
a.Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering; University of Jinan, Jinan 250022, China
b.Nutrition & Health Research Institute, COFCO Corporation, Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing 102209, China
chm_panqw@ujn.edu.cn (Q.W.P.)
xieyunfeng@cofco.com (Y.F.X.)
chm_chenzy@ujn.edu.cn (Z.Y.C.)
Scan for full text
Zheng-Yu Duan, Yan-Yan Wang, Qi-Wei Pan, et al. Hypercrosslinking Polymers Fabricated from Divinyl Benzene
Zheng-Yu Duan, Yan-Yan Wang, Qi-Wei Pan, et al. Hypercrosslinking Polymers Fabricated from Divinyl Benzene
Microporous organic polymers with high surface area are widely used in many applications. Among them, hypercrosslinked polymers have been extensively concerned because of their simple processes and low-cost reagents. However, due to most state-of-the-art strategies for HCPs based on condensation reactions, the release of small molecules such as hydrochloric acid and methanol involved in such strategies brings about new hazards to environment. Herein, we propose a method of fabrication of hypercrosslinked polymers ,via, self-addition polymerization of divinyl benzene and its crosslinking with polar aromatic molecules. The hypercrosslinked polyDVB-based products are demonstrated by Friedel-Crafts addition reaction of double bonds on DVB that can connect adjacent phenyl rings of aromatic molecules to form the crosslinked networks. The HCPDVB-CB obtained in 1-chlorobutane as solvent has a high micropore content and displays high surface area up to 931 m,2,/g. Following this finding, DVB is used as a novel external crosslinker for knitting polar aromatic molecules. When L-phenylalanine and bisphenol A are used as the aromatic units, the obtained HCP(Phe-DVB) and HCP(BPA-DVB) could reach surface area of 612 and 471 m,2,/g, and have hydrogen uptake of 0.62 wt% and 0.58 wt% at 77 K and 1.13 bar by comparison with HCPDVB-CB having hydrogen uptake of 0.30 wt%, respectively.
Hypercrosslinked polymersDivinyl benzeneFriedel-Crafts alkylationMicroporous organic polymersGas storage
Zhu, J. Y.; Yuan, S. S.; Wang, J.; Zhang, Y. T.; Tian, M. M.; Bruggen, B. V . Microporous organic polymer-based membranes for ultrafast molecular separations . Prog. Polym. Sci. , 2020 . 110 101308 DOI:10.1016/j.progpolymsci.2020.101308http://doi.org/10.1016/j.progpolymsci.2020.101308 .
Du, M. Q.; Peng, Y. Z.; Ma, Y. C.; Yang, L.; Zhou, Y. L.; Zeng, F. K.; Wang, X. K.; Song, M. L.; Chang, G. J . Selective carbon dioxide capture in antifouling indole-based microporous organic polymers . Chinese J. Polym. Sci. , 2020 . 38 187 -194 . DOI:10.1007/s10118-019-2326-9http://doi.org/10.1007/s10118-019-2326-9 .
Das, S.; Heasman, P.; Ben, T.; Qiu, S. L . Porous organic materials: strategic design and structure-function correlation . Chem. Rev. , 2017 . 117 1515 -1563 . DOI:10.1021/acs.chemrev.6b00439http://doi.org/10.1021/acs.chemrev.6b00439 .
Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M . Porous, crystalline, covalent organic frameworks . Science , 2005 . 310 1166 -1170 . DOI:10.1126/science.1120411http://doi.org/10.1126/science.1120411 .
Hu, X. L.; Li, H. G.; Tan, B. E . COFs-based porous materials for photocatalytic applications . Chinese J. Polym. Sci. , 2020 . 38 673 -684 . DOI:10.1007/s10118-020-2394-xhttp://doi.org/10.1007/s10118-020-2394-x .
Wang, M. Y.; Zhang, Q. J.; Shen, Q. Q.; Li, Q. Y.; Ren, S. J . Truxene-based conjugated microporous polymers via different synthetic methods . Chinese J. Polym. Sci. , 2020 . 38 151 -157 . DOI:10.1007/s10118-019-2321-1http://doi.org/10.1007/s10118-019-2321-1 .
Lei, Y.; Tian, Z. Y.; Sun, H. X.; Liu, F.; Zhu, Z. Q.; Liang, W. D.; Li, A . Low-resistance thiophene-based conjugated microporous polymer nanotube filters for efficient particulate matter capture and oil/water separation . ACS Appl. Mater. Interfaces , 2021 . 13 5823 -5833 . DOI:10.1021/acsami.0c20484http://doi.org/10.1021/acsami.0c20484 .
Kuhn, P.; Antonietti, M.; Thomas, A . Porous, covalent triazine-based frameworks prepared by ionothermal synthesis . Angew. Chem. Int. Ed. , 2008 . 47 3450 -3453 . DOI:10.1002/anie.200705710http://doi.org/10.1002/anie.200705710 .
Kamiya, K . Selective single-atom electrocatalysts: a review with a focus on metal-doped covalent triazine frameworks . Chem. Sci. , 2020 . 11 8339 -8349 . DOI:10.1039/D0SC03328Fhttp://doi.org/10.1039/D0SC03328F .
Ben, T.; Ren, H.; Ma, S. Q.; Cao, D. P.; Lan, J. H.; Jing, X. F.; Wang, W. C.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S. L.; Zhu, G. S . Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area . Angew. Chem. Int. Ed. , 2009 . 48 9457 -9460 . DOI:10.1002/anie.200904637http://doi.org/10.1002/anie.200904637 .
Shen, Y. M.; Xue, Y.; Yan, M.; Mao, H. L.; Cheng, H.; Chen, Z.; Sui, Z. W.; Zhu, S. B.; Yu, X. J.; Zhuang, J. L . Synthesis of TEMPO radical decorated hollow porous aromatic frameworks for selective oxidation of alcohols . Chem. Commun. , 2021 . 57 907 -910 . DOI:10.1039/D0CC06965Ehttp://doi.org/10.1039/D0CC06965E .
Jung, D.; Chen, Z. J.; Alayoglu, S.; Mian, M. R.; Goetjen, T. A.; Idrees, K. B.; Kirlikovali, K. O.; Islamoglu, T.; Farha, O. K . Postsynthetically modified polymers of intrinsic microporosity (PIMs) for capturing toxic gases . ACS Appl. Mater. Interfaces , 2021 . 13 10409 -10415 . DOI:10.1021/acsami.0c21741http://doi.org/10.1021/acsami.0c21741 .
Tozawa, T.; Jones, J. T. A.; Swamy, S. I.; Jiang, S.; Adams, D. J.; Shakespeare, S.; Clowes, R.; Bradshaw, D.; Hasell, T.; Chong, S. Y.; Tang, C.; Thompson, S.; Parker, J.; Trewin, A.; Bacsa, J.; Slawin, A. M. Z.; Steiner, A.; Cooper, A. I . Porous organic cages . Nat. Mater. , 2009 . 8 973 -978 . DOI:10.1038/nmat2545http://doi.org/10.1038/nmat2545 .
Webstet, O. W.; Gentry, F. P.; Farlee, R. D.; Smart, B. E . Hypercrosslinked rigid-rod polymers . Makromol. Chem. Macromol. Symp. , 1992 . 54 477 -482. .
Li, J. Q.; Wang, Z.; Wang, Q. Q.; Guo, L. Y.; Wang, C.; Wang, Z.; Zhang, S. H.; Wu, Q. H . Construction of hypercrosslinked polymers for high-performance solid phase microextraction of phthalate esters from water samples . J. Chromatogr. A , 2021 . 1641 461972 DOI:10.1016/j.chroma.2021.461972http://doi.org/10.1016/j.chroma.2021.461972 .
Fontanals, N.; Marcé, R. M.; Borrulla, F.; Cormack, P. A. G . Hypercrosslinked materials: preparation, characterisation and applications . Polym. Chem. , 2015 . 6 7231 -7244 . DOI:10.1039/C5PY00771Bhttp://doi.org/10.1039/C5PY00771B .
Tan, L. X.; Tan, B. E . Hypercrosslinked porous polymer materials: design, synthesis, and applications . Chem. Soc. Rev. , 2017 . 46 3322 -3356 . DOI:10.1039/C6CS00851Hhttp://doi.org/10.1039/C6CS00851H .
Tan, L. X.; Tan, B. E . Research progress in hypercrosslinked microporous organic polymers . Acta Chimica Sinica (in Chinese) , 2015 . 73 530 -540 . DOI:10.6023/A15020096http://doi.org/10.6023/A15020096 .
Davankov, V.; Tsyurupa, M.; Ilyin, M.; Pavlova, L . Hypercross-linked polystyrene and its potentials for liquid chromatography: a mini-review . J. Chromatogr. A , 2002 . 965 65 -73 . DOI:10.1016/S0021-9673(01)01583-7http://doi.org/10.1016/S0021-9673(01)01583-7 .
Davankov, V. A.; Rogozhin, S. V.; Tsyurupa, M. P.; 1973, U.S. Pat.; 3,729,457
Hradil, J.; Králová, E . Styrene-divinylbenzene copolymers post-crosslinked with tetrachloromethane . Polymer , 1998 . 39 6041 -6048 . DOI:10.1016/S0032-3861(98)00057-3http://doi.org/10.1016/S0032-3861(98)00057-3 .
Macintyre, F. S.; Sherrington, D. C.; Tetley. L . Synthesis of ultrahigh surface area monodisperse porous polymer nanospheres . Macromolecules , 2006 . 39 5381 -5384 . DOI:10.1021/ma0610010http://doi.org/10.1021/ma0610010 .
Wood, C. D.; Tan, B. E.; Trewin, A.; Niu, H. J.; Bradshaw, D.; Rosseinsky, M. J.; Khimyak, Y. Z.; Campbell, N. L.; Kirk, R.; Stöckel E.; Cooper, A. I . Hydrogen storage in microporous hypercrosslinked organic polymer networks . Chem. Mater. , 2007 . 19 2034 -2048 . DOI:10.1021/cm070356ahttp://doi.org/10.1021/cm070356a .
Luo, Y. L.; Zhang, S. C.; Ma, Y. X.; Wang, W.; Tan, B. E . Microporous organic polymers synthesized by self-condensation of aromatic hydroxymethyl monomers . Polym. Chem. , 2013 . 4 1126 -1131 . DOI:10.1039/C2PY20914Dhttp://doi.org/10.1039/C2PY20914D .
Woodward, R. T . The design of hypercrosslinked polymers from benzyl ether self-condensing compounds and external crosslinkers . Chem. Commun. , 2020 . 56 4938 -4941 . DOI:10.1039/D0CC01002Bhttp://doi.org/10.1039/D0CC01002B .
Li, B. Y.; Gong, R. N.; Wang, W.; Huang, X.; Zhang, W.; Li, H. M.; Hu, C. X.; Tan, B. E . A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker . Macromolecules , 2011 . 44 2410 -2414 . DOI:10.1021/ma200630shttp://doi.org/10.1021/ma200630s .
Wang, S. L.; Zhang, C. X.; Shu, Y.; Jiang, S. L.; Xia, Q.; Chen, L. J.; Jin, S. B.; Hussain, I.; Cooper A. I.; Tan, B. E . Layered microporous polymers by solvent knitting method . Sci. Adv. , 2017 . 3 e1602610 DOI:10.1126/sciadv.1602610http://doi.org/10.1126/sciadv.1602610 .
Wilson, A. S. S.; Hill, M. S.; Mahon, M . F.; Dinoi, C.; Maron, L. Organocalcium-mediated nucleophilic alkylation of benzene . Science , 2017 . 358 1168 -1171 . DOI:10.1126/science.aao5923http://doi.org/10.1126/science.aao5923 .
Gilman, H.; Meals, R . Rearrangements in the Friedel-Crafts alkylation of benzene . J. Org. Chem. , 2002 . 8 126 -146. .
Rueping, M.; Nachtsheim, B. J . A review of new developments in the Friedel-Crafts alkylation from green chemistry to asymmetric catalysis . Beilstein J. Org. Chem. , 2010 . 6 6 DOI:10.3762/bjoc.6.6http://doi.org/10.3762/bjoc.6.6 .
Soukupová, K.; Sassi, A.; Jeřábek, K . Reinforcing of expanded polymer morphology using peroxy radical initiator . React. Funct. Polym. , 2009 . 69 353 -357 . DOI:10.1016/j.reactfunctpolym.2009.02.008http://doi.org/10.1016/j.reactfunctpolym.2009.02.008 .
Li, L.; Zhang, A. J.; Yu, J. H.; Li, W . Q.; Gao, H.; Tian, K.; Bai, H. One-step preparation of hierarchically porous polyureas: simultaneous foaming and hyper-crosslinking . Polymer , 2017 . 108 332 -338 . DOI:10.1016/j.polymer.2016.11.002http://doi.org/10.1016/j.polymer.2016.11.002 .
Xia, Y. X.; Di, T.; Meng, Z. H.; Zhu, T. T.; Lei, Y. J.; Chen, S.; Li, T. S.; Li, L . Versatile one-pot construction strategy for the preparation of porous organic polymers via domino polymerization . Macromolecules , 2021 . 54 4682 -4692 . DOI:10.1021/acs.macromol.1c00473http://doi.org/10.1021/acs.macromol.1c00473 .
Liu, W. H.; Wang, J. T.; Liu, J. J.; Hou, F. Y.; Wu, Q . H.; Wang, C.; Wang, Z. Preparation of phenylboronic acid based hypercrosslinked polymers for effective adsorption of chlorophenols . J. Chromatogr. A , 2020 . 1628 461470 DOI:10.1016/j.chroma.2020.461470http://doi.org/10.1016/j.chroma.2020.461470 .
Ding, L.; Zhang, A. J.; Li, W . Q.; Bai, H.; Li, L. Multi-length scale porous polymer films from hypercrosslinked breath figure arrays . J. Colloid. Interface Sci. , 2016 . 461 179 -184 . DOI:10.1016/j.jcis.2015.09.031http://doi.org/10.1016/j.jcis.2015.09.031 .
Yang, Y. W.; Tan, B. E.; Wood. C. D . Solution-processable hypercrosslinked polymers by low cost strategies: a promising platform for gas storage and separation . J. Mater. Chem. A , 2016 . 4 15072 -15080 . DOI:10.1039/C6TA05226Fhttp://doi.org/10.1039/C6TA05226F .
Ando, K.; Ito, T.; Tesehima, H.; Kusano, H.; in Ion exchange for industry, Ed. by Streat, M.; Springer, Chichester, UK, 1988, p. 232−238.
Zeng, X. W.; Yu, T. J.; Wang, P.; Yuan, R. H.; Wen, Q.; Fan, Y. G.; Wang, C. H.; Shi, R. F . Preparation and characterization of polar polymeric adsorbents with high surface for the removal of phenol from water . J. Hazard. Mater. , 2010 . 177 773 -780 . DOI:10.1016/j.jhazmat.2009.12.100http://doi.org/10.1016/j.jhazmat.2009.12.100 .
Zeng, X. W.; Fan, Y. G.; Wu, G. L.; Wang, C. H.; Shi. R. F . Enhanced adsorption of phenol from water by a novel polar post-crosslinked polymeric adsorbent . J. Hazard. Mater. , 2009 . 169 1022 -1028 . DOI:10.1016/j.jhazmat.2009.04.044http://doi.org/10.1016/j.jhazmat.2009.04.044 .
Guo, F. H.; Wang, Y. P.; Chen, X. L.; Chen, M. Q.; He, W.; Chen, Z. Y . Supermacroporous polydivinylbenzene cryogels with high surface area: synthesis by solvothermal postcrosslinking and their adsorption behaviors for carbon dioxide and aniline . J. Appl. Polym. Sci. , 2019 . 136 47716 DOI:10.1002/app.47716http://doi.org/10.1002/app.47716 .
Wu, Y.; Wang, D. X.; Li, L. G.; Yang, W. Y.; Feng, S. Y.; Liu, H. Z . Hybrid porous polymers constructed from octavinylsilsesquioxane and benzene via Friedel-Crafts reaction: tunable porosity, gas sorption, and postfunctionalization . J. Mater. Chem. A , 2014 . 2 2160 -2167 . DOI:10.1039/C3TA14746Khttp://doi.org/10.1039/C3TA14746K .
Shen, R.; Du, Y. J.; Yang, X. R.; Liu, H. Z . Silsesquioxanes-based porous functional polymers for water purification . J. Mater. Sci. , 2020 . 55 7518 -7529 . DOI:10.1007/s10853-020-04541-6http://doi.org/10.1007/s10853-020-04541-6 .
He, J. X.; Zhao, G. H.; Mu, P.; Wei, H. J.; Su, Y. N.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A . Scalable fabrication of monolithic porous foam based on cross-linked aromatic polymers for efficient solar steam generation . Sol. Energy Mater Sol. Cells , 2019 . 201 110111 DOI:10.1016/j.solmat.2019.110111http://doi.org/10.1016/j.solmat.2019.110111 .
Carraher, Jr., C. E.; in Polymer chemistry, Marcel Dekker, New York, 2003, p. 36−53.
Chen, X. L.; Ding, Y. Y.; Ren, D. Y.; Chen, Z. Y . Green synthesis of polymeric microspheres that are monodisperse and superhydrophobic, via quiescent redox-initiated precipitation polymerization . RSC Adv. , 2016 . 6 27846 -27851 . DOI:10.1039/C5RA28153Ahttp://doi.org/10.1039/C5RA28153A .
Huang, H. Q.; Ding, Y. Y.; Chen, X. L.; Chen, Z. Y.; Kong, X. Z . Synthesis of monodisperse micron-sized poly(divinylbenzene) microspheres by solvothermal precipitation polymerization . Chem. Eng. J. , 2016 . 289 135 -141 . DOI:10.1016/j.cej.2015.12.092http://doi.org/10.1016/j.cej.2015.12.092 .
Hubbard, K. L.; Finch, J. A.; Darling, G. D . The preparation and characteristics of poly(divinylbenzene-co-ethylvinylbenzene), including Ambetilite XAD-4. Styrenic resins with pendant vinylbenzene groups . React. Funct. Polym. , 1998 . 36 17 -30 . DOI:10.1016/S1381-5148(97)00127-2http://doi.org/10.1016/S1381-5148(97)00127-2 .
Okay, O . Macroporous copolymer networks . Prog. Polym. Sci. , 2000 . 25 711 -779 . DOI:10.1016/S0079-6700(00)00015-0http://doi.org/10.1016/S0079-6700(00)00015-0 .
Dawson, R.; Cooper, A. I.; Adams, D. J . Nanoporous organic polymer networks . Prog. Polym. Sci. , 2012 . 37 530 -563 . DOI:10.1016/j.progpolymsci.2011.09.002http://doi.org/10.1016/j.progpolymsci.2011.09.002 .
Ahn, J. H.; Jang, J. E.; Oh, C. G.; Ihm, S. K.; Cortez, J.; Sherrington, D. C . Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-Type hyper-cross-linked resins . Macromolecules , 2006 . 39 627 -632 . DOI:10.1021/ma051152nhttp://doi.org/10.1021/ma051152n .
Liu, Y.; Fan, X. L.; Jia, X. K.; Zhang, B. L.; Zhang, H. P.; Zhang, A. B.; Zhang, Q. Y . Hypercrosslinked polymers: controlled preparation and effective adsorption of aniline . J. Mater. Sci. , 2016 . 51 8579 -8592 . DOI:10.1007/s10853-016-0118-yhttp://doi.org/10.1007/s10853-016-0118-y .
Dawson, R.; Stevens, L. A.; Drage, T. C.; Snape, C. E.; Smith, M. W.; Adams, D. J.; Cooper, A. I . Porous organic alloys . J. Am. Chem. Soc. , 2012 . 134 10741 -10744 . DOI:10.1021/ja301926hhttp://doi.org/10.1021/ja301926h .
Law, R. V.; Sherrington, D. C.; Snape, C. E . Solid-state 13C MAS NMR studies of hyper-cross-linked polystyrene resins . Macromolecules , 1996 . 29 6284 -6293 . DOI:10.1021/ma951606ohttp://doi.org/10.1021/ma951606o .
Liu, F.; Liang, W. D.; Wang, C. J.; He, J. X.; Xiao, C. H.; Zhu, Z. Q.; Sun, H. X.; Li, A . Superwetting monolithic hypercrosslinked polymers nanotubes with high salt-resistance for efficient solar steam generation . Sol. Energy Mater Sol. Cells , 2021 . 221 110913 DOI:10.1016/j.solmat.2020.110913http://doi.org/10.1016/j.solmat.2020.110913 .
Yan, Q.; Bai, Y. W.; Meng, Z.; Yang, W. T . Precipitation polymerization in acetic acid: synthesis of monodisperse cross-linked poly(divinylbenzene) microspheres . J. Phys. Chem. B , 2008 . 112 6914 -6922 . DOI:10.1021/jp711324ahttp://doi.org/10.1021/jp711324a .
Li, H. Y.; Meng, B.; Mahurin, S. M.; Chai, S. H.; Nelson, K. M.; Baker, D. C.; Liu, H. L.; Dai, S . Carbohydrate based hyper-crosslinked organic polymers with -OH functional groups for CO2 separation . J. Mater. Chem. A , 2015 . 3 20913 -20918 . DOI:10.1039/C5TA03213Jhttp://doi.org/10.1039/C5TA03213J .
Robshaw, T. J.; Jamesa, A. M.; Hammonda, D. B.; Reynolds, J.; Dawsona, R.; Ogden, M. D . Calcium-loaded hydrophilic hypercrosslinked polymers for extremely high defluoridation capacity via multiple uptake mechanisms . J. Mater. Chem. A , 2020 . 8 7130 -7144 . DOI:10.1039/C9TA12285Khttp://doi.org/10.1039/C9TA12285K .
Wu, Y.; Li, L. G.; Yang, W. Y.; Feng, S. Y.; Liu, H. Z . Hybrid nanoporous polystyrene derived from cubic octavinylsilsesquioxane and commercial polystyrene via the Friedel-Crafts reaction . RSC Adv. , 2015 . 5 12987 -12993 . DOI:10.1039/C4RA14830Dhttp://doi.org/10.1039/C4RA14830D .
Yang, Z. Z.; Fu, S. Q.; Yan, C.; Yao, J. S.; Liu, W. L . Hyper-cross-linked polymers based on triphenylsilane for hydrogen storage and water treatment . J. Macromol. Sci. A , 2018 . 56 162 -169. .
Gao, H.; Ding, L.; Bai, H.; Liu, A. H.; Li, S. Z.; Li, L . Pitch-based hyper-cross-linked polymers with high performance for gas adsorption . J. Mater. Chem. A , 2016 . 4 16490 -16498 . DOI:10.1039/C6TA07033Ghttp://doi.org/10.1039/C6TA07033G .
0
Views
8
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621