Lv, Y.; Liu, W . Effects of carboxymethyl chitosan on the blood system of rats . Biochem. Biophys. Res. Commun. , 2011 . 408 110 -114 . DOI:10.1016/j.bbrc.2011.03.130http://doi.org/10.1016/j.bbrc.2011.03.130 .
Dong, W.; Han, B.; Feng, Y.; Song, F.; Chang, J.; Jiang, H.; Tang, Y.; Liu, W . Pharmacokinetics and biodegradation mechanisms of a versatile carboxymethyl derivative of chitosan in rats: in vivo and in vitro evaluation . Biomacromolecules , 2010 . 11 1527 -1533 . DOI:10.1021/bm100158phttp://doi.org/10.1021/bm100158p .
Lamson, N. G.; Berger, A.; Fein, K. C.; Whitehead, K. A . Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability . Nat. Biomed. Eng. , 2020 . 4 84 -96 . DOI:10.1038/s41551-019-0465-5http://doi.org/10.1038/s41551-019-0465-5 .
0
Views
35
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution