a.State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
b.Institute of Zhejiang University–Quzhou, Quzhou 324000, China
c.CNRS-Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP, CNRS UMR 7274), 1 rue Grandville, BP 20451, 54001 Nancy, France
zhangcailiang@zju.edu.cn (C.L.Z.)
guo-hua.hu@univ-lorraine.fr (G.H.H.)
Scan for full text
Tian-Tian Li, Si-Bo Cheng, Lian-Fang Feng, et al. Measuring the Interfacial Thickness of Immiscible Polymer Blends by Nano-probing of Atomic Force Microscopy. [J]. Chinese Journal of Polymer Science 40(4):421-430(2022)
Tian-Tian Li, Si-Bo Cheng, Lian-Fang Feng, et al. Measuring the Interfacial Thickness of Immiscible Polymer Blends by Nano-probing of Atomic Force Microscopy. [J]. Chinese Journal of Polymer Science 40(4):421-430(2022) DOI: 10.1007/s10118-022-2682-8.
Immiscible polymer blends are an important family of polymer materials. The interfacial thickness between different phases is a very important parameter that dictates, to a great extent, the morphology and properties of such a blend. This work explores and optimizes an up-to-date atomic force microscopy (AFM) of type NanoIR2,TM, system in order to quantitatively measure the interfacial thickness of immiscible polymer blends. This system is equipped with two nano-probes capable of detecting the response of a material to an infrared pulse called AFM-infrared spectroscopy mode (AFM-IR) or conducting resonance called AFM-Lorentz Contact Resonance mode (AFM-LCR), respectively. Its potential for quantitatively measuring the interfacial thickness of immiscible polymer blends is evaluated using blends composed of polyamide 6 (PA6) and polyolefin elastomer (POE) in the presence or absence of a POE containing maleic anhydride (POE-,g,-MAH) as a compatibilizer. Surface roughness affects adversely the signal intensity and consequently an accurate measurement of the interfacial thickness. Optimum sample surface preparation procedures are proposed.
Polymer blendsInterfacial thicknessAtomic force microscopyNano-probingSurface roughness
Baker, W.; Scott, C.; Hu, G. H. Reactive polymer blending, Hanser publisher, Munich, 2001.
Lepers, J. C.; Favis, B. D . Interfacial tension reduction and coalescence suppression in compatibilized polymer blends . AIChE J. , 1999 . 45 887 -895 . DOI:10.1002/aic.690450419http://doi.org/10.1002/aic.690450419 .
Sundararaj, U.; Macosko, C. W . Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization . Macromolecules , 1995 . 28 2647 -2657 . DOI:10.1021/ma00112a009http://doi.org/10.1021/ma00112a009 .
Boucher, E.; Folkers, J . P.; Hervet, H.; Leger, L.; Creton, C. Effects of the formation of copolymer on the interfacial adhesion between semicrystalline polymers . Macromolecules , 1996 . 29 774 -782 . DOI:10.1021/ma9509422http://doi.org/10.1021/ma9509422 .
Helfand, E.; Tagami, Y . Theory of interface between immiscible polymers. II . J. Chem. Phys. , 1972 . 56 3592 -3601 . DOI:10.1063/1.1677735http://doi.org/10.1063/1.1677735 .
Gemeinhardt, G. C.; Moore, R. B . Characterization of ionomer-compatibilized blend morphology using synchrotron small-angle X-ray scattering . Macromolecules , 2005 . 38 2813 -2819 . DOI:10.1021/ma0479823http://doi.org/10.1021/ma0479823 .
Perrin, P.; Prudhomme, R. E . SAXS measurements of interfacial thickness in amorphous polymer blends containing a diblock copolymer . Macromolecules , 1994 . 27 1852 -1860 . DOI:10.1021/ma00085a029http://doi.org/10.1021/ma00085a029 .
Li, Y. Y.; Guo, C.; Zhao, Y. H.; Chen, Z. Q.; Sheng, J . Role of styrene-ethylene/propylene block copolymer in controlling morphology development of PP/PS blends during mixing . J. Macromol. Sci. B , 2007 . 46 487 -502 . DOI:10.1080/00222340701257745http://doi.org/10.1080/00222340701257745 .
Jiao, J. B.; Kramer, E . J.; de Vos, S.; Moller, M.; Koning, C. Morphological changes of a molten polymer/polymer interface driven by grafting . Macromolecules , 1999 . 32 6261 -6269 . DOI:10.1021/ma981262chttp://doi.org/10.1021/ma981262c .
Schulze, J. S.; Moon, B.; Lodge, T. P.; Macosko, C. W . Measuring copolymer formation from end-functionalized chains at a PS/PMMA interface using FRES and SEC . Macromolecules , 2001 . 34 200 -205 . DOI:10.1021/ma001207fhttp://doi.org/10.1021/ma001207f .
Kressler, J.; Higashida, N.; Inoue, T.; Heckmann, W.; Seitz, F . Study of polymer-polymer interfaces: a comparison of ellipsometric and TEM data of PMMA/polystyrene and PMMA/SAN systems . Macromolecules , 1993 . 26 2090 -2094 . DOI:10.1021/ma00060a043http://doi.org/10.1021/ma00060a043 .
Kuttner, C.; Hanisch, A.; Schmalz, H.; Eder, M.; Schlaad, H.; Burgert, I.; Fery, A . Influence of the polymeric interphase design on the interfacial properties of (fiber-reinforced) composites . ACS Appl. Mater. Interfaces , 2013 . 5 2469 -2478 . DOI:10.1021/am302694hhttp://doi.org/10.1021/am302694h .
Liao, Y . G.; Nakagawa, A.; Horiuchi, S.; Ougizawa, T. Interdiffusion at homopolymer/random copolymer interfaces investigated by energy-filtering transmission electron microscopy . Macromolecules , 2007 . 40 7966 -7972 . DOI:10.1021/ma071535ghttp://doi.org/10.1021/ma071535g .
Dong, W. Y.; Hakukawa, H.; Yamahira, N.; Li, Y. J.; Horiuchi, S . Mechanism of reactive compatibilization of PLLA/PVDF blends investigated by scanning transmission electron microscopy with energy-dispersive X-ray spectrometry and electron energy loss spectroscopy . ACS Appl. Polym. Mater. , 2019 . 1 815 -824 . DOI:10.1021/acsapm.9b00061http://doi.org/10.1021/acsapm.9b00061 .
Virgilio, N.; Favis, B. D.; Pépin, M . F.; Desjardins, P.; L'Espérance, G. High contrast imaging of interphases in ternary polymer blends using focused ion beam preparation and atomic force microscopy . Macromolecules , 2005 . 38 2368 -2375 . DOI:10.1021/ma0482664http://doi.org/10.1021/ma0482664 .
Wang, D.; Russell, T. P . Advances in atomic force microscopy for probing polymer structure and properties . Macromolecules , 2018 . 51 3 -24 . DOI:10.1021/acs.macromol.7b01459http://doi.org/10.1021/acs.macromol.7b01459 .
Sahin, O.; Erina, N. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy. Nanotechnology 2008, 19, 445717.
Dokukin, M. E.; Sokolov, I . Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes . Langmuir , 2012 . 28 16060 -16071 . DOI:10.1021/la302706bhttp://doi.org/10.1021/la302706b .
Dokukin, M . E.; Kuroki, H.; Minko, S.; Sokolov, I. AFM study of polymer brush grafted to deformable surfaces: quantitative properties of the brush and substrate mechanics . Macromolecules , 2017 . 50 275 -282 . DOI:10.1021/acs.macromol.6b02149http://doi.org/10.1021/acs.macromol.6b02149 .
Kolluru, P. V.; Eaton, M. D.; Collinson, D. W.; Cheng, X.; Delgado, D. E.; Shull, K. R.; Brinson, L. C . AFM-based dynamic scanning indentation (DSI) method for fast, high-resolution spatial mapping of local viscoelastic properties in soft materials . Macromolecules , 2018 . 51 8964 -8978 . DOI:10.1021/acs.macromol.8b01426http://doi.org/10.1021/acs.macromol.8b01426 .
Dazzi, A.; Prater, C. B . AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging . Chem. Rev. , 2017 . 117 5146 -5173 . DOI:10.1021/acs.chemrev.6b00448http://doi.org/10.1021/acs.chemrev.6b00448 .
Cavezza, F.; Pletincx, S.; Revilla, R . I.; Weaytens, J.; Boehm, M.; Terryn, H.; Hauffman, T. Probing the metal oxide/polymer molecular hybrid interfaces with nanoscale resolution using AFM-IR . J. Phys. Chem. C , 2019 . 123 26178 -26184 . DOI:10.1021/acs.jpcc.9b04522http://doi.org/10.1021/acs.jpcc.9b04522 .
Wang, C. T.; Jiang, B.; Zhou, Y. W.; Jiang, T. W.; Liu, J. H.; Zhu, G. D.; Cai, W. B . Exploiting the surface-enhanced IR absorption effect in the photothermally induced resonance AFM-IR technique toward nanoscale chemical analysis . Anal. Chem. , 2019 . 91 10541 -10548 . DOI:10.1021/acs.analchem.9b01554http://doi.org/10.1021/acs.analchem.9b01554 .
Wang, D.; Liang, X. B.; Russell, T. P.; Nakajima, K . Visualization and quantification of the chemical and physical properties at a diffusion-induced interface using AFM nanomechanical mapping . Macromolecules , 2014 . 47 3761 -3765 . DOI:10.1021/ma500099bhttp://doi.org/10.1021/ma500099b .
Kuttner, C.; Tebbe, M.; Schlaad, H.; Burgert, I.; Fery, A . Photochemical synthesis of polymeric fiber coatings and their embedding in matrix material: morphology and nanomechanical properties at the fiber-matrix interface . ACS Appl. Mater. Interfaces , 2012 . 4 3484 -3492 . DOI:10.1021/am300576chttp://doi.org/10.1021/am300576c .
Zhang, M.; Li, Y.; Kolluru, P. V.; Brinson, L. C . Determination of mechanical properties of polymer interphase using combined atomic force microscope (AFM) experiments and finite element simulations . Macromolecules , 2018 . 51 8229 -8240 . DOI:10.1021/acs.macromol.8b01427http://doi.org/10.1021/acs.macromol.8b01427 .
Ning, N. Y.; Mi, T.; Chu, G. Y.; Zhang, L. Q.; Liu, L.; Tian, M.; Yu, H. T.; Lu, Y. L . A quantitative approach to study the interface of carbon nanotubes/elastomer nanocomposites . Eur. Polym. J. , 2018 . 102 10 -18 . DOI:10.1016/j.eurpolymj.2018.03.007http://doi.org/10.1016/j.eurpolymj.2018.03.007 .
Li, J. C.; Lu, Y. L.; Jin, Z. H.; Zhang, L. Q. Influence of interfacial compatibilizer, silane modification, and filler hybrid on the performance of NR/NBR blends. J. Appl. Polym. Sci. 2019, 136, No. 47421.
Li, J. C.; Zhang, H. S.; Zhao, X. Y.; Jian, J. G.; Wu, Y. X.; Lu, Y. L.; Zhang, L. Q.; Nishi, T . Development of high damping natural rubber/butyl rubber composites compatibilized by isobutylene-isoprene block copolymer for isolation bearing . Express Polym. Lett. , 2019 . 13 686 -696 . DOI:10.3144/expresspolymlett.2019.58http://doi.org/10.3144/expresspolymlett.2019.58 .
Yao, N. Q.; Wang, H. B.; Zhang, L. Q.; Yue, D. M.; Tian, M. . One-pot solvothermal synthesis of silane-functionalized carbon nanodots as compatibilizers for the immiscible TPU/MVQ blends . Appl. Surf. Sci. , 2020 . 530 147124 DOI:10.1016/j.apsusc.2020.147124http://doi.org/10.1016/j.apsusc.2020.147124 .
Buttler, J . R.; Bechtold, T.; Pham, T. Investigation of interfacial diffusion in PA/PP-g-MAH laminates using nanoscale infrared spectroscopy . Langmuir. , 2020 . 36 9886 -9893 . DOI:10.1021/acs.langmuir.0c01447http://doi.org/10.1021/acs.langmuir.0c01447 .
Khanal, D.; Hau, H.; Kondyurin, A.; Fu, D.; Ramzan, I.; Chrzanowski, W . Nanotoxicity of nanodiamond in two and three dimensional liver models . Int. J. Nanotechnol. , 2017 . 14 133 -154 . DOI:10.1504/IJNT.2017.082436http://doi.org/10.1504/IJNT.2017.082436 .
Luo, H. W.; Xiang, Y. H.; Tian, T.; Pan, X. L. An AFM-IR study on surface properties of nano-TiO2 coated polyethylene (PE) thin film as influenced by photocatalytic aging process. Sci. Total Environ. 2021, 757, No. 143900.
Yuya, P. A.; Hurley, D. C.; Turner, J. A . Contact-resonance atomic force microscopy for viscoelasticity . J. Appl. Phys. , 2008 . 104 074916 DOI:10.1063/1.2996259http://doi.org/10.1063/1.2996259 .
Herruzo, E. T.; Perrino, A. P.; Garcia, R . Fast nanomechanical spectroscopy of soft matter . Nat. Commun. , 2014 . 5 3126 DOI:10.1038/ncomms4126http://doi.org/10.1038/ncomms4126 .
Rosenberger, M. R.; Chen, S. H.; Prater, C. B.; King, W. P. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy. Nanotechnology 2017, 28, 044003.
Dazzi, A.; Prater, C. B.; Hu, Q. C.; Chase, D. B.; Rabolt, J. F.; Marcott, C . AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization . Appl. Spectrosc. , 2012 . 66 1365 -1384 . DOI:10.1366/12-06804http://doi.org/10.1366/12-06804 .
Killgore, J. P.; Tung, R. C.; Hurley, D. C. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers. Nanotechnology 2014, 25, 345701.
Helfand, E.; Sapse, A. M . Theory of unsymmetric polymer-polymer interfaces . J. Chem. Phys. , 1975 . 62 1327 -1331 . DOI:10.1063/1.430632http://doi.org/10.1063/1.430632 .
Helfand, E . Theory of inhomogeneous polymers—fundamentals of Gaussian random-walk model . J. Chem. Phys. , 1975 . 62 999 -1005 . DOI:10.1063/1.430517http://doi.org/10.1063/1.430517 .
Majumdar, B.; Keskkula, H.; Paul, D. R . Morphology development in toughened aliphatic polyamides . Polymer , 1994 . 35 1386 -1398 . DOI:10.1016/0032-3861(94)90338-7http://doi.org/10.1016/0032-3861(94)90338-7 .
Callaghan, T. A.; Takakuwa, K.; Paul, D. R.; Padwa, A. R . Polycarbonate-SAN copolymer interaction . Polymer , 1993 . 34 3796 -3808 . DOI:10.1016/0032-3861(93)90503-3http://doi.org/10.1016/0032-3861(93)90503-3 .
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution