a.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
b.School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
Lixiuting@dhu.edu.cn (X.T.L.)
qhzhang@dhu.edu.cn (Q.H.Z.)
Scan for full text
Yu-Ting Fang, Feng Gan, Jie Dong, et al. Preparation of High-performance Polyimide Fibers with Wholly Rigid Structures Containing Benzobisoxazole Moieties. [J]. Chinese Journal of Polymer Science 40(3):280-289(2022)
Yu-Ting Fang, Feng Gan, Jie Dong, et al. Preparation of High-performance Polyimide Fibers with Wholly Rigid Structures Containing Benzobisoxazole Moieties. [J]. Chinese Journal of Polymer Science 40(3):280-289(2022) DOI: 10.1007/s10118-022-2666-8.
In this work, a fully rigid coplanar symmetric heterocyclic unit was introduced into the rigid polyimide macromolecular backbone structure to prepare high-performance polyimide fibers. The novel co-polyimide (co-PI) fibers based on 3,3’,4,4’-biphenyltetracarboxylic anhydride (BPDA),p,-phenylenediamine (PDA) and 2,6-(4,4’-diaminodiphenyl) benzo[1,2-,d,:5,4-,d,'] bisoxazole (PBOA) were fabricated ,via, a two-step wet-spinning method. The effects of benzobisoxazole moiety on spinnability, aggregation structure, and mechanical properties of fibers were systematically discussed. The detailed structural analysis revealed that the well-defined aggregation structures of co-PI fibers were obtained from initial amorphous structure when post hot-drawing temperature was higher than 460 °C under proper drawing ratio, and the incorporation PBOA into BPDA-PDA structures produced more compact structural co-PI fiber than homo BPDA-PDA fiber. The BPDA-PDA/PBOA co-PI fibers exhibited optimum tensile strength and modulus of 2.65 and 103 GPa, which increased by 182% and 84% compared to the homo BPDA-PDA fiber, respectively.
Polyimide fiberBenzobisoxazoleCo-polymerizationMicrostructureMechanical properties
Yang, G.; Park, M.; Park, S. J . Recent progresses of fabrication and characterization of fibers-reinforced composites: a review . Compos. Commun. , 2019 . 14 34 -42 . DOI:10.1016/j.coco.2019.05.004http://doi.org/10.1016/j.coco.2019.05.004 .
Kumar, V.; Yokozeki, T.; Karch, C.; Hassen, A. A.; Hershey, C. J.; Kim, S.; Lindahl, J. M.; Barnes, A.; Bandari, Y. K.; Kunc, V . Factors affecting direct lightning strike damage to fiber reinforced composites: a review . Compos. B Eng. , 2020 . 183 107688 DOI:10.1016/j.compositesb.2019.107688http://doi.org/10.1016/j.compositesb.2019.107688 .
Ali, B.; Qreshi, L. A.; Kurda, R . Environmental and economic benefits of steel, glass, and polypropylene fiber reinforced cement composite application in jointed plain concrete pavement . Compos. Commun. , 2020 . 22 100437 DOI:10.1016/j.coco.2020.100437http://doi.org/10.1016/j.coco.2020.100437 .
Li, F.; Huang, L.; Shi, Y.; Jin, X.; Wu, Z.; Shen, Z.; Chuang, K.; Lyon, R. E.; Harris, F. W.; Cheng, S. Z. D . Thermal degradation mechanism and thermal mechanical properties of two high performance aromatic polyimide fibers . J. Macromol. Sci. , 1999 . 38 107 -122 . DOI:10.1080/00222349908248109http://doi.org/10.1080/00222349908248109 .
Zhang, Q. H.; Dai, M.; Ding, M. X.; Chen, D. J.; Gao, L. X . Mechanical properties of BPDA-ODA polyimide fibers . Eur. Polym. J. , 2004 . 40 2487 -2493 . DOI:10.1016/j.eurpolymj.2004.06.020http://doi.org/10.1016/j.eurpolymj.2004.06.020 .
Jiang, S.; Uch, B.; Agarwal, S.; Greiner, A . Ultralight, thermally insulating, compressible polyimide fiber assembled sponges . ACS Appl. Mater. Interfaces , 2017 . 9 32308 -32315 . DOI:10.1021/acsami.7b11045http://doi.org/10.1021/acsami.7b11045 .
Zhao, Y.; Feng, T.; Li, G.; Liu, F.; Dai, X.; Dong, Z.; Qiu, X . Synthesis and properties of novel polyimide fibers containing phosphorus groups in the main chain . RSC Adv. , 2016 . 6 42482 -42494 . DOI:10.1039/C6RA02344Dhttp://doi.org/10.1039/C6RA02344D .
Dong, J.; Yang, C.; Cheng, Y.; Wu, T.; Zhao, X.; Zhang, Q . Facile method for fabricating low dielectric constant polyimide fibers with hyperbranched polysiloxane . J. Mater. Chem. C , 2017 . 5 2818 -2825 . DOI:10.1039/C7TC00196Ghttp://doi.org/10.1039/C7TC00196G .
Yang, C.; Dong, J.; Fang, Y.; Ma, L.; Zhao, X.; Zhang, Q . Preparation of novel low-κ polyimide fibers with simultaneously excellent mechanical properties, UV-resistance and surface activity using chemically bonded hyperbranched polysiloxane . J. Mater. Chem. C , 2018 . 6 1229 -1238 . DOI:10.1039/C7TC05153Khttp://doi.org/10.1039/C7TC05153K .
Chen, F.; Zhai, L.; Yang, H.; Zhao, S.; Wang, Z.; Gao, C.; Zhou, J.; Liu, X.; Yu, Z.; Qin, Y . Unparalleled armour for aramid fiber with excellent UV resistance in extreme environment . Adv. Sci. , 2021 . 8 2004171 DOI:10.1002/advs.202004171http://doi.org/10.1002/advs.202004171 .
Liu, Z.; Zhang, J.; Tang, L.; Zhou, Y.; Lin, Y.; Wang, R.; Kong, J.; Tang, Y.; Gu, J . Improved wave-transparent performances and enhanced mechanical properties for fluoride-containing PBO precursor modified cyanate ester resins and their PBO fibers/cyanate ester composites . Compos. B Eng. , 2019 . 178 107466 DOI:10.1016/j.compositesb.2019.107466http://doi.org/10.1016/j.compositesb.2019.107466 .
Gonzalez, G. M.; Ward, J.; Song, J.; Swana, K.; Fossey, S. A.; Palmer, J. L.; Zhang, F. W.; Lucian, V. M.; Cera, L.; Zimmerman, J. F . Para-aramid fiber sheets for simultaneous mechanical and thermal protection in extreme environments . Matter , 2020 . 3 742 -758 . DOI:10.1016/j.matt.2020.06.001http://doi.org/10.1016/j.matt.2020.06.001 .
Dong, J.; Yin, C.; Luo, W.; Zhang, Q . Synthesis of organ-soluble copolyimides by one-step polymerization and fabrication of high performance fibers . J. Mater. Sci. , 2013 . 48 7594 -7602 . DOI:10.1007/s10853-013-7576-2http://doi.org/10.1007/s10853-013-7576-2 .
Niu, H.; Huang, M.; Qi, S.; Han, E.; Tian, G.; Wang, X.; Wu, D . High-performance copolyimide fibers containing quinazolinone moiety: preparation, structure and properties . Polymer , 2013 . 54 1700 -1708 . DOI:10.1016/j.polymer.2013.01.047http://doi.org/10.1016/j.polymer.2013.01.047 .
Luo, L.; Wang, Y.; Zhang, J.; Huang, J.; Feng, Y.; Peng, C.; Wang, X.; Liu, X . The effect of asymmetric heterocyclic units on the microstructure and the improvement of mechanical properties of three rigid-rod co-PI fibers . Macromol. Mater. Eng. , 2016 . 301 853 -863 . DOI:10.1002/mame.201600113http://doi.org/10.1002/mame.201600113 .
Dai, X.; Bao, F.; Jiao, L.; Yao, H.; Ji, X.; Qiu, X.; Men, Y . High-performance polyimide copolymer fibers derived from 5-anino-2-(2-hydroxy-4-aminobenzene)-benzoxazole: preparation, structure and properties . Polymer , 2018 . 150 254 -266 . DOI:10.1016/j.polymer.2018.06.079http://doi.org/10.1016/j.polymer.2018.06.079 .
Sikkeama, D. J . Design, synthesis and properties of a novel rigid rod polymer, PIPD or ‘M5’: high modulus and tenacity fibres with substantial compressive strength . Polymer , 1998 . 39 5981 -5986 . DOI:10.1016/S0032-3861(97)10289-0http://doi.org/10.1016/S0032-3861(97)10289-0 .
Tashvigh, A. A.; Chung,T . Robust polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltration . J. Membr. Sci. , 2019 . 572 580 -587 . DOI:10.1016/j.memsci.2018.11.048http://doi.org/10.1016/j.memsci.2018.11.048 .
Park, S. K.; Farris, R. J . Dry-jet wet spinning of aromatic polyamic acid fiber using chemical imidization . Polymer , 2001 . 42 10087 -10093 . DOI:10.1016/S0032-3861(01)00576-6http://doi.org/10.1016/S0032-3861(01)00576-6 .
Gan, F.; Dong, J.; Tang, M.; Li, X.; Li, M.; Zhao, X.; Zhang, Q . High-tenacity and high-modulus polyimide fibers containing benzimidazole and pyrimidine units . React. Funct. Polym. , 2019 . 141 112 -122 . DOI:10.1016/j.reactfunctpolym.2019.05.005http://doi.org/10.1016/j.reactfunctpolym.2019.05.005 .
Luo, L.; Yao, J.; Wang, X.; Li, K.; Huang, J.; Li, B.; Wang, H.; Feng, Y.; Liu, X . The evolution of macromolecular packing and sudden crystallization in rigid-rod polyimide via effect of multiple H-bonding on charge transfer (CT) interactions . Polymer , 2014 . 55 4258 -4269 . DOI:10.1016/j.polymer.2014.06.080http://doi.org/10.1016/j.polymer.2014.06.080 .
Gao, G.; Dong, L.; Liu, X.; Ye, G.; Gu, Y . Structure and properties of novel PMDA/ODA/PABZ polyimide fibers . Polym. Eng. Sci. , 2008 . 48 912 -917 . DOI:10.1002/pen.21036http://doi.org/10.1002/pen.21036 .
Bao, F.; Dai, X.; Dong, Z.; Yang, X.; Yao, H.; Li, G.; Qiu, X . Fabrication and properties of polyimide copolymer fibers containing pyrimidine and amide units . J. Mater. Sci. , 2020 . 55 11763 -11778 . DOI:10.1007/s10853-020-04830-0http://doi.org/10.1007/s10853-020-04830-0 .
Zhang, M.; Niu, H.; Chang, J.; Ge, Q.; Cao, L.; Wu, D . High-performance fibers based on copolyimides containing benzimidazole and ether moieties: molecular packing, morphology, hydrogen-bonding interactions and properties . Polym. Eng. Sci. , 2015 . 55 2615 -2625 . DOI:10.1002/pen.24154http://doi.org/10.1002/pen.24154 .
Zhuang, Y.; Liu, X.; Gu, Y . Molecular packing and properties of poly(benzoxazole-benzimidazole-imide) copolymers . Polym. Chem. , 2012 . 3 1517 -1525 . DOI:10.1039/c2py20074khttp://doi.org/10.1039/c2py20074k .
Cheng, Y.; Dong, J.; Yang, C.; Wu, T.; Zhao, X.; Zhang, Q . Synthesis of poly(benzobisoxazole-co-imide) and fabrication of high-performance fibers . Polymer , 2017 . 133 50 -59 . DOI:10.1016/j.polymer.2017.11.015http://doi.org/10.1016/j.polymer.2017.11.015 .
Wakita, J.; Jin, S.; Shin, T . J.; Ree, M.; Ando, S. Analysis of molecular aggregation structures of fully aromatic and semialiphatic polyimide films with synchrotron grazing incidence wide-angle X-ray scattering . Macromolecules , 2010 . 43 1930 -1941 . DOI:10.1021/ma902252yhttp://doi.org/10.1021/ma902252y .
Cheng, S. Z. D.; Wu, Z.; Eashoo, M.; Hsu, S. L. C.; Harris, F. W . A high-performace aromatic polyimide fibre: 1. Structure, properties and mechanical-history dependence . Polymer , 1990 . 32 1803 -1810. .
Dong, J.; Yin, C.; Lin, J.; Zhang, D.; Zhang, Q . Evolution of the microstructure and morphology of polyimide fibers during heat-drawing process . RSC Adv. , 2014 . 4 44666 -44673 . DOI:10.1039/C4RA07129Hhttp://doi.org/10.1039/C4RA07129H .
Yin, C.; Dong, J.; Tan, W.; Lin, J.; Chen, D.; Zhang, Q . Strain-induced crystallization of polyimide fibers containing 2-(4-aminophenyl)-5-aminobenzimidazole moiety . Polymer , 2015 . 75 178 -186 . DOI:10.1016/j.polymer.2015.08.025http://doi.org/10.1016/j.polymer.2015.08.025 .
Yan, X.; Zhang, M.; Qi, S.; Tian, G.; Niu, H.; Wu, D . A high-performance aromatic co-polyimide fiber: structure and property relationship during gradient thermal annealing . J. Mater. Sci. , 2017 . 53 2193 -2207. .
Yang, W.; Liu, F.; Zhang, J.; Zhang, E.; Qiu, X.; Ji, X . Influence of thermal treatment on the structure and mechanical properties of one aromatic BPDA-PDA polyimide fiber . Eur. Polym. J. , 2017 . 96 429 -442 . DOI:10.1016/j.eurpolymj.2017.09.015http://doi.org/10.1016/j.eurpolymj.2017.09.015 .
Diaham, S.; Locatelli, M. L.; Khazak, R. High performance polymers-polyimides based- from chemistry to applications, 2012, DOI:10.5772/53994 10.5772/53994.
Thu1nemann, A. F . Microvoids in polyacrylonitrile fibers: a small-angle X-ray scattering study . Macromolecules , 2000 . 33 1848 -1852 . DOI:10.1021/ma991427xhttp://doi.org/10.1021/ma991427x .
Jiang, X.; Xiao, X.; Dong, J.; Xu, X.; Zhao, X.; Zhang, Q . Effects of non-TR-able codiamines and rearrangement conditions on the chain packing and gas separation performance of thermally rearranged poly(benzoxazole-co-imide) membranes . J. Membr. Sci. , 2018 . 564 605 -616 . DOI:10.1016/j.memsci.2018.07.068http://doi.org/10.1016/j.memsci.2018.07.068 .
Huang, S. B.; Jiang, Z. Y.; Ma, X. Y.; Qiu, X. P.; Men, Y. F.; Gao, L. X.; Ding, M. X . Properties, morphology and structure of BPDA/PPD/ODA polyimide fibres . Plast. Rubber Compos. , 2013 . 42 407 -415 . DOI:10.1179/1743289811Y.0000000053http://doi.org/10.1179/1743289811Y.0000000053 .
Fang, Y.; Dong, J.; Zhang, D.; Zhao, X.; Zhang, Q . Preparation of high-performance polyimide fibers via a partial pre-imidization process . J. Mater. Sci. , 2018 . 54 3619 -3631. .
Yin, C.; Dong, J.; Li, Z.; Zhang, Z.; Zhang, Q . Ternary phase diagram and fiber morphology for nonsolvent/DMAc/polyamic acid systems . Polym. Bull. , 2015 . 72 1039 -1054 . DOI:10.1007/s00289-015-1324-5http://doi.org/10.1007/s00289-015-1324-5 .
Ree, M.; Kim, K.; Woo, S. H.; Chang, H . Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities . J. Appl. Phys. , 1997 . 81 698 -708 . DOI:10.1063/1.364210http://doi.org/10.1063/1.364210 .
Wu, T.; Chvalun, S.; Biackwell, J . X-ray analysis and molecular modelling of the structure of aromatic copolyimides . Polymer , 1995 . 36 2123 -2131 . DOI:10.1016/0032-3861(95)95287-Bhttp://doi.org/10.1016/0032-3861(95)95287-B .
Yi, X.; Gao, Y.; Zhang, M.; Zhang, C.; Wang, Q.; Liu, G.; Dong, X.; Wu, D.; Men, Y.; Wang, D . Tensile modulus enhancement and mechanism of polyimide fibers by post-thermal treatment induced microvoid evolution . Eur. Polym. J. , 2017 . 91 232 -241 . DOI:10.1016/j.eurpolymj.2017.03.063http://doi.org/10.1016/j.eurpolymj.2017.03.063 .
Ran, S.; Burger, C.; Fang, D.; Zong, X.; Chu, B.; Hsiao, B. S.; Ohta, Y.; YAbuki, K.; Cuniff, P. M . A synchrotron WAXD study on the early stages of coagulation during PBO fiber spinning . Macromolecules , 2002 . 35 9851 -9853 . DOI:10.1021/ma021459bhttp://doi.org/10.1021/ma021459b .
Yu, J.; Wang, R.; Yang, C.; Chen, S.; Tian, F.; Wang, H.; Zhang, Y . Morphology and structure changes of aromatic copolysulfonamide fibers heat-drawn at various temperatures . Polym. Int. , 2014 . 63 2084 -2090 . DOI:10.1002/pi.4747http://doi.org/10.1002/pi.4747 .
0
Views
7
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution