a.Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai 200433, China
b.State key laboratory of Molecular Engineering of polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
Yuliangyang@fudan.edu.cn (Y.L.Y.)
Zhanghd@fudan.edu.cn (H.D.Z.)
Scan for full text
Chao Jin, Hui Yu, Chun-Fang Wu, et al. Fiber Bending Flexibility Evaluation by Worm-like Chain Model. [J]. Chinese Journal of Polymer Science 40(5):526-531(2022)
Chao Jin, Hui Yu, Chun-Fang Wu, et al. Fiber Bending Flexibility Evaluation by Worm-like Chain Model. [J]. Chinese Journal of Polymer Science 40(5):526-531(2022) DOI: 10.1007/s10118-022-2694-4.
Based on the conformation distribution and bending energy theory of worm-like chain, a new method for characterizing plant fiber bending flexibility was developed.
A new method for characterizing fiber bending flexibility was developed by worm-like chain model proposed by Kratky-Porod,[1], which was first introduced to the pulp and paper field in this study. For the three types of pulps, the experimental results were compared with the KP chain model, and the resulting determination coefficients were all above 0.95, which proved that the model was feasible to be applied to these three fibers. The relation between fiber bending rigidity and that of cellulosic chains inside was discussed to deduce the fiber bending flexibility. The flexibility of an individual fiber can be approximated as the contribution of that of all the cellulose chains inside. By this method, the fiber flexibility values were determined to be in the range of 0.6×10,11,−3.5×10,11, N,−1,·m,−2, which was comparable to that of the conventional methods recorded in the literature.
Worm-like chainFiber persistence lengthFiber bending flexibility
Kratky, O.; Porod, G . Rontgenuntersuchung geloster Fadenmoleküle . Recueil des Travaux Chimiques Des Pays Bas , 1949 . 68 1106 -1122 . DOI:10.1002/recl.19490681203http://doi.org/10.1002/recl.19490681203 .
Huber, P.; Carre, B.; Petit-Conil, M . The influence of TMP fibre flexibility on flocculation and formation . Bioresources , 2008 . 3 1218 -1227. .
Page, D. H . A theory for the tensile strength of paper . Tappi J. , 2018 . 17 583 -590. .
Yan, D. B.; Li, K. C . Wet fiber shear flexibility and its contribution to the overall transverse deformation of fibers . J. Mater. Sci. , 2008 . 43 7210 -7218 . DOI:10.1007/s10853-008-2958-6http://doi.org/10.1007/s10853-008-2958-6 .
Petit-Conil, M.; Cochaux, A.; De Choudens, C . Mechanical pulp characterization: a new and rapid method to evaluate fibre flexibility . Pap. Timber , 1994 . 76 657 -662. .
Chandra, R. P.; Wu, J.; Saddler, J. N . The application of fibre quality analysis (FQA) and cellulose accessibility measurements to better elucidate the impact of fibre curls and kinks on the enzymatic hydrolysis of fibres . ACS Sustain. Chem. Eng. , 2019 . 7 8827 -8833 . DOI:10.1021/acssuschemeng.9b00783http://doi.org/10.1021/acssuschemeng.9b00783 .
Rusu, M.; Mörseburg, K.; Gregersen, Ø.; Yamakawa, A.; Liukkonen, S . Relation between fibre flexibility and cross-sectional properties . Bioresources , 2011 . 6 641 -655 . DOI:10.15376/biores.6.1.641-655http://doi.org/10.15376/biores.6.1.641-655 .
Tam Doo, P. A.; Kerekes, R. J . A method to measure wet fiber flexibility . Tappi , 1981 . 64 113 -116. .
Tam Doo, P. A.; Kerekes, R. J . Flexibilities of wet pulp fibers . Pulp and Paper Canada , 1982 . 83 46 -50. .
Samuelsson, L. G . Measurement of the stiffness of fibers . Svensk Papperstidn , 1963 . 66 544 -546. .
Pettersson, T.; Hellwig, J.; Gustafsson, P. J.; Stenstrom, S . Measurement of the flexibility of wet cellulose fibres using atomic force microscopy . Cellulose , 2017 . 24 4139 -4149 . DOI:10.1007/s10570-017-1407-6http://doi.org/10.1007/s10570-017-1407-6 .
Fischer, W.J.; Lorbach, C.; Jajcinovic, M. Measured and calculated bending stiffness of individual fibers. In Progress in paper physics seminar. 2014, Raleigh, NC, USA.
Yan, D. B.; Li, K. C . Measurement of wet fiber flexibility by confocal laser scanning microscopy . J. Mater. Sci. , 2018 . 43 2869 -2878. .
Yan, D. B.; Li, K. C.; Zhou, Y. J . Measurement of wet fiber flexibility of mechanical pulp fibers by confocal laser scanning microscopy . Tappi J. , 2008 . 7 25 -31. .
Nilsson, B.; Wågberg, L.; Gray, D. Conformability of wet pulp fibres at small length scales. in The fundamentals of papermaking processes. 2021, Oxford, UK.
Bergander, A.; Salmén, L . The transverse elastic modulus of the native wood fibre wall . J. Pulp Paper Sci. , 2000 . 26 234 -238. .
Dondos, A.; Tsitsilianis, C . Viscometric study of extremely dilute macromolecular solutions: critical concentration c and the intrinsic viscosity of the polystyrene through scaling laws. The values of the Huggins constant . Polym. Int. , 1992 . 28 151 -156 . DOI:10.1002/pi.4990280209http://doi.org/10.1002/pi.4990280209 .
Kes, M.; Christensen, B. E . A re-investigation of the Mark-Houwink-Sakurada parameters for cellulose in Cuen: a study based on size-exclusion chromatography combined with multi-angle light scattering and viscometry . J. Chromatogr. A , 2013 . 1281 32 -37 . DOI:10.1016/j.chroma.2013.01.038http://doi.org/10.1016/j.chroma.2013.01.038 .
Yamakawa, H.; Yoshizaki, T. in Helical wormlike chains in polymer solutions. Vol. 2E, Springer, Berlin/Heidelberg, New York, 2016, p. 21.
Mehandzhiyski, A. Y.; Zozoulenko, I . A review of cellulose coarse-grained models and their applications . Polysaccharides , 2021 . 2 257 -270 . DOI:10.3390/polysaccharides2020018http://doi.org/10.3390/polysaccharides2020018 .
Matsuyama, A . Conformational transitions of a semiflexible polymer in nematic solvents . Phys. Rev. E , 2003 . 67 42701 -42701. .
Theo, O . Physics of tightly curved semiflexible polymer chains . Macromolecules , 1993 . 26 6897 -6902 . DOI:10.1021/ma00077a029http://doi.org/10.1021/ma00077a029 .
Peter, Z . Order in cellulosics: historical review of crystal structure research on cellulose . Carbohydr. Polym. , 2021 . 254 117417 DOI:10.1016/j.carbpol.2020.117417http://doi.org/10.1016/j.carbpol.2020.117417 .
Heussinger, C.; Bathe, M.; Frey, E . Statistical mechanics of semiflexible bundles of wormlike polymer chains . Phys. Rev. Lett. , 2007 . 99 048101 DOI:10.1103/PhysRevLett.99.048101http://doi.org/10.1103/PhysRevLett.99.048101 .
Meyer, K. H.; Mish, L . Positions of atoms in the new spatial model of cellulose . Helv. Chim. Acta , 1937 . 20 232 -244 . DOI:10.1002/hlca.19370200134http://doi.org/10.1002/hlca.19370200134 .
0
Views
7
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution