a.School of Materials Science and Engineering, Beijing Institute of Technology, Beijing100081, China
b.Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing100081, China
c.Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing100081, China
xiaoyuli@bit.edu.cn
Scan for full text
Yi-Qi Chen, Bi-Xin Jin, Qin Li, et al. Precise Supramolecular Polymerization of Liquid Crystalline Block Copolymer Initiated by Heavy Metallic Salts. [J]. Chinese Journal of Polymer Science 40(6):624-630(2022)
Yi-Qi Chen, Bi-Xin Jin, Qin Li, et al. Precise Supramolecular Polymerization of Liquid Crystalline Block Copolymer Initiated by Heavy Metallic Salts. [J]. Chinese Journal of Polymer Science 40(6):624-630(2022) DOI: 10.1007/s10118-022-2715-3.
Herein, a case of supramolecular polymerization with a liquid crystalline (LC) block copolymer (BCP) as “monomer” and heavy metallic salts as “initiators” was reported. The lengths of the resultant uniform supramolecular polymer fibrils could be finely tuned by adjusting the type and content of metallic salts.
Heavy metallic salts are capable to bind with proteins and cause detrimental fibrilization in living cells. Herein, we report a similar case of supramolecular polymerization and thus fibrilization from a liquid crystalline (LC) block copolymer (BCP) initiated by heavy metallic salts. Analogous to the naturally-occurring process, LC BCP “monomers” could bind with metallic salts to form small aggregates, which functioned as seeds to trigger the subsequent supramolecular polymerization of the rest BCP monomers, to produce highly uniform supramolecular polymers. The lengths of the resultant supramolecular polymer fibrils were linearly proportional to the ratios between the BCP and the metallic salts, and largely influenced by the choice of metallic cations, as well as the counterions. Lastly, this method was used to polymerize two different diblock copolymer “monomers” to produce pentablock supramolecular polymers in a one-pot manner.
Liquid crystalline block copolymerSupramolecular polymerizationSelf assemblyControllability
Bush, A. I . The metallobiology of Alzheimer's disease . Trends Neurosci. , 2003 . 26 207 -214 . DOI:10.1016/S0166-2236(03)00067-5http://doi.org/10.1016/S0166-2236(03)00067-5 .
Guerrini, L.; Arenal, R.; Mannini, B.; Chiti, F.; Pini, R.; Matteini, P.; Alvarez-Puebla, R. A . SERS detection of amyloid oligomers on metallorganic-decorated plasmonic beads . ACS Appl. Mater. Interfaces , 2015 . 7 9420 -9428 . DOI:10.1021/acsami.5b01056http://doi.org/10.1021/acsami.5b01056 .
Englander, S. W.; Mayne, L.; Krishna, M. M. G . Protein folding and misfolding: mechanism and principles . Q. Rev. Biophys. , 2007 . 40 287 -326. .
Dobson, C. M . Protein folding and misfolding . Nature , 2003 . 426 884 -890 . DOI:10.1038/nature02261http://doi.org/10.1038/nature02261 .
Tao, D.; Feng, C.; Cui, Y.; Yang, X.; Manners, I.; Winnik, M. A.; Huang, X . Monodisperse fiber-like micelles of controlled length and composition with an oligo(p-phenylenevinylene) core via "living" crystallization-driven self-assembly . J. Am. Chem. Soc. , 2017 . 139 7136 -7139 . DOI:10.1021/jacs.7b02208http://doi.org/10.1021/jacs.7b02208 .
Tao, D.; Wang, Z.; Huang, X.; Tian, M.; Lu, G.; Manners, I.; Winnik, M. A.; Feng, C . Continuous and segmented semiconducting fiber-like nanostructures with spatially selective functionalization by living crystallization-driven self-assembly . Angew. Chem. Int. Ed. , 2020 . 59 8232 -8239 . DOI:10.1002/anie.202000327http://doi.org/10.1002/anie.202000327 .
Sato, K.; Itoh, Y.; Aida, T . Homochiral supramolecular polymerization of bowl-shaped chiral macrocycles in solution . Chem. Sci. , 2014 . 5 136 -140 . DOI:10.1039/C3SC52449Chttp://doi.org/10.1039/C3SC52449C .
Kang, J.; Miyajima, D.; Mori, T.; Inoue, Y.; Itoh, Y.; Aida, T . A Rational strategy for the realization of chain-growth supramolecular polymerization . Science , 2015 . 347 646 -651 . DOI:10.1126/science.aaa4249http://doi.org/10.1126/science.aaa4249 .
Zhang, W.; Jin, W . S.; Fukushima, T.; Saeki, A.; Seki, S.; Aida, T. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments . Science , 2011 . 334 340 -343 . DOI:10.1126/science.1210369http://doi.org/10.1126/science.1210369 .
Zhang, W.; Jin, W . S.; Fukushima, T.; Mori, T.; Aida, T. Helix sense-selective supramolecular polymerization seeded by a one-handed helical polymeric assembly . J. Am. Chem. Soc. , 2015 . 137 13792 -13795 . DOI:10.1021/jacs.5b09878http://doi.org/10.1021/jacs.5b09878 .
Hartgerink, J. D.; Beniash, E.; Stupp, S. I . Self-assembly and mineralization of peptide-amphiphile nanofibers . Science , 2001 . 294 1684 -1688 . DOI:10.1126/science.1063187http://doi.org/10.1126/science.1063187 .
Álvarez, Z.; Kolberg-Edelbrock, A. N.; Sasselli, I. R.; Ortega, J. A.; Qiu, R.; Syrgiannis, Z.; Mirau, P. A.; Chen, F.; Chin, S. M.; Weigand, S.; Kiskinis, E.; Stupp, S. I . Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury . Science , 2021 . 374 848 -856 . DOI:10.1126/science.abh3602http://doi.org/10.1126/science.abh3602 .
Wagner, W.; Wehner, M.; Stepanenko, V.; Wüerthner, F . Supramolecular block copolymers by seeded living polymerization of perylene bisimides . J. Am. Chem. Soc. , 2019 . 141 12044 -12054 . DOI:10.1021/jacs.9b04935http://doi.org/10.1021/jacs.9b04935 .
Görl, D.; Zhang, X.; Stepanenko, V.; Würthner, F . Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides . Nat. Commun. , 2015 . 6 7009 DOI:10.1038/ncomms8009http://doi.org/10.1038/ncomms8009 .
Ogi, S.; Sugiyasu, K.; Manna, S.; Samitsu, S.; Takeuchi, M . Living supramolecular polymerization realized through a biomimetic approach . Nat. Chem. , 2014 . 6 188 -195 . DOI:10.1038/nchem.1849http://doi.org/10.1038/nchem.1849 .
Fukui, T.; Kawai, S.; Fujinuma, S.; Matsushita, Y.; Yasuda, T.; Sakurai, T.; Seki, S.; Takeuchi, M.; Sugiyasu, K . Control over differentiation of a metastable supramolecular assembly in one and two dimensions . Nat. Chem. , 2017 . 9 493 -499 . DOI:10.1038/nchem.2684http://doi.org/10.1038/nchem.2684 .
Po, C.; Tam, A. Y. Y.; Wong, K. M. C.; Yam, V. W. W . Supramolecular self-assembly of amphiphilic anionic platinum(II) complexes: a correlation between spectroscopic and morphological properties . J. Am. Chem. Soc. , 2011 . 133 12136 -12143 . DOI:10.1021/ja203920whttp://doi.org/10.1021/ja203920w .
Robinson, M. E.; Nazemi, A.; Lunn, D. J.; Hayward, D. W.; Boott, C. E.; Hsiao, M. S.; Harniman, R. L.; Davis, S. A.; Whittell, G. R.; Richardson, R . M.; De Cola, L.; Manners, I. Dimensional control and morphological transformations of supramolecular polymeric nanofibers based on cofacially-stacked planar amphiphilic platinum(II) complexes . ACS Nano , 2017 . 11 9162 -9175 . DOI:10.1021/acsnano.7b04069http://doi.org/10.1021/acsnano.7b04069 .
Tian, Y. K.; Shi, Y. G.; Yang, Z. S.; Wang, F . Responsive supramolecular polymers based on the bis alkynylplatinum(II) terpyridine molecular tweezer/arene recognition motif . Angew. Chem. Int. Ed. , 2014 . 53 6090 -6094 . DOI:10.1002/anie.201402192http://doi.org/10.1002/anie.201402192 .
Wang, X.; Guerin, G.; Wang, H.; Wang, Y.; Manners, I.; Winnik, M. A . Cylindrical block copolymer micelles and co-micelles of controlled length and architecture . Science , 2007 . 317 644 -647 . DOI:10.1126/science.1141382http://doi.org/10.1126/science.1141382 .
Massey J. A.; Temple K.; Cao L.; Rharbi Y.; Raez J.; Winnik M. A.; Manners I. . Self-assembly of organometallic block copolymers: the role of crystallinity of the core-forming polyferrocene block in the micellar morphologies formed by poly(ferrocenylsilane-b-dimethylsiloxane) in n-alkane solvents . J. Am. Chem. Soc. , 2000 . 122 11577 -11584 . DOI:10.1021/ja002205dhttp://doi.org/10.1021/ja002205d .
Schmelz, J.; Schedl, A . E.; Steinlein, C.; Manners, I.; Schmalz, H. Length control and block-type architectures in worm-like micelles with polyethylene cores . J. Am. Chem. Soc. , 2012 . 134 14217 -14225 . DOI:10.1021/ja306264dhttp://doi.org/10.1021/ja306264d .
He, W. N.; Zhou, B.; Xu, J. T.; Du, B. Y.; Fan, Z. Q . Two growth modes of semicrystalline cylindrical poly(ε-caprolactone)-b-poly(ethylene oxide) micelles . Macromolecules , 2012 . 45 9768 -9778 . DOI:10.1021/ma301267khttp://doi.org/10.1021/ma301267k .
Fan, B.; Liu, L.; Li, J. H.; Ke, X. X.; Xu, J. T.; Du, B. Y.; Fan, Z. Q . Crystallization-driven one-dimensional self-assembly of polyethylene-b-poly(tert-butylacrylate) diblock copolymers in DMF: effects of crystallization temperature and the corona-forming block . Soft Matter , 2016 . 12 67 -76 . DOI:10.1039/C5SM02226Fhttp://doi.org/10.1039/C5SM02226F .
Li, X. Y.; Jin, B. X.; Gao, Y.; Hayward, D. W.; Winnik, M. A.; Luo, Y. J.; Manners, I . Monodisperse cylindrical micelles of controlled length with a liquid-crystalline perfluorinated core by 1D "self-seeding" . Angew. Chem. Int. Ed. , 2016 . 55 11392 -11396 . DOI:10.1002/anie.201604551http://doi.org/10.1002/anie.201604551 .
Jin, B. X.; Sano, K.; Aya, S.; Ishida, Y.; Gianneschi, N.; Luo, Y. J.; Li, X. Y . One-pot universal initiation-growth methods from a liquid crystalline block copolymer . Nat. Commun. , 2019 . 10 2397 DOI:10.1038/s41467-019-10341-7http://doi.org/10.1038/s41467-019-10341-7 .
Gao, L.; Lin, J. P.; Zhang, L. S.; Wang, L. Q . Living supramolecular polymerization of rod-coil block copolymers: kinetics, origin of uniformity, and its implication . Nano Lett. , 2019 . 19 2032 -2036 . DOI:10.1021/acs.nanolett.9b00163http://doi.org/10.1021/acs.nanolett.9b00163 .
Gao, L.; Gao, H.; Lin, J.; Wang, L.; Wang, X . S.; Yang, C.; Lin, S. Growth and termination of cylindrical micelles via liquid-crystallization-driven self-assembly . Macromolecules , 2020 . 53 8992 -8999 . DOI:10.1021/acs.macromol.0c01820http://doi.org/10.1021/acs.macromol.0c01820 .
Xu, J. J.; Ma, Y.; Hu, W . B.; Rehahn, M.; Reiter, G. Cloning polymer single crystals through self-seeding . Nat. Mater. , 2009 . 8 348 -353 . DOI:10.1038/nmat2405http://doi.org/10.1038/nmat2405 .
Gilroy, J. B.; Gadt, T.; Whittell, G. R.; Chabanne, L.; Mitchels, J. M.; Richardson, R. M.; Winnik, M. A.; Manners, I . Monodisperse cylindrical micelles by crystallization-driven living self-assembly . Nat. Chem. , 2010 . 2 566 -570 . DOI:10.1038/nchem.664http://doi.org/10.1038/nchem.664 .
Wang, Z. Q.; Ma, C.; Huang, X. Y.; Lu, G. L.; Winnik, M. A.; Feng, C . Self-seeding of oligo(p-phenylenevinylene)-b-poly(2-vinylpyridine) micelles: effect of metal ions . Macromolecules , 2021 . 54 6705 -6717 . DOI:10.1021/acs.macromol.1c00965http://doi.org/10.1021/acs.macromol.1c00965 .
He, X. M.; Hsiao, M. S.; Boott, C. E.; Harniman, R. L.; Nazemi, A.; Li, X. Y.; Winnik, M. A.; Manners, I . Two-dimensional assemblies from crystallizable homopolymers with charged termini . Nat. Mater. , 2017 . 16 481 -488 . DOI:10.1038/nmat4837http://doi.org/10.1038/nmat4837 .
Chen, Z.; Suzuki, Y.; Imayoshi, A.; Ji, X. F.; Rao, K . V.; Omata, Y.; Miyajima, D.; Sato, E.; Nihonyanagi, A.; Aida, T. Solvent-free autocatalytic supramolecular polymerization . Nat. Mater. , 2022 . 21 253 -261. .
0
Views
13
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution