a.Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
b.Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
hef@sustech.edu.cn
Scan for full text
Chun-Xian Ke, Xue Lai, Heng-Tao Wang, et al. Subtle Effect of Alkyl Substituted
Chun-Xian Ke, Xue Lai, Heng-Tao Wang, et al. Subtle Effect of Alkyl Substituted
Thiophene π-bridge alkyl substitution demonstrated an important strategy to enhance the photovoltaic performance of the polymer solar cells. Benefit from a good balance of solubility and molecular planarity, the n-hexyl substituted polymer donor PBP-C6 based devices, with Y5 as acceptor, exhibited the highest power conversion efficiency up to 11.60% among three donor polymers.
Selection of the strategically substituted alkyl chains has a significant effect to modulate the physical properties of conjugated polymers, electro-optical characteristics, and active layer morphology of the corresponding polymer solar cells (PSCs). Herein, we systematically synthesized three dibenzo[,a,c,]phenazine based D-,π,-A donor polymers named PBP-C0, PBP-C8, and PBP-C6 with different alkyl substitutions on thiophene ,π,-bridges, without alkyl, 2-ethylhexyl and ,n,-hexyl groups, respectively. The absence of the alkyl chain (PBP-C0) on the ,π,-bridge caused poor solubility and unfavorable miscibility with the Y5 acceptor, leading to the lower photovoltaic performance. The bulky alkyl chain of 2-ethylhexyl on the ,π,-bridge group caused the twisting of PBP-C8 conjugated backbone, which limits the charge transport and also compromises the photovoltaic performance. In contrast, the PBP-C6-with flexible linear alkyl chains has almost planar curvature geometry resulting in the small uniform domain size and appropriate phase separation in the blend film morphology. These favorable properties enhanced the exciton generation to dissociation, charge carrier mobility, and also lowered the charge recombination. Among three polymers, PBP-C6-based devices exhibit the best PCE of 11.60%. From these results, thiophene ,π,-bridge alkyl substitution demonstrated an important strategy to adjust energy level, absorption, and phase separation morphology to enhance the photovoltaic performance of the PSCs.
π-Bridge Alkyl chain engineeringPhenazinePolymer donorPolymer solar cell
Li, Y.; Xu, G.; Cui, C.; Li, Y . Flexible and semitransparent organic solar cells . Adv. Energy. Mater. , 2018 . 8 1701791 DOI:10.1002/aenm.201701791http://doi.org/10.1002/aenm.201701791 .
Xu, Y.; Yao, H.; Hou, J . Recent advances in fullerene-free polymer solar cells: materials and devices . Chin. J. Chem. , 2019 . 37 207 -215 . DOI:10.1002/cjoc.201800471http://doi.org/10.1002/cjoc.201800471 .
Chen, J.; Cao, Y . Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices . Acc. Chem. Res. , 2009 . 42 1709 -1718 . DOI:10.1021/ar900061zhttp://doi.org/10.1021/ar900061z .
Li, Y . Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption . Acc. Chem. Res. , 2012 . 45 723 -733 . DOI:10.1021/ar2002446http://doi.org/10.1021/ar2002446 .
Cheng, Y. J.; Yang, S. H.; Hsu, C. S . Synthesis of conjugated polymers for organic solar cell applications . Chem. Rev. , 2009 . 109 5868 -5923 . DOI:10.1021/cr900182shttp://doi.org/10.1021/cr900182s .
Cui, C.; Li, Y . High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap nonfullerene acceptors . Energy Environ. Sci. , 2019 . 12 3225 -3246 . DOI:10.1039/C9EE02531Fhttp://doi.org/10.1039/C9EE02531F .
Li, G.; Zhu, R.; Yang, Y . Polymer solar cells . Nat. Photonics , 2012 . 6 153 -161 . DOI:10.1038/nphoton.2012.11http://doi.org/10.1038/nphoton.2012.11 .
Duan, C.; Ding, L . The new era for organic solar cells: polymer donors . Sci. Bull. , 2020 . 65 1422 -1424 . DOI:10.1016/j.scib.2020.04.044http://doi.org/10.1016/j.scib.2020.04.044 .
Duan, C.; Ding, L . The new era for organic solar cells: polymer acceptors . Sci. Bull. , 2020 . 65 1508 -1510 . DOI:10.1016/j.scib.2020.05.023http://doi.org/10.1016/j.scib.2020.05.023 .
Bi, P.; Zhang, S.; Wang, J.; Ren, J.; Hou, J . Progress in organic solar cells: materials, physics and device engineering . Chin. J. Chem. , 2021 . 39 2607 -2625 . DOI:10.1002/cjoc.202000666http://doi.org/10.1002/cjoc.202000666 .
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P . A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 . 3 1140 -1151 . DOI:10.1016/j.joule.2019.01.004http://doi.org/10.1016/j.joule.2019.01.004 .
Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J . A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance . Adv. Mater. , 2015 . 27 4655 -4660 . DOI:10.1002/adma.201502110http://doi.org/10.1002/adma.201502110 .
Zhang, Z.; Li, Y.; Cai, G.; Zhang, Y.; Lu, X.; Lin, Y . Selenium heterocyclic electron acceptor with small urbach energy for as-cast high-performance organic solar cells . J. Am. Chem. Soc. , 2020 . 142 18741 -18745 . DOI:10.1021/jacs.0c08557http://doi.org/10.1021/jacs.0c08557 .
Zhang, Y.; Cai, G.; Li, Y.; Zhang, Z.; Li, T.; Zuo, X.; Lu, X.; Lin, Y . An electron acceptor analogue for lowering trap density in organic solar cells . Adv. Mater. , 2021 . 33 2008134 DOI:10.1002/adma.202008134http://doi.org/10.1002/adma.202008134 .
Jiang, K.; Wei, Q.; Lai, J. Y. L.; Peng, Z.; Kim, H . K.; Yuan, J.; Ye, L.; Ade, H.; Zou, Y.; Yan, H. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells . Joule , 2019 . 3 3020 -3033 . DOI:10.1016/j.joule.2019.09.010http://doi.org/10.1016/j.joule.2019.09.010 .
Gao, K.; Kan, Y.; Chen, X.; Liu, F.; Kan, B.; Nian, L.; Wan, X.; Chen, Y.; Peng, X.; Russell, T. P.; Cao, Y.; Jen, A. K. Y . Low-bandgap porphyrins for highly efficient organic solar cells: materials, morphology, and applications . Adv. Mater. , 2020 . 32 1906129 DOI:10.1002/adma.201906129http://doi.org/10.1002/adma.201906129 .
Zhang, M.; Zhu, L.; Zhou, G.; Hao, T.; Qiu, C.; Zhao, Z.; Hu, Q.; Larson, B. W.; Zhu, H.; Ma, Z.; Tang, Z.; Feng, W.; Zhang, Y.; Russell, T. P.; Liu, F . Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies . Nat. Commun. , 2021 . 12 309 DOI:10.1038/s41467-020-20580-8http://doi.org/10.1038/s41467-020-20580-8 .
Ma, Q.; Jia, Z.; Meng, L.; Zhang, J.; Zhang, H.; Huang, W.; Yuan, J.; Gao, F.; Wan, Y.; Zhang, Z.; Li, Y . Promoting charge separation resulting in ternary organic solar cells efficiency over 17. 5% . Nano Energy , 2020 . 78 105272 DOI:10.1016/j.nanoen.2020.105272http://doi.org/10.1016/j.nanoen.2020.105272 .
Ma, R.; Liu, T.; Luo, Z.; Guo, Q.; Xiao, Y.; Chen, Y.; Li, X.; Luo, S.; Lu, X.; Zhang, M.; Li, Y.; Yan, H . Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17% . Sci. China Chem. , 2020 . 63 325 -330 . DOI:10.1007/s11426-019-9669-3http://doi.org/10.1007/s11426-019-9669-3 .
Firdaus, Y.; Le Corre, V. M.; Karuthedath, S.; Liu, W.; Markina, A.; Huang, W.; Chattopadhyay, S.; Nahid, M. M.; Nugraha, M. I.; Lin, Y.; Seitkhan, A.; Basu, A.; Zhang, W.; McCulloch, I.; Ade, H.; Labram, J.; Laquai, F.; Andrienko, D.; Koster, L. J. A.; Anthopoulos, T. D . Long-range exciton diffusion in molecular non-fullerene acceptors . Nat. Commun. , 2020 . 11 5220 DOI:10.1038/s41467-020-19029-9http://doi.org/10.1038/s41467-020-19029-9 .
Hou, R.; Li, M.; Ma, X.; Huang, H.; Lu, H.; Jia, Q.; Liu, Y.; Xu, X.; Li, H. B.; Bo, Z . Noncovalently fused-ring electron acceptors with C2v symmetry for regulating the morphology of organic solar cells . ACS Appl. Mater. Interfaces , 2020 . 12 46220 -46230 . DOI:10.1021/acsami.0c13993http://doi.org/10.1021/acsami.0c13993 .
Nian, L.; Kan, Y.; Gao, K.; Zhang, M.; Li, N.; Zhou, G.; Jo, S. B.; Shi, X.; Lin, F.; Rong, Q.; Liu, F.; Zhou, G.; Jen, A. K. Y . Approaching 16% efficiency in all-small-molecule organic solar cells based on ternary strategy with a highly crystalline acceptor . Joule , 2020 . 4 2223 -2236 . DOI:10.1016/j.joule.2020.08.011http://doi.org/10.1016/j.joule.2020.08.011 .
Liu, Q.; Fang, J.; Wu, J.; Zhu, L.; Guo, X.; Liu, F.; Zhang, M . Tuning aggregation behavior of polymer donor via molecular-weight control for achieving 17.1% efficiency inverted polymer solar cells . Chin. J. Chem. , 2021 . 39 1941 -1947 . DOI:10.1002/cjoc.202100112http://doi.org/10.1002/cjoc.202100112 .
Chao, P.; Chen, H.; Zhu, Y.; Lai, H.; Mo, D.; Zheng, N.; Chang, X.; Meng, H.; He, F . A benzo[1,2-b:4,5-c']dithiophene-4,8-dione-based polymer donor achieving an efficiency over 16 . Adv. Mater. , 2020 . 32 1907059 DOI:10.1002/adma.201907059http://doi.org/10.1002/adma.201907059 .
Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L . 18% Efficiency organic solar cells . Sci. Bull. , 2020 . 65 272 -275 . DOI:10.1016/j.scib.2020.01.001http://doi.org/10.1016/j.scib.2020.01.001 .
Zhao, T.; Wang, H.; Pu, M.; Lai, H.; Chen, H.; Zhu, Y.; Zheng, N.; He, F . Tuning the molecular weight of chlorine-substituted polymer donors for small energy loss . Chin. J. Chem. , 2021 . 39 1651 -1658 . DOI:10.1002/cjoc.202000735http://doi.org/10.1002/cjoc.202000735 .
Zhang, G.; Ning, H.; Chen, H.; Jiang, Q.; Jiang, J.; Han, P.; Dang, L.; Xu, M.; Shao, M.; He, F.; Wu, Q . Naphthalenothiophene imide-based polymer exhibiting over 17% efficiency . Joule , 2021 . 5 931 -944 . DOI:10.1016/j.joule.2021.02.003http://doi.org/10.1016/j.joule.2021.02.003 .
Zhu, C.; Meng, L.; Zhang, J.; Qin, S.; Lai, W.; Qiu, B.; Yuan, J.; Wan, Y.; Huang, W.; Li, Y . A quinoxaline-based D-A copolymer donor achieving 17. 62% efficiency of organic solar cells . Adv. Mater. , 2021 . 33 2100474 DOI:10.1002/adma.202100474http://doi.org/10.1002/adma.202100474 .
Sun, C.; Pan, F.; Bin, H.; Zhang, J.; Xue, L.; Qiu, B.; Wei, Z.; Zhang, Z. G.; Li, Y . A low cost and high performance polymer donor material for polymer solar cells . Nat. Commun. , 2018 . 9 743 DOI:10.1038/s41467-018-03207-xhttp://doi.org/10.1038/s41467-018-03207-x .
Song, H. J.; Lee, T. H.; Han, M. H.; Lee, J. Y.; Moon, D. K . Synthesis of donor-acceptor polymers through control of the chemical structure: improvement of PCE by planar structure of polymer backbones . Polymer , 2013 . 54 1072 -1079 . DOI:10.1016/j.polymer.2012.10.056http://doi.org/10.1016/j.polymer.2012.10.056 .
Song, H. J.; Lee, E. J.; Kim, D. H.; Lee, S. M.; Lee, J. Y.; Moon, D. K . Enhancement of external quantum efficiency through steric hindrance of phenazine derivative for white polymer light-emitting diode materials . Synth. Met. , 2013 . 181 98 -103 . DOI:10.1016/j.synthmet.2013.08.017http://doi.org/10.1016/j.synthmet.2013.08.017 .
Zhang, Y.; Zou, J.; Yip, H. L.; Chen, K. S.; Zeigler, D. F.; Sun, Y.; Jen, A. K. Y . Indacenodithiophene and quinoxaline-based conjugated polymers for highly efficient polymer solar cells . Chem. Mater. , 2011 . 23 2289 -2291 . DOI:10.1021/cm200316shttp://doi.org/10.1021/cm200316s .
He, R.; Yu, L.; Cai, P.; Peng, F.; Xu, J.; Ying, L.; Chen, J.; Yang, W.; Cao, Y . Narrow-band-gap conjugated polymers based on 2,7-dioctyl substituted dibenzo[a,c]phenazine derivatives for polymer solar cells . Macromolecules , 2014 . 47 2921 -2928 . DOI:10.1021/ma500333rhttp://doi.org/10.1021/ma500333r .
Lee, T. H.; Choi, M. H.; Jeon, S. J.; Nam, S. J.; Han, Y. W.; Haw, J. R.; Moon, D. K . Improvement of short circuit current density by intermolecular interaction between polymer backbones for polymer solar cells . Polym. J. , 2017 . 49 177 -187 . DOI:10.1038/pj.2016.104http://doi.org/10.1038/pj.2016.104 .
Sun, Y.; Zhang, C.; Dai, B.; Lin, B.; Yang, H.; Zhang, X.; Guo, L.; Liu, Y . Side chain engineering and conjugation enhancement of benzodithiophene and phenanthrenequnioxaline based conjugated polymers for photovoltaic devices . J. Polym. Sci., Part A: Polym. Chem. , 2015 . 53 1915 -1926 . DOI:10.1002/pola.27643http://doi.org/10.1002/pola.27643 .
Jo, E.; Park, J. B.; Lee, W. H.; Kim, J. H.; Jung, I. H.; Hwang, D. H.; Kang, I. N . Synthesis and characterization of a new phenanthrenequinoxaline-based polymer for organic solar cells . J. Polym. Sci., Part A: Polym. Chem. , 2016 . 54 2804 -2810 . DOI:10.1002/pola.28166http://doi.org/10.1002/pola.28166 .
Hu, T.; Han, L.; Xiao, M.; Bao, X.; Wang, T.; Sun, M.; Yang, R . Enhancement of photovoltaic performance by increasing conjugation of the acceptor unit in benzodithiophene and quinoxaline copolymers . J. Mater. Chem. C , 2014 . 2 8047 -8053 . DOI:10.1039/C4TC01440Ehttp://doi.org/10.1039/C4TC01440E .
Mei, J.; Bao, Z . Side chain engineering in solution-processable conjugated polymers . Chem. Mater. , 2014 . 26 604 -615 . DOI:10.1021/cm4020805http://doi.org/10.1021/cm4020805 .
Osaka, I.; Saito, M.; Koganezawa, T.; Takimiya, K . Thiophene-thiazolothiazole copolymers: significant impact of side chain composition on backbone orientation and solar cell performances . Adv. Mater. , 2014 . 26 331 -338 . DOI:10.1002/adma.201303059http://doi.org/10.1002/adma.201303059 .
Zhang, C.; Sun Y.; Dai B.; Zhang, X. Q.; Yang, H.; Lin, B. P.; Guo, L. X . Resent progress in side-chain engineering of organic photovoltaic conjugated polymer . Chin. J. Org. Chem. , 2014 . 34 1701 -1716 . DOI:10.6023/cjoc201403060http://doi.org/10.6023/cjoc201403060 .
Li, G.; Zhao, B.; Kang, C.; Lu, Z.; Li, C.; Dong, H.; Hu, W.; Wu, H.; Bo, Z . Side chain influence on the morphology and photovoltaic performance of 5-fluoro-6-alkyloxybenzothiadiazole and benzodithiophene based conjugated polymers . ACS Appl. Mater. Interfaces , 2015 . 7 10710 -10717 . DOI:10.1021/acsami.5b00026http://doi.org/10.1021/acsami.5b00026 .
Osaka, I.; Takimiya, K . Backbone orientation in semiconducting polymers . Polymer , 2015 . 59 A1 -A15 . DOI:10.1016/j.polymer.2014.12.066http://doi.org/10.1016/j.polymer.2014.12.066 .
Jin, Y.; Chen, Z.; Dong, S.; Zheng, N.; Ying, L.; Jiang, X . F.; Liu, F.; Huang, F.; Cao, Y. A novel naphtho[1,2-c:5,6-c′]bis([1,2,5]thiadiazole)-based narrow-bandgapπ-conjugated polymer with power conversion efficiency over 10% . Adv. Mater. , 2016 . 28 9811 -9818 . DOI:10.1002/adma.201603178http://doi.org/10.1002/adma.201603178 .
Kim, J. H.; Wood, S.; Park, J. B.; Wade, J.; Song, M.; Yoon, S. C.; Jung, I. H.; Kim, J. S.; Hwang, D. H . Optimization and analysis of conjugated polymer side chains for high-performance organic photovoltaic cells . Adv. Funct. Mater. , 2016 . 26 1517 -1525 . DOI:10.1002/adfm.201504093http://doi.org/10.1002/adfm.201504093 .
Dutta, P.; Park, H.; Lee, W. H.; Kang, I. N.; Lee, S. H . Synthesis characterization and bulk-heterojunction photovoltaic applications of new naphtho[1,2-b:5,6-b′]dithiophene–quinoxaline containing narrow band gap D-A conjugated polymers . Polym. Chem. , 2014 . 5 132 -143 . DOI:10.1039/C3PY00911Dhttp://doi.org/10.1039/C3PY00911D .
El-Shehawy, A. A.; Abdo, N. I.; El-Hendawy, M. M.; Abdallah, A. R. I. A.; Lee, J. S . Dialkylthienosilole and N-alkyldithienopyrrole-based copolymers: synthesis, characterization, and photophysical study . J. Phys. Org. Chem. , 2020 . 33 e4063 .
Du, M.; Geng, Y.; Ji, H.; Li, G.; Xiao, Y.; Zuo, K.; Liu, Y.; Guo, Q.; Tang, A.; Zhou, E . The optimization of π-bridge for trialkylsilyl substituted D-π-A photovoltaic polymers . Dyes Pigm. , 2021 . 194 109609 DOI:10.1016/j.dyepig.2021.109609http://doi.org/10.1016/j.dyepig.2021.109609 .
Rehman, T.; Liu, Z. X.; Lau, T. K.; Yu, Z. P.; Shi, M.; Lu, X.; Li, C. Z.; Chen, H . Influence of bridging groups on the photovoltaic properties of wide bandgap poly(BDTT-alt-BDD)s . ACS Appl. Mater. Interfaces , 2019 . 11 1394 -1401 . DOI:10.1021/acsami.8b16628http://doi.org/10.1021/acsami.8b16628 .
Mondal, R.; Ko, S.; Verploegen, E.; Becerril, H. A.; Toney, M. F.;Bao, Z . Side chain engineering of fused aromatic thienopyrazine based low band-gap polymers for enhanced charge carrier mobility . J. Mater. Chem. , 2011 . 21 1537 -1543 . DOI:10.1039/C0JM02491Khttp://doi.org/10.1039/C0JM02491K .
Lee, Y.; Nam, Y. M.; Jo, W. H . Enhanced device performance of polymer solar cells by planarization of quinoxaline derivative in a low-bandgap polymer . J. Mater. Chem. , 2011 . 21 8583 -8590 . DOI:10.1039/c1jm10877hhttp://doi.org/10.1039/c1jm10877h .
Körzdörfer, T.; Brédas, J. L . Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals . Acc. Chem. Res. , 2014 . 47 3284 -3291 . DOI:10.1021/ar500021thttp://doi.org/10.1021/ar500021t .
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution