1.State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
dwang@mail.buct.edu.cn
Scan for full text
Zong-Tang Lv, Hong-Kun Yang, Dong Wang. Catalyst Control of Interfacial Welding Mechanical Properties of Vitrimers. [J]. Chinese Journal of Polymer Science 40(6):611-617(2022)
Zong-Tang Lv, Hong-Kun Yang, Dong Wang. Catalyst Control of Interfacial Welding Mechanical Properties of Vitrimers. [J]. Chinese Journal of Polymer Science 40(6):611-617(2022) DOI: 10.1007/s10118-022-2711-7.
We report interfacial welding between epoxy vitrimers and an epoxy vitrimer and a thermoplastic polyurethane (TPU). Catalyst-controlled interfacial properties for both the vitrimer/vitrimer and vitrimer/TPU are observed. The more efficient the catalyst for the transesterification reactions, the larger the interfacial fracture energy is, and the better the welding strength will be.
Interfacial welding of thermosetting polymers has been a challenge, but vitrimers with dynamic covalent networks open numerous opportunities for welding and adhesion of these materials. In this work, we performed interfacial welding between epoxy-based vitrimers and an epoxy vitrimer and a thermoplastic polyurethane (TPU). Catalyst-controlled interfacial mechanical properties for both the vitrimer/vitrimer and vitrimer/TPU are observed, that is, the more efficient the catalyst for the transesterification reactions, the larger the interfacial fracture energy is, and the better the welding strength will be. The interfacial mechanical properties are also found to be independent of the original mechanical properties of the vitrimers. Even for a vitrimer with poor mechanical properties, both the welded vitrimer/vitrimer and vitrimer/TPU exhibit larger interfacial fracture energy than the one with better mechanical properties as long as the former uses more efficient catalyst.
VitrimersInterfacial weldingEpoxyCatalystThermoplastic polyurethane
Abuín, S. P. Epoxy adhesives: a view of the present and the future. In Epoxy Polymers, Wiley-CH Verlag GmbH & Co. KGaA, 2010, p. 213−234.
Sangermano, M. UV-cured nanostructured epoxy coatings. In Epoxy Polymers, Wiley-VCH Verlag GmbH & Co. KGaA, 2010, p. 235−251.
Costantino, S.; Waldvogel, U. Composite processing: state of the art and future trends. In Epoxy Polymers, Wiley-VCH Verlag GmbH & Co. KGaA, 2010, p. 271−287.
Commarieu, B.; Potier, J.; Compaore, M.; Dessureault, S.; Goodall, B. L.; Li, X.; Claverie, J. P . Claverie ultrahigh Tg epoxy thermosets based on insertion polynorbornenes . Macromolecules , 2016 . 49 920 -925 . DOI:10.1021/acs.macromol.5b02648http://doi.org/10.1021/acs.macromol.5b02648 .
Cong, H.; Li, J. G.; H.; Li, L.; Zheng, S. X . Dielectric constant enhancement of epoxy thermosets via formation of polyelectrolyte nanophases . J. Phys. Chem. B. , 2014 . 118 14703 -14712 . DOI:10.1021/jp5089355http://doi.org/10.1021/jp5089355 .
Aaontarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L . Silica-like malleable materials from permanent organic networks . Science , 2011 . 334 965 DOI:10.1126/science.1212648http://doi.org/10.1126/science.1212648 .
Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T . Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing . Chem. Rev. , 2021 . 121 1716 -1745 . DOI:10.1021/acs.chemrev.0c00938http://doi.org/10.1021/acs.chemrev.0c00938 .
Van, Z.; N, J.; Nicolaÿ, R . Vitrimers: permanently crosslinked polymers with dynamic network topology . Prog. Polym. Sci. , 2020 . 104 101233 DOI:10.1016/j.progpolymsci.2020.101233http://doi.org/10.1016/j.progpolymsci.2020.101233 .
Denissen, W.; Winne, J. M.; Du Prez, F. E . Vitrimers: permanent organic networks with glass-like fluidity . Chem. Sci. , 2016 . 7 30 -38 . DOI:10.1039/C5SC02223Ahttp://doi.org/10.1039/C5SC02223A .
Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E . M.; Wei, Y.; Ji, Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds . Nat. Mater. , 2014 . 13 36 -41 . DOI:10.1038/nmat3812http://doi.org/10.1038/nmat3812 .
Brutman, J. P.; Delgado, P. A.; Hillmyer, M. A . Polylactide vitrimers . ACS Macro Lett. , 2014 . 3 607 -610 . DOI:10.1021/mz500269whttp://doi.org/10.1021/mz500269w .
Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R . Mechanically activated, catalyst-free polyhydroxyurethane vitrimers . J. Am. Chem. Soc. , 2015 . 137 14019 -14022 . DOI:10.1021/jacs.5b08084http://doi.org/10.1021/jacs.5b08084 .
Cromwell, O . R.; Chung, J.; Guan, Z. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds . J. Am. Chem. Soc. , 2015 . 137 6492 -6495 . DOI:10.1021/jacs.5b03551http://doi.org/10.1021/jacs.5b03551 .
Hao, C.; Liu, T.; Zhang, S.; Liu, W. C.; Shan, Y. F.; Zhang, J. W . Triethanolamine-mediated covalent adaptable epoxy network: excellent mechanical properties, fast repairing, and easy recycling . Macromolecules , 2020 . 53 3110 -3118 . DOI:10.1021/acs.macromol.9b02243http://doi.org/10.1021/acs.macromol.9b02243 .
Han, J. R.; Liu, T.; Hao, C.; Zhang, S.; Guo, B. C.; Zhang, J. W . A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer . Macromolecules , 2018 . 51 6789 -6799 . DOI:10.1021/acs.macromol.8b01424http://doi.org/10.1021/acs.macromol.8b01424 .
Zheng, N.; Fang, Z. Z.; Zou, W . K.; Zhao, Q.; Xie, T. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation . Angew. Chem. Int. Ed. , 2016 . 55 11421 -11425 . DOI:10.1002/anie.201602847http://doi.org/10.1002/anie.201602847 .
Denissen, W.; Rivero, G.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E . Vinylogous urethane vitrimers . Adv. Funct. Mater. , 2015 . 25 2451 -2457 . DOI:10.1002/adfm.201404553http://doi.org/10.1002/adfm.201404553 .
Chen, X.; Li, L. Q.; Jin, K. L.; Torkelson, J. M . Reprocessable polyhydroxyurethane networks exhibiting full property recovery and concurrent associative and dissociative dynamic chemistry via transcarbamoylation and reversible cyclic carbonate aminolysis . Polym. Chem. , 2017 . 8 6349 -6355 . DOI:10.1039/C7PY01160Ahttp://doi.org/10.1039/C7PY01160A .
Christensen, P.; Scheuermann, A.; Loeffler, K.; Helms, B . Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds . Nat. Chem. , 2019 . 11 1 -7 . DOI:10.1038/s41557-018-0199-0http://doi.org/10.1038/s41557-018-0199-0 .
Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y. H.; Qi, H. J.; Zhang, W . Heat- or water-driven malleability in a highly recyclable covalent network polymer . Adv. Mater. , 2014 . 26 3938 -3942 . DOI:10.1002/adma.201400317http://doi.org/10.1002/adma.201400317 .
Amamoto, Y.; Otsuka, H.; Takahara, A.; Matyjaszewski, K . Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light . Adv. Mater. , 2012 . 24 3975 -3980 . DOI:10.1002/adma.201201928http://doi.org/10.1002/adma.201201928 .
Nishimura, Y.; Chung, J.; Muradyan, H.; Guan, Z. B . Silyl ether as a robust and thermally stable dynamic covalent motif for malleable polymer design . J. Am. Chem. Soc. , 2017 . 139 14881 -14884 . DOI:10.1021/jacs.7b08826http://doi.org/10.1021/jacs.7b08826 .
Röttger, M.; Domenech, T.; Weegen, R.; Breuillac, A.; Nicolaÿ, R.; Leibler, L . High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis . Science , 2017 . 356 62 -65 . DOI:10.1126/science.aah5281http://doi.org/10.1126/science.aah5281 .
Ying, H. Z.; Zhang, Y. F.; Cheng, J. J . Dynamic urea bond for the design of reversible and self-healing polymers . Nat. Commun. , 2014 . 5 3218 DOI:10.1038/ncomms4218http://doi.org/10.1038/ncomms4218 .
Liu, W. X.; Zhang, C.; Zhang, H.; Zhao, N.; Yu, Z. X.; Xu, J . Oxime-based and catalyst-free dynamic covalent polyurethanes . J. Am. Chem. Soc. , 2017 . 139 8678 -8684 . DOI:10.1021/jacs.7b03967http://doi.org/10.1021/jacs.7b03967 .
Liu, Y. J.; Tang, Z. H.; Chen, Y.; Zhang, C. F.; Guo, B. C . Engineering of beta-hydroxyl esters into elastomer-nanoparticle interface toward malleable, robust, and reprocessable vitrimer composites . ACS Appl. Mater. Interfaces , 2018 . 10 2992 -3001 . DOI:10.1021/acsami.7b17465http://doi.org/10.1021/acsami.7b17465 .
Zhang, H.; Wu, Y. Z.; Yang, J. X.; Wang, D.; Yu, P. Y.; Lai, C.; Shi, A. C.; Wang, J. P.; Cui, S. X.; Xiang, J . F.; Zhao, N.; Xu, J. Superstretchable dynamic polymer networks . Adv. Mater. , 2019 . 31 1904029 DOI:10.1002/adma.201904029http://doi.org/10.1002/adma.201904029 .
Peng, W. L.; You, Y.; Xie, P.; Rong, M. Z.; Zhang, M. Q . Adaptable interlocking macromolecular networks with homogeneous architecture made from immiscible single networks . Macromolecules , 2020 . 53 584 -593 . DOI:10.1021/acs.macromol.9b02307http://doi.org/10.1021/acs.macromol.9b02307 .
Stukalin, E. B.; Cai, L. H.; Kumar, N . A.; Leibler, L.; Rubinstein, M. Self-healing of unentangled polymer networks with reversible bonds . Macromolecules , 2013 . 46 7525 -7541 . DOI:10.1021/ma401111nhttp://doi.org/10.1021/ma401111n .
Yan, P. Y.; Wei, Z.; Wang, Y. J.; Jiang, Y. Y.; Zhou, C. L.; Lei, J. X . Carbon nanotubes-polyurethane vitrimer nanocomposites with the ability of surface welding controlled by heat and near-infrared light . Macromol. Chem. Phys. , 2017 . 218 1700265 DOI:10.1002/macp.201700265http://doi.org/10.1002/macp.201700265 .
Yang, Y.; Pei, Z. Q.; Zhang, X . Q.; Tao, L; Wei, Y.; Ji, Y. Carbon nanotube-vitrimer composite for facile and efficient photo-welding of epoxy . Chem. Sci. , 2014 . 5 3486 -3492 . DOI:10.1039/C4SC00543Khttp://doi.org/10.1039/C4SC00543K .
Yang, H.; Yu, K.; Mu, X. M.; Wei, Y. J.; Guo, Y. F.; Qi, H. J . Molecular dynamics studying on welding behavior in thermosetting polymers due to bond exchange reactions . RSC Adv. , 2016 . 6 22476 -22487 . DOI:10.1039/C5RA26128Ghttp://doi.org/10.1039/C5RA26128G .
Imbernon, L.; Norvez, S.; Leibler, L . Stress relaxation and self-adhesion of rubbers with exchangeable links . Macromolecules , 2016 . 49 2172 -2178 . DOI:10.1021/acs.macromol.5b02751http://doi.org/10.1021/acs.macromol.5b02751 .
He, X.; Hanzon, D. W.; Yu, K . Cyclic welding behavior of covalent adaptable network polymers . J. Polym. Sci., Part B: Polym. Phys. , 2018 . 56 402 -413 . DOI:10.1002/polb.24553http://doi.org/10.1002/polb.24553 .
Shi, Q.; Yu, K.; Dunn, M. L.; Wang, T. J.; Qi, H. J . Solvent assisted pressure-free surface welding and reprocessing of malleable epoxy polymers . Macromolecules , 2016 . 49 5527 -5537 . DOI:10.1021/acs.macromol.6b00858http://doi.org/10.1021/acs.macromol.6b00858 .
Yu, K.; Shi, Q.; Wang, T. J.; Dunn, M. L.; Qi, H. J . A computational model for surface welding in covalent adaptable networks using finite-element analysis . J. Appl. Mech. , 2016 . 83 091002 DOI:10.1115/1.4033682http://doi.org/10.1115/1.4033682 .
Yu, K.; Shi, Q.; Li, H.; Jabour, J.; Yang, H.; Dunn, M. L.; Wang, T. J.; Qi, H. J . Interfacial welding of dynamic covalent network polymers . J. Mech. Phys. Solids , 2016 . 94 1 -17. .
He, C. F.; Shi, S. W.; Wu, X. F.; Russell, T. P.; Wang, D . Atomic force microscopy nanomechanical mapping visualizes interfacial broadening between networks due to chemical exchange reactions . J. Am. Chem. Soc. , 2018 . 140 6793 -6796 . DOI:10.1021/jacs.8b03771http://doi.org/10.1021/jacs.8b03771 .
Hu, K. L.; Wei, T. T.; Li, H. X.; He, C. F.; Russell, T. P.; Wang, D . Interfacial broadening kinetics between a network and a linear polymer and their composites prepared by melt blending . Macromolecules , 2019 . 52 9759 -9765 . DOI:10.1021/acs.macromol.9b02114http://doi.org/10.1021/acs.macromol.9b02114 .
Zhao, B.; Yuan, Q. Q.; Yang, H. K.; Russell, T. P.; Wang, D . Interfacial reaction induced disruption and dissolution of dynamic polymer networks . Macromol. Rapid Commun. , 2021 . 42 2100023 DOI:10.1002/marc.202100023http://doi.org/10.1002/marc.202100023 .
Chen, Z. Q.; Sun, Y. C.; Wang, J. T.; Qi, H. J.; Wang, T. J.; Naguib, H. E . Flexible, reconfigurable, and self-healing TPU/vitrimer polymer blend with copolymerization triggered by bond exchange reaction . ACS Appl. Mater. Interfaces , 2020 . 12 8740 -8750 . DOI:10.1021/acsami.9b21411http://doi.org/10.1021/acsami.9b21411 .
Huang, J. J.; Yang, H . K.; Lv, Z.T.; Wang, D. Catalyst control of nanoscale characteristic length of the glass transition in organic strong glass-formers . ACS Macro Lett. , 2021 . 10 1597 -1601 . DOI:10.1021/acsmacrolett.1c00646http://doi.org/10.1021/acsmacrolett.1c00646 .
Lorenzo, F. D.; Seiffert, S . Nanostructural heterogeneity in polymer networks and gels . Polym. Chem. , 2015 . 6 5515 -5528 . DOI:10.1039/C4PY01677Ghttp://doi.org/10.1039/C4PY01677G .
Ciarella, S.; Sciortino, F.; Ellenbroek, W. G . Dynamics of vitrimers: defects as a highway to stress relaxation . Phys. Rev. Lett. , 2018 . 121 058003 DOI:10.1103/PhysRevLett.121.058003http://doi.org/10.1103/PhysRevLett.121.058003 .
Capelot, M.; Unterlass, M . M.; Tournilhac, F.; Leibler, L. Catalytic control of the vitrimer glass transition . ACS Macro Lett. , 2012 . 1 789 -792 . DOI:10.1021/mz300239fhttp://doi.org/10.1021/mz300239f .
0
Views
12
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution