
a.School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
b.College of Chemistry, Nankai University, Tianjin 300071, China
luyan@tjut.edu.cn
Scan for full text
Ze-Wang He, Qiang Zhang, Chen-Xi Li, et al. Synthesis of Thieno[3,4-
Ze-Wang He, Qiang Zhang, Chen-Xi Li, et al. Synthesis of Thieno[3,4-
Three alternating conjugated polymers, namely PFTP, PCzTP, and PSiTP, which combine a thieno[3,4-,b,]pyrazine (TP) unit with different benzene-based donor units such as 9,9-dioctylfluorene, 9-heptadecyl-9,H,-carbazole and 5,5-dioctyl-5,H,-dibenzo[,b,d,]silole, were synthesized in good yield (,>,85%) and high molecular weight up to,M,n,=5.82×10,4,via, direct arylation polymerization (DArP). All the resultant polymers exhibit moderate bandgap of about 1.80 eV and strong deep red/near-infrared emitting in the solid state. Among them, the PSiTP-based electroluminescence (EL) devices with an architecture of ITO/PEDOT:PSS/PTAA/emitting layer/TPBi/LiF/Al give the best performance with a maximum luminance of 2543 cd/m,2, at 478 mA/cm,2,. This work expands the application scope of high-performance conjugated polymers which can be synthesized by DArP.
Thieno[34-b]pyrazine Alternating D-A structureDirect arylation polymerizationConjugated polymerOrganic light-emitting diodes
Zampetti, A.; Minotto, A.; Cacialli, F . Near-infrared (NIR) organic light-emitting diodes (OLEDs): challenges and opportunities . Adv. Funct. Mater. , 2019 . 29 1807623 DOI:10.1002/adfm.201807623http://doi.org/10.1002/adfm.201807623 .
Ouali, M. I.; Dumur, F . Recent advances on metal-based near-infrared and infrared emitting OLEDs . Molecules , 2019 . 24 1412 DOI:10.3390/molecules24071412http://doi.org/10.3390/molecules24071412 .
Huang, J.; Liu, Q.; Zou, J.; Zhu, X.; Li, A.; Li, J.; Wu, S.; Peng, J.; Cao, Y.; Xia, R.; Bradley, D. D. C.; Roncali, J . Electroluminescence and laser emission of soluble pure red fluorescent molecular glasses based on dithienylbenzothiadiazole . Adv. Funct. Mater. , 2009 . 19 2978 -2986 . DOI:10.1002/adfm.200900365http://doi.org/10.1002/adfm.200900365 .
Qin, W.; Ding, D.; Liu, J.; Yuan, W.; Hu, Y.; Liu, B.; Tang, B . Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications . Adv. Funct. Mater. , 2012 . 22 771 -779 . DOI:10.1002/adfm.201102191http://doi.org/10.1002/adfm.201102191 .
Stender, B.; Völker, S . F.; Lambert, C.; Pflaum, J. Optoelectronic processes in squaraine dye-doped OLEDs for emission in the near-infrared . Adv. Mater. , 2013 . 25 2943 -2947 . DOI:10.1002/adma.201204938http://doi.org/10.1002/adma.201204938 .
Jiang, J.; Xu, Z.; Zhou, J.; Hanif, M.; Jiang, Q.; Hu, D.; Zhao, R.; Wang, C.; Liu, L.; Ma, D.; Ma, Y.; Cao, Y . Enhanced π conjugation and donor/acceptor interactions in D-A-D type emitter for highly efficient near-infrared organic light-emitting diodes with an emission peak at 840 nm . Chem. Mater. , 2019 . 31 6499 -6505 . DOI:10.1021/acs.chemmater.8b04894http://doi.org/10.1021/acs.chemmater.8b04894 .
Lombeck, F.; Di, D.; Yang, L.; Meraldi, L.; Athanasopoulos, S.; Credgington, D.; Sommer, M.; Friend, R. H . PCDTBT: from polymer photovoltaics to light-emitting diodes by side-chain-controlled luminescence . Macromolecules , 2016 . 49 9382 -9387 . DOI:10.1021/acs.macromol.6b02216http://doi.org/10.1021/acs.macromol.6b02216 .
Murto, P.; Minotto, A.; Zampetti, A.; Xu, X.; Andersson, M . R.; Cacialli, F.; Wang, E. Triazolobenzothiadiazole-based copolymers for polymer light-emitting diodes: pure near-infrared emission via optimized energy and charge transfer . Adv. Opt. Mater. , 2016 . 4 2068 -2076 . DOI:10.1002/adom.201600483http://doi.org/10.1002/adom.201600483 .
Sun, M.; Jiang, X.; Liu, W.; Zhu, T.; Huang, F.; Cao, Y . Selenophene and fluorene based narrow band gap copolymers with Eg = 1.41 eV for near infrared polymer light emitting diodes . Syn. Met. , 2012 . 162 1406 -1410 . DOI:10.1016/j.synthmet.2012.06.006http://doi.org/10.1016/j.synthmet.2012.06.006 .
Zhang, Q. T.; Tour, J. M . Alternating donor/acceptor repeat units in polythiophenes. Intramolecular charge transfer for reducing band gaps in fully substituted conjugated polymers . J. Am. Chem. Soc. , 1998 . 120 5355 -5362 . DOI:10.1021/ja972373ehttp://doi.org/10.1021/ja972373e .
Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B.; Ma, Y . Highly efficient near-infrared organic light-emitting diode based on a butterfly-shaped donor-acceptor chromophore with strong solid-state fluorescence and a large proportion of radiative exciton . Angew. Chem. Int. Ed. , 2014 . 53 2119 -2123 . DOI:10.1002/anie.201308486http://doi.org/10.1002/anie.201308486 .
Ellinger, S.; Graham, K. R.; Shi, P.; Farley, R. T.; Steckler, T. T.; Brookins, R. N.; Taranekar, P.; Mei, J.; Padilha, L. A.; Ensley, T. R.; Hu, H.; Webster, S.; Hagan, D. J.; Stryland, E. W. V.; Schanze, K. S.; Reynolds, J. R . Donor-acceptor-donor-based π-conjugated oligomers for nonlinear optics and near-IR emission . Chem. Mater. , 2011 . 23 3805 -3817 . DOI:10.1021/cm201424ahttp://doi.org/10.1021/cm201424a .
Parker, T. C.; Patel, D. G.; Moudgil, K.; Barlow, S.; Risko, C.; Bredas, J. L.; Reynolds, J. R.; Marder, S. R . Heteroannulated acceptors based on benzothiadiazole . Mater. Horiz. , 2015 . 2 22 -36 . DOI:10.1039/C4MH00102Hhttp://doi.org/10.1039/C4MH00102H .
Liu, C.; Wang, K.; Gong, X.; Heeger, A. J . Low bandgap semiconducting polymers for polymeric photovoltaics . Chem. Soc. Rev. , 2016 . 45 4825 -4846 . DOI:10.1039/C5CS00650Chttp://doi.org/10.1039/C5CS00650C .
Zhang, Z.; Wang, J . Structures and properties of conjugated donor-acceptor copolymers for solar cell applications . J. Mater. Chem. , 2012 . 22 4178 -4187 . DOI:10.1039/c2jm14951fhttp://doi.org/10.1039/c2jm14951f .
Rasmussen, S. C.; Schwiderski, R. L.; Mulholland, M. E . Thieno[3,4-b]pyrazines and their applications to low band gap organic materials . Chem. Commun. , 2011 . 47 11394 -11410 . DOI:10.1039/c1cc12754chttp://doi.org/10.1039/c1cc12754c .
Wen, L.; Nietfeld, J. P.; Amb, C. M.; Rasmussen, S. C . Synthesis and characterization of new 2,3-disubstituted thieno[3,4-b]pyrazines: tunable building blocks for low band gap conjugated materials . J. Org. Chem. , 2008 . 73 8529 -8536 . DOI:10.1021/jo801632zhttp://doi.org/10.1021/jo801632z .
Wen, L.; Heth, C. L.; Rasmussen, S. C . Thieno[3,4-b]pyrazine-based oligothiophenes: simple models of donor-acceptor polymeric materials . Phys. Chem. Chem. Phys. , 2014 . 16 7231 -7240 . DOI:10.1039/C4CP00312Hhttp://doi.org/10.1039/C4CP00312H .
Kitamura, C.; Tanaka, S.; Yamashita, Y . Synthesis of new narrow bandgap polymers based on 5,7-di(2-thienyl) thieno[3,4-b]pyrazine and its derivatives . Chem. Commun. , 1994 . 13 1585 -1586. .
Espinet, P.; Echavarren, A. M . The mechanisms of the Stille reaction . Angew. Chem. Int. Ed. , 2004 . 43 4704 -4734. .
Petersen, M. H.; Hagemann, O.; Nielsen, K. T.; Jrgensen, M.; Krebs, F. C . Low band gap poly-thienopyrazines for solar cells-introducing the 11-thia-9,13-diaza-cyclopenta[b] triphenylenes . Sol. Energy Mater. Sol. Cells , 2007 . 91 996 -1009 . DOI:10.1016/j.solmat.2007.02.022http://doi.org/10.1016/j.solmat.2007.02.022 .
Cheng, Y. J.; Luh, T. Y . Synthesizing optoelectronic heteroaromatic conjugated polymers by cross-coupling reactions . J. Organomet. Chem. , 2004 . 689 4137 -4148 . DOI:10.1016/j.jorganchem.2004.08.011http://doi.org/10.1016/j.jorganchem.2004.08.011 .
Wu, W. C. Liu, C. L.; Chen, W. C . Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications . Polymer , 2006 . 47 527 -538 . DOI:10.1016/j.polymer.2005.11.058http://doi.org/10.1016/j.polymer.2005.11.058 .
Miyaura, N.; Suzuki, A . Palladium-catalyzed cross-coupling reactions of organoboron compounds . Chem. Rev. , 1995 . 95 2457 -2487 . DOI:10.1021/cr00039a007http://doi.org/10.1021/cr00039a007 .
Abdo, N. I.; EI-Shehawy, A. A.; El-Barbary, A. A.; Lee, J. S . Palladium-catalyzed direct C-H arylation of thieno[3,4-b]pyrazines: synthesis of advanced oligomeric and polymeric materials . Eur. J. Org. Chem. , 2012 . 2012 5540 -5551 . DOI:10.1002/ejoc.201200769http://doi.org/10.1002/ejoc.201200769 .
Culver, E. W.; Anderson, T. E.; Navarrete, J. T. L.; Delgado, M. C. R.; Rasmussen, S. C . Poly(thieno[3,4-b]pyrazine-alt-2,1,3-benzothiadiazole)s: a new design paradigm in low band gap polymers . ACS Macro Lett. , 2018 . 7 1215 -1219 . DOI:10.1021/acsmacrolett.8b00682http://doi.org/10.1021/acsmacrolett.8b00682 .
Anderson, T. E.; Culver, E. W.; Almyahi, F.; Dastoor, P. C.; Rasmussen, S. C . Poly(2,3-dihexylthieno[3,4-b]pyrazine-alt-2,3-dihexylquinoxaline): processible, low-bandgap, ambipolar-acceptor frameworks via direct arylation polymerization . Synlett , 2018 . 29 2542 -2546 . DOI:10.1055/s-0037-1610299http://doi.org/10.1055/s-0037-1610299 .
Pouliot, J. R.; Grenier, F.; Blaskovits, J . T.; Beaupré, S.; Leclerc, M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis . Chem. Rev. , 2016 . 116 14225 -14274 . DOI:10.1021/acs.chemrev.6b00498http://doi.org/10.1021/acs.chemrev.6b00498 .
Gobalasingham, N. S.; Thompson, B. C . Direct arylation polymerization: a guide to optimal conditions for effective conjugated polymers . Prog. Polym. Sci. , 2018 . 83 135 -201 . DOI:10.1016/j.progpolymsci.2018.06.002http://doi.org/10.1016/j.progpolymsci.2018.06.002 .
Phan, S.; Luscombe, C. K . Recent advances in the green, sustainable synthesis of semiconducting polymers . Trends Chem. , 2019 . 1 670 -681 . DOI:10.1016/j.trechm.2019.08.002http://doi.org/10.1016/j.trechm.2019.08.002 .
Blaskovits, J. T.; Leclerc, M . C-H activation as a shortcut to conjugated polymer synthesis . Macromol. Rapid Commun. , 2018 . 40 1800512 .
Wakioka, M.; Kitano, Y.; Ozawa, F . A highly efficient catalytic system for polycondensation of 2,7-dibromo-9,9-dioctylfluorene and 1,2,4,5-tetrafluorobenzene via direct arylation . Macromolecules , 2013 . 46 370 -374 . DOI:10.1021/ma302558zhttp://doi.org/10.1021/ma302558z .
Wen, L.; Duck, B. C.; Dastoor, P. C.; Rasmussen, S. C . Poly(2,3-dihexylthieno[3,4-b]pyrazine) via GRIM polymerization: simple preparation of a solution processable, low-band-gap conjugated polymer . Macromolecules , 2008 . 41 4576 -4578 . DOI:10.1021/ma801057shttp://doi.org/10.1021/ma801057s .
Tamura, H.; Yamanaka, S.; Matsuda, K.; Konishi, T . Synthesis of low bandgap π-conjugated polymer containing thienopyrazine in the polymer backbone . Jpn. J polym. Sci. , 1998 . 55 277 -283. .
Karsten, B. P.; Viani, L.; Gierschner, J.; Cornil, J.; Janssen, R. A. J . On the origin of small band gaps in alternating thiophene-thienopyrazine oligomers . J. Phys Chem. A , 2009 . 113 10343 -10350 . DOI:10.1021/jp9050148http://doi.org/10.1021/jp9050148 .
Wang, E.; Li, C.; Mo, Y.; Zhang, Y.; Ma, G.; Shi, W.; Peng, J.; Yang, W.; Cao, Y . Poly(3,6-silafluorene-co-2,7-fluorene)-based high-efficiency and color-pure blue light-emitting polymers with extremely narrow band-width and high spectral stability . J. Mater. Chem. , 2006 . 16 4133 -4140 . DOI:10.1039/b609250khttp://doi.org/10.1039/b609250k .
Jenekhe, S. A.; Lu, L.; Alam, M. M . New conjugated polymers with donor-acceptor architectures: synthesis and photophysics of carbazole-quinoline and phenothiazine-quinoline copolymers and oligomers exhibiting large intramolecular charge transfer . Macromolecules , 2001 . 34 7315 -7324 . DOI:10.1021/ma0100448http://doi.org/10.1021/ma0100448 .
Zhu, Y.; Champion, R. D.; Jenekhe, S. A . Conjugated donor-acceptor copolymer semiconductors with large intramolecular charge transfer: synthesis, optical properties, electrochemistry, and field effect carrier mobility of thienopyrazine-based copolymers . Macromolecules , 2006 . 39 8712 -8719 . DOI:10.1021/ma061861ghttp://doi.org/10.1021/ma061861g .
Yang, J.; Jiang, C.; Zhang, Y.; Yang, R.; Yang, W.; Hou, Q.; Cao, Y . High-efficiency saturated red emitting polymers derived from fluorene and naphthoselenadiazole . Macromolecules , 2004 . 37 1211 -1218 . DOI:10.1021/ma035743uhttp://doi.org/10.1021/ma035743u .
Yen, W. C.; Pal, B.; Yang, J. S.; Hung, Y. C.; Lin, S. T.; Chao, C. Y.; Su, W. F . Synthesis and characterization of low bandgap copolymers based on indenofluorene and thiophene derivative . J. Polym. Sci., Part A: Polym. Chem. , 2009 . 47 5044 -5056 . DOI:10.1002/pola.23557http://doi.org/10.1002/pola.23557 .
Khammultri, P.; Kitisriworaphan, W.; Chasing, P.; Namuangruk, S.; Sudyoadsuka, T.; Promarak, V. Efficient white light-emitting polymers from dual thermally activated delayed fluorescence chromophores for non-doped solution processed white electroluminescent devices. Polym. Chem. 2021, 12, 1030-1039.
Deng, W.; Qin, Y.; Lin, S.; Song, D.; Xu, S.; Wang, H.; Dai, W.; Luo, X . Side chain triphenylamine-based conjugated polymers for the preparation of efficient heterojunction solar cells . J. Mater. Sci. Mater. El. , 2019 . 30 2235 -2245 . DOI:10.1007/s10854-018-0495-xhttp://doi.org/10.1007/s10854-018-0495-x .
Zhan, X. W.; Risko, C.; Amy, F.; Chan, C.; Zhao, W.; Barlow, S.; Kahn, A.; Brédas, J. L.; Marder, S. R . Electron affinities of 1,1-diaryl-2,3,4,5-tetraphenylsiloles: direct measurements and comparison with experimental and theoretical estimates . J. Am. Chem. Soc. , 2005 . 127 9021 -9029 . DOI:10.1021/ja051139ihttp://doi.org/10.1021/ja051139i .
Udagawa, K.; Sasabe, H.; Cai, C.; Kido, J . Low-driving-voltage blue phosphorescent organic light-emitting devices with external quantum efficiency of 30% . Adv. Mater. , 2014 . 26 5062 -5066 . DOI:10.1002/adma.201401621http://doi.org/10.1002/adma.201401621 .
Li, W.; Li, J.; Liu, D.; Li, D.; Wang, F . Cyanopyridine based bipolar host materials for green electrophosphorescence with extremely low turn-on voltages and high power efficiencies . ACS Appl. Mater. Interfaces , 2016 . 8 21497 -21504 . DOI:10.1021/acsami.6b04395http://doi.org/10.1021/acsami.6b04395 .
Beaupré, S.; Boudreault, P. L. T.; Leclerc, M . Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives . Adv. Mater. , 2010 . 22 E6 -E27 . DOI:10.1002/adma.200903484http://doi.org/10.1002/adma.200903484 .
Wang, E. G.; Li, C.; Zhuang, W. L.; Peng, J. B.; Cao, Y . High-efficiency red and green light-emitting polymers based on a novel wide bandgap poly(2,7-silafluorene) . J. Mater. Chem. , 2008 . 18 797 -801 . DOI:10.1039/b716607ahttp://doi.org/10.1039/b716607a .
0
Views
4
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
 京公网安备11010802024621