
a.College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
b.Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
shuijianhe@njfu.edu.cn (S.J.H.)
haoqing@jxnu.edu.cn (H.Q.H.)
Scan for full text
Tang-Cheng Xu, Chang-Shui Wang, Zhao-Yu Hu, et al. High Strength and Stable Proton Exchange Membrane Based on Perfluorosulfonic Acid/Polybenzimidazole. [J]. Chinese Journal of Polymer Science 40(7):764-771(2022)
Tang-Cheng Xu, Chang-Shui Wang, Zhao-Yu Hu, et al. High Strength and Stable Proton Exchange Membrane Based on Perfluorosulfonic Acid/Polybenzimidazole. [J]. Chinese Journal of Polymer Science 40(7):764-771(2022) DOI: 10.1007/s10118-022-2708-2.
PFSA/PBI composite membranes as proton exchange membranes for fuel cells were prepared by solution blending and film casting. The optimized PFSA/PBI-30 composite membrane exhibited greatly enhanced tensile strength, Young’s modulus, and excellent antioxidation stability with less than 5% initial mass loss over 120 h in Fenton reagent.
In this work, a series of high strength, thermal stable and antioxidant proton exchange membranes were designed with solution processible polybenzimidazole (PBI) as the matrix and perfluorosulfonic acid (PFSA) as the fortifier for proton exchange. Solution processible PBI was successfully synthesized by introducing 4,4’-dicarboxydiphenyl ether into the molecular chains of PBI. PFSA/PBI composite membranes were obtained by solution blending and film casting. PBI and PFSA/PBI composite membranes exhibited greatly enhanced tensile strength and Young’s modulus compared to PFSA. PFSA/PBI composite membranes are stable below 300 °C which are suitable for practical application in proton exchange membrane fuel cells. The PFSA/PBI composite membranes show good dimensional stability with low water uptake and swelling rate. The PFSA/PBI composite membranes also exhibit excellent antioxidation stability with less than 5% initial mass loss over 120 h in Fenton reagent. The proton conductivity of PBI is greatly enhanced by blending with PFSA and the proton conductivities of the composite membranes are increased with the raise of PFSA content and temperature. This work offers valuable insights into the exploration of PBI based high-performance proton exchange membranes.
Solution processible polybenzimidazolePerfluorosulfonic acidProton exchange membraneFilm castingHigh strength
Ghasabehi, M.; Shams, M.; Kanani, H . Multi-objective optimization of operating conditions of an enhanced parallel flow field proton exchange membrane fuel cell . Energy Convers. Manage. , 2021 . 230 113798 -113818 . DOI:10.1016/j.enconman.2020.113798http://doi.org/10.1016/j.enconman.2020.113798 .
Rosli, R. E.; Sulong, A. B.; Daud, W. R. W.; Zulkifley, M. A.; Husaini, T.; Rosli, M. I.; Majlan, E. H.; Haque, M. A . A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system . Int. J. Hydrogen Energy , 2017 . 42 9293 -9314 . DOI:10.1016/j.ijhydene.2016.06.211http://doi.org/10.1016/j.ijhydene.2016.06.211 .
Liu, L.; Li, X.; Liu, Z.; Zhang, S.; Qian, L.; Chen, Z.; Li, J.; Fang, P.; He, C. . High-performance fuel cells using Nafion composite membranes with alignment of sulfonated graphene oxides induced by a strong magnetic field . J. Membr. Sci. , 2022 . 653 120516 -120527 . DOI:10.1016/j.memsci.2022.120516http://doi.org/10.1016/j.memsci.2022.120516 .
Meyer, Q.; Zhao, C . Air perturbation-induced low-frequency inductive electrochemical impedance arc in proton exchange membrane fuel cells . J. Power Sources , 2021 . 488 229245 -229255 . DOI:10.1016/j.jpowsour.2020.229245http://doi.org/10.1016/j.jpowsour.2020.229245 .
Zhang, X.; Zhang, T.; Chen, H.; Cao, Y . A review of online electrochemical diagnostic methods of on-board proton exchange membrane fuel cells . Appl. Energy , 2021 . 286 116481 -116497 . DOI:10.1016/j.apenergy.2021.116481http://doi.org/10.1016/j.apenergy.2021.116481 .
Zhao, J.; Tu, Z.; Chan, S. H . Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): A review . J. Power Sources , 2021 . 488 229434 -229447 . DOI:10.1016/j.jpowsour.2020.229434http://doi.org/10.1016/j.jpowsour.2020.229434 .
Simari, C.; Lufrano, E.; Brunetti, A.; Barbieri, G.; Nicotera, I . Highly-performing and low-cost nanostructured membranes based on Polysulfone and layered doubled hydroxide for high-temperature proton exchange membrane fuel cells . J. Power Sources , 2020 . 471 228440 -228450 . DOI:10.1016/j.jpowsour.2020.228440http://doi.org/10.1016/j.jpowsour.2020.228440 .
Hu, F.; Zhong, F.; Wen, S.; Zheng, G.; Gong, C.; Qin, C.; Liu, H . Preparation and properties of chitosan/organic-modified attapulgite composite proton exchange membranes for fuel cell applications . Polym. Compos. , 2020 . 41 2254 -2262 . DOI:10.1002/pc.25536http://doi.org/10.1002/pc.25536 .
Neelakandan, S.; Wang, L.; Zhang, B.; Ni, J.; Hu, M.; Gao, C.; Wong, W. Y.; Wang, L . Branched polymer materials as proton exchange membranes for fuel cell applications . Polym. Rev. , 2021 . 1 -35 . DOI:10.1080/15583724.2021.1964524http://doi.org/10.1080/15583724.2021.1964524 .
Zhang, X.; Li, Z. W.; Chen, X. L.; Chen, D. Y.; Zheng, Y. Y . Side Chain Engineering of Sulfonated Poly(arylene ether)s for Proton Exchange Membranes . Chinese J. Polym. Sci. , 2020 . 38 644 -652 . DOI:10.1007/s10118-020-2371-4http://doi.org/10.1007/s10118-020-2371-4 .
Huang, B.; Wang, X.; Fang, H.; Jiang, S.; Hou, H . Mechanically strong sulfonated polybenzimidazole PEMs with enhanced proton conductivity . Mater. Lett. , 2019 . 234 354 -356 . DOI:10.1016/j.matlet.2018.09.131http://doi.org/10.1016/j.matlet.2018.09.131 .
Li, X. B.; Ma, H. W.; Wang, P.; Liu, Z. C.; Peng, J. W.; Hu, W.; Jiang, Z. H.; Liu, B. J . Construction of high-performance, high-temperature proton exchange membranes through incorporating SiO2 nanoparticles into novel cross-linked polybenzimidazole networks . ACS Appl. Mater. Interfaces , 2019 . 11 30735 -30746 . DOI:10.1021/acsami.9b06808http://doi.org/10.1021/acsami.9b06808 .
Yang, J. Y.; Li, X. B.; Shi, C. Y.; Liu, B. R.; Cao, K. Y.; Shan, C. L.; Hu, W.; Liu, B. J . Fabrication of PBI/SPOSS hybrid high-temperature proton exchange membranes using SPAEK as compatibilizer . J. Membr. Sci. , 2021 . 620 118855 DOI:10.1016/j.memsci.2020.118855http://doi.org/10.1016/j.memsci.2020.118855 .
Li, X. B.; Ma, H. W.; Wang, P.; Liu, Z. C.; Peng, J. W.; Hu, W.; Jiang, Z. H.; Liu, B. J.; Guiver, M. D . Highly conductive and mechanically stable imidazole-rich cross-linked networks for high-temperature proton exchange membrane fuel cells . Chem. Mater. , 2020 . 32 1182 -1191 . DOI:10.1021/acs.chemmater.9b04321http://doi.org/10.1021/acs.chemmater.9b04321 .
Wang, P.; Liu, Z. C.; Li, X. B.; Peng, J. W.; Hu, W.; Liu, B. J . Toward enhanced conductivity of high-temperature proton exchange membranes: development of novel PIM-1 reinforced PBI alloy membranes . Chem. Commun. , 2019 . 55 6491 -6494 . DOI:10.1039/C9CC02102Ghttp://doi.org/10.1039/C9CC02102G .
Li, X.; Ma, H.; Shen, Y.; Hu, W.; Jiang, Z.; Liu, B.; Guiver, M. D . Dimensionally-stable phosphoric acid–doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells . J. Power Sources , 2016 . 336 391 -400 . DOI:10.1016/j.jpowsour.2016.11.013http://doi.org/10.1016/j.jpowsour.2016.11.013 .
Viva, F.; Heredia, N.; Palmbaum, S . P.; Diaz, L.; De Diego, J.; Lozano, M.; Bruno, M.; Corti, H. Spray-casting ABPBI membranes for high temperature PEM fuel cells . J. Electrochem. Soc. , 2017 . 164 F866 -F872 . DOI:10.1149/2.1621707jeshttp://doi.org/10.1149/2.1621707jes .
Kumar B, S.; Sana, B.; Unnikrishnan, G.; Jana, T.; Kumar K. S . Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties . Polym. Chem. , 2020 . 11 1043 -1054 . DOI:10.1039/C9PY01403Ahttp://doi.org/10.1039/C9PY01403A .
Escorihuela, J.; Olvera-Mancilla, J.; Alexandrova, L.; Del Castillo, L. F.; Compan, V . Recent progress in the development of composite membranes based on polybenzimidazole for high temperature proton exchange membrane (PEM) fuel cell applications . Polymers , 2020 . 12 1861 -1901 . DOI:10.3390/polym12091861http://doi.org/10.3390/polym12091861 .
Gong, C.; Liang, Y.; Qi, Z.; Li, H.; Wu, Z.; Zhang, Z.; Zhang, S.; Zhang, X.; Li, Y . Solution processable octa(aminophenyl)silsesquioxane covalently cross-linked sulfonated polyimides for proton exchange membranes . J. Membr. Sci. , 2015 . 476 364 -372 . DOI:10.1016/j.memsci.2014.12.002http://doi.org/10.1016/j.memsci.2014.12.002 .
Joseph, D.; Krishnan, N. N.; Henkensmeier, D.; Jang, J. H.; Choi, S. H.; Kim, H. J.; Han, J.; Nam, S. W . Thermal crosslinking of PBI/sulfonated polysulfone based blend membranes . J. Mater. Chem. A , 2017 . 5 409 -417 . DOI:10.1039/C6TA07653Jhttp://doi.org/10.1039/C6TA07653J .
Qian, W.; Shen, C.; Gao, S.; Xiang, J . Phosphonic acid functionalized siloxane crosslinked with 3-glycidoxyproyltrimethoxysilane grafted polybenzimidazole high temperature proton exchange membranes . J. Appl. Polym. Sci. , 2017 . 134 44848 -44857 . DOI:10.1002/app.44848http://doi.org/10.1002/app.44848 .
Yang, J.; Gao, L.; Wang, J.; Xu, Y.; Liu, C.; He, R . Strengthening phosphoric acid doped polybenzimidazole membranes with siloxane networks for using as high temperature proton exchange membranes . Macromol. Chem. Phys. , 2017 . 218 1700009 -1700018 . DOI:10.1002/macp.201700009http://doi.org/10.1002/macp.201700009 .
Yuan, Q.; Sun, G. H.; Han, K. F.; Yu, J. H.; Zhu, H.; Wang, Z. M . Copolymerization of 4-(3,4-diamino-phenoxy)-benzoic acid and 3,4-diaminobenzoic acid towards H3PO4-doped PBI membranes for proton conductor with better processability . Eur. Polym. J. , 2016 . 85 175 -186 . DOI:10.1016/j.eurpolymj.2016.10.002http://doi.org/10.1016/j.eurpolymj.2016.10.002 .
Wang, X.; Wang, S.; Liu, C.; Li, J.; Liu, F.; Tian, X.; Chen, H.; Mao, T.; Xu, J.; Wang, Z . Cage-like cross-linked membranes with excellent ionic liquid retention and elevated proton conductivity for HT-PEMFCs . Electrochim. Acta , 2018 . 283 691 -698 . DOI:10.1016/j.electacta.2018.06.197http://doi.org/10.1016/j.electacta.2018.06.197 .
Guo, H.; Li, Z.; Sun, P.; Pei, H.; Zhang, L.; Cui, W.; Yin, X.; Hui, H . Enhancing proton conductivity and durability of crosslinked PBI-based high-temperature PEM: effectively doping a novel cerium triphosphonic-isocyanurate . J. Electrochem. Soc. , 2021 . 168 024510 DOI:10.1149/1945-7111/abe290http://doi.org/10.1149/1945-7111/abe290 .
Kim, J.; Kim, K.; Ko, T.; Han, J.; Lee, J. C . Polybenzimidazole composite membranes containing imidazole functionalized graphene oxide showing high proton conductivity and improved physicochemical properties . Int. J. Hydrogen Energy , 2021 . 46 12254 -12262 . DOI:10.1016/j.ijhydene.2020.02.193http://doi.org/10.1016/j.ijhydene.2020.02.193 .
Yuan, M. J.; Hu, Z. Y.; Fang, H.; Li, S. J.; Guo, H. T.; Hu, R. B.; Jiang, S. H.; Liu, K. M.; Hou, H. Q . High performance electrospun polynaphthalimide nanofibrous membranes with excellent resistance to chemically harsh conditions . Chinese J. Polym. Sci. , 2021 . 39 1634 -1644 . DOI:10.1007/s10118-021-2634-8http://doi.org/10.1007/s10118-021-2634-8 .
Oyeoka, H. C.; Ewulonu, C. M.; Nwuzor, I. C.; Obele, C. M.; Nwabanne, J. T . Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals . J. Bioresour. Bioprod. , 2021 . 6 168 -185 . DOI:10.1016/j.jobab.2021.02.009http://doi.org/10.1016/j.jobab.2021.02.009 .
Xiao, F.; Wu, Y.; Zuo, Y.; Peng, L.; Li, W.; Sun, X . Preparation and bonding performance evaluation of bamboo veneer/foam aluminum composites . J. For. Eng. , 2021 . 6 35 -40. .
Lin, Q.; Zhang, Y.; Yu, W . Improvement of dimensional stability of poplar scrimber by pre-compression treatment gluing technology . J. For. Eng. , 2021 . 6 58 -67. .
Zhao, D.; Kim, J. F.; Ignacz, G.; Pogany, P.; Lee, Y. M.; Szekely, G . Bio-inspired robust membranes nanoengineered from interpenetrating polymer networks of polybenzimidazole/polydopamine . ACS Nano , 2019 . 13 125 -133 . DOI:10.1021/acsnano.8b04123http://doi.org/10.1021/acsnano.8b04123 .
Maity, S.; Sannigrahi, A.; Ghosh, S.; Jana, T . N-alkyl polybenzimidazole: effect of alkyl chain length . Eur. Polym. J. , 2013 . 49 2280 -2292 . DOI:10.1016/j.eurpolymj.2013.05.011http://doi.org/10.1016/j.eurpolymj.2013.05.011 .
Fu, R.; Zhang, W.; Li, D.; Zhang, H . Analyses on chemical composition of ancient wood structural component by using near infrared spectroscopy . J. For. Eng. , 2021 . 6 114 -119. .
Jin, Y.; Gao, B.; Bian, C.; Meng, X.; Meng, B.; Wong, S . I.; Yang, N.; Sunarso, J.; Tan, X.; Liu, S. Elevated-temperature H2 separation using a dense electron and proton mixed conducting polybenzimidazole-based membrane with 2D sulfonated graphene . Green Chem. , 2021 . 23 3374 -3385 . DOI:10.1039/D0GC04077Khttp://doi.org/10.1039/D0GC04077K .
Sun, P.; Xia, Z.; Li, Z.; Fan, Z.; He, F.; Liu, Q.; Yin, X . Polybenzimidazole dendrimer containing triazine rings-based high-temperature proton exchange membranes with high performances over a wide humidity range . Mater. Today Chem. , 2022 . 23 100653 DOI:10.1016/j.mtchem.2021.100653http://doi.org/10.1016/j.mtchem.2021.100653 .
Lu, W.; Yang, Z.; Huang, H.; Wei, F.; Li, W.; Yu, Y.; Gao, Y.; Zhou, Y.; Zhang, G . Piperidinium-functionalized poly(vinylbenzyl chloride) cross-linked by polybenzimidazole as an anion exchange membrane with a continuous ionic transport pathway . Ind. Eng. Chem. Res. , 2020 . 59 21077 -21087 . DOI:10.1021/acs.iecr.0c04548http://doi.org/10.1021/acs.iecr.0c04548 .
Guo, H.; Li, Z.; Lv, Y.; Pei, H.; Sun, P.; Zhang, L.; Cui, W.; Yin, X.; Hui, H . Monolithic macromolecule membrane based on polybenzimidazole: achieving high proton conductivity and low fuel permeability through multiple cross-linking . ACS Appl. Energy Mater. , 2021 . 4 8969 -8980 . DOI:10.1021/acsaem.1c01233http://doi.org/10.1021/acsaem.1c01233 .
Mondal, S.; Papiya, F.; Ash, S. N.; Kundu, P. P . Composite membrane of sulfonated polybenzimidazole and sulfonated graphene oxide for potential application in microbial fuel cell . J. Environ. Chem. Eng. , 2021 . 9 104945 DOI:10.1016/j.jece.2020.104945http://doi.org/10.1016/j.jece.2020.104945 .
Liu, Y.; Chen, J.; Fu, X.; Liu, D.; Liu, J.; Wang, L.; Luo, J.; Peng, X . Constructing proton transport channels in low phosphoric-acid doped polybenzimidazole membrane by introducing metal-organic frameworks containing phosphoric-acid groups . J. Power Sources , 2021 . 507 230316 DOI:10.1016/j.jpowsour.2021.230316http://doi.org/10.1016/j.jpowsour.2021.230316 .
Wang, X.; Chen, W.; Yan, X.; Li, T.; Wu, X.; Zhang, Y.; Zhang, F.; Pang, B.; He, G . Pre-removal of polybenzimidazole anion to improve flexibility of grafted quaternized side chains for high performance anion exchange membranes . J. Power Sources , 2020 . 451 227813 -227825 . DOI:10.1016/j.jpowsour.2020.227813http://doi.org/10.1016/j.jpowsour.2020.227813 .
Lin, C.; Wang, J.; Shen, G.; Duan, J.; Xie, D.; Cheng, F.; Zhang, Y.; Zhang, S . Construction of crosslinked polybenzimidazole-based anion exchange membranes with ether-bond-free backbone . J. Membr. Sci. , 2019 . 590 117303 -117311 . DOI:10.1016/j.memsci.2019.117303http://doi.org/10.1016/j.memsci.2019.117303 .
Kundu, S.; Simon, L . C.; Fowler, M.; Grot, S. Mechanical properties of Nafion™ electrolyte membranes under hydrated conditions . Polymer , 2005 . 46 11707 -11715 . DOI:10.1016/j.polymer.2005.09.059http://doi.org/10.1016/j.polymer.2005.09.059 .
Samms, S. R.; Wasmus, S.; SavineIl, R. F . Thermal stability of Nafion® in simulated fuel cell environments . J. Electrochem. Soc. , 1996 . 143 1498 -1504 . DOI:10.1149/1.1836669http://doi.org/10.1149/1.1836669 .
Zhang, N.; Li, Z.; Xiao, Y.; Pan, Z.; Jia, P.; Feng, G.; Bao, C.; Zhou, Y.; Hua, L . Lignin-based phenolic resin modified with whisker silicon and its application . J. Bioresour. Bioprod. , 2020 . 5 67 -77 . DOI:10.1016/j.jobab.2020.03.008http://doi.org/10.1016/j.jobab.2020.03.008 .
Guan, F.; Song, Z.; Xin, F.; Wang, H.; Yu, D.; Li, G.; Liu, W . Preparation of hydrophobic transparent paper via using polydimethylsiloxane as transparent agent . J. Bioresour. Bioprod. , 2020 . 5 37 -43 . DOI:10.1016/j.jobab.2020.03.004http://doi.org/10.1016/j.jobab.2020.03.004 .
Hao, C.; Zhang, K.; Song, W.; Yin, H.; Zhang, S . Influence of xylanase treatment on properties of bamboo powder/polylactic acid composites . J. For. Eng. , 2020 . 5 36 -40. .
Tan, W.; Hao, X.; Wang, Q.; Ou, R . Mechanical and thermal properties of bamboo plastic composites reinforced by thermotropic liquid crystal copolyesters . J. For. Eng. , 2020 . 5 97 -103. .
Su, L.; Pei, S.; Li, L.; Li, H.; Zhang, Y.; Yu, W.; Zhou, C . Preparation of polysiloxane/perfluorosulfonic acid nanocomposite membranes in supercritical carbon dioxide system for direct methanol fuel cell . Int. J. Hydrogen Energy , 2009 . 34 6892 -6901 . DOI:10.1016/j.ijhydene.2009.05.145http://doi.org/10.1016/j.ijhydene.2009.05.145 .
Lavorgna, M.; Mascia, L.; Mensitieri, G.; Gilbert, M.; Scherillo, G.; Palomba, B . Hybridization of Nafion membranes by the infusion of functionalized siloxane precursors . J. Membr. Sci. , 2007 . 294 159 -168 . DOI:10.1016/j.memsci.2007.02.032http://doi.org/10.1016/j.memsci.2007.02.032 .
Chae, K. J.; Kim, K. Y.; Choi, M. J.; Yang, E.; Kim, I . S.; Ren, X.; Lee, M. Sulfonated polyether ether ketone (SPEEK)-based composite proton exchange membrane reinforced with nanofibers for microbial electrolysis cells . Chem. Eng. J. , 2014 . 254 393 -398 . DOI:10.1016/j.cej.2014.05.145http://doi.org/10.1016/j.cej.2014.05.145 .
Shen, C. H.; Hsu, S. L. C . Synthesis of novel cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells . J. Membr. Sci. , 2013 . 443 138 -143 . DOI:10.1016/j.memsci.2013.04.072http://doi.org/10.1016/j.memsci.2013.04.072 .
Kuo, A.-T.; Miyazaki, Y.; Jang, C.; Miyajima, T.; Urata, S.; Nielsen, S . O.; Okazaki, S.; Shinoda, W. Large-scale molecular dynamics simulation of perfluorosulfonic acid membranes: remapping coarse-grained to all-atomistic simulations . Polymer , 2019 . 181 121766 -121772 . DOI:10.1016/j.polymer.2019.121766http://doi.org/10.1016/j.polymer.2019.121766 .
Bai, Y.; Xiao, M.; Huang, Z.; Han, D.; Wang, C.; Wang, S.; Meng, Y . Ionically crosslinked composite membranes from polybenzimidazole and sulfonated poly(fluorenyl ether ketone) for high-temperature PEM fuel cells . J. Electrochem. Soc. , 2021 . 168 114509 DOI:10.1149/1945-7111/ac35cfhttp://doi.org/10.1149/1945-7111/ac35cf .
Xiao, Y.; Wang, S.; Tian, G.; Xiang, J.; Zhang, L.; Cheng, P.; Zhang, J.; Tang, N . Preparation and molecular simulation of grafted polybenzimidazoles containing benzimidazole type side pendant as high-temperature proton exchange membranes . J. Membr. Sci. , 2021 . 620 118858 DOI:10.1016/j.memsci.2020.118858http://doi.org/10.1016/j.memsci.2020.118858 .
Maity, S.; Jana, T . Soluble polybenzimidazoles for pem: synthesized from efficient, inexpensive, readily accessible alternative tetraamine monomer . Macromolecules , 2013 . 46 6814 -6823 . DOI:10.1021/ma401404chttp://doi.org/10.1021/ma401404c .
Takemoto, M.; Hayashi, K.; Yamaura, S . I.; Zhang, W.; Sakamoto, W.; Yogo, T. Synthesis of inorganic-organic hybrid membranes consisting of organotrisiloxane linkages and their fuel cell properties at intermediate temperatures . Polymer , 2017 . 120 264 -271 . DOI:10.1016/j.polymer.2017.05.065http://doi.org/10.1016/j.polymer.2017.05.065 .
Sean, N. A.; Leaw, W . L.; Abouzari-lotf, E.; Nur, H. Magnetic field-induced alignment of polybenzimidazole microstructures to enhance proton conduction . J. Chin. Chem. Soc. , 2021 . 68 86 -94 . DOI:10.1002/jccs.202000196http://doi.org/10.1002/jccs.202000196 .
Wang, Y.; Sun, P.; Li, Z.; Guo, H.; Pei, H.; Yin, X . Construction of novel proton transport channels by triphosphonic acid proton conductor-doped crosslinked mPBI-based high-temperature and low-humidity proton exchange membranes . ACS Sustain. Chem. Eng. , 2021 . 9 2861 -2871 . DOI:10.1021/acssuschemeng.0c08799http://doi.org/10.1021/acssuschemeng.0c08799 .
Eguizábal, A.; J.Lemus; Roda, V.; Urbiztondo, M.; Barreras, F.; Pina, M. P . Nanostructured electrolyte membranes based on zeotypes, protic ionic liquids and porous PBI membranes: Preparation, characterization and MEA testing . Int. J. Hydrogen Energy , 2012 . 37 7221 -7234 . DOI:10.1016/j.ijhydene.2011.11.074http://doi.org/10.1016/j.ijhydene.2011.11.074 .
Pu, H.; Liu, Q . Methanol permeability and proton conductivity of polybenzimidazole and sulfonated polybenzimidazole . Polym. Int. , 2004 . 53 1512 -1516 . DOI:10.1002/pi.1577http://doi.org/10.1002/pi.1577 .
0
Views
9
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621