
a.Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
b.CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
c.University of Chinese Academy of Sciences, Beijing 100049, China
d.School of Materials Science & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
gmliu@iccas.ac.cn
Scan for full text
Chun-Bo Zhang, Lei Wang, Bo Yang, et al. Stress-induced Solid-Solid Crystal Transition in
Chun-Bo Zhang, Lei Wang, Bo Yang, et al. Stress-induced Solid-Solid Crystal Transition in
The polymorphic transition of ,trans,-1,4-polyisoprene (TPI) during stretching was investigated by ,in situ, wide-angle X-ray diffraction and Fourier transform infrared spectroscopy. The influences of the initial structure, stretching temperature, and strain rate on the contents of different crystal modifications (,α,β,) were explored. The results confirm that the ,α,-,β, transition occurs during stretching of TPI that only contains ,α, crystal (,α,-TPI). When the stress is relaxed, the ,β, crystal formed during stretching remains, which indicates that the transition is irreversible. On the other hand, stretching of TPI that only contains ,β, crystal (,β,-TPI) results in orientated ,β, crystal. No ,β,-,α, transition occurs during stretching. The different structures of stretched ,α,-TPI and ,β,-TPI exclude the previously proposed “melting-recrystallization mechanism”. The ,α,-,β, transition depends significantly on temperature and strain rate, indicating the transition is governed both by thermodynamics and kinetics. Our results support a solid-solid transition mechanism rather than a melting-recrystallization mechanism. The irreversible nature of the transition is attributed to the metastability of the ,β, phase in the unstretched state. Different from the “,β, phases” that appear in polymers with stress-induced reversible transitions,e.g., poly(butylene terephthalate) and poly(butylene succinate), the stability of ,β, phase in TPI is high that can be long-lived. The strain rate dependence of ,α,-,β, transition hinders the determination of critical stress for the transition. It further indicates that the local stress within the sample is more heterogeneous at higher strain rates.
Trans-14-polyisoprene Crystal transitionDeformationCrystallization
Strobl, G. R. The physics of polymers. Springer: Berlin, 2007.
Hu, W. Polymer physics: a molecular approach. Springer-Verlag: Wien, 2013.
Men, Y . Critical strains determine the tensile deformation mechanism in semicrystalline polymers . Macromolecules , 2020 . 53 9155 -9157 . DOI:10.1021/acs.macromol.0c02076http://doi.org/10.1021/acs.macromol.0c02076 .
Peterlin, A . Molecular model of drawing polyethylene and polypropylene . J. Mater. Sci. , 1971 . 6 490 -508 . DOI:10.1007/BF00550305http://doi.org/10.1007/BF00550305 .
Bowden, P. B.; Young, R. J . Deformation mechanisms in crystalline polymers . J. Mater. Sci. , 1974 . 9 2034 -2051 . DOI:10.1007/BF00540553http://doi.org/10.1007/BF00540553 .
Flory, P. J.; Yoon, D. Y . Molecular morphology in semicrystalline polymers . Nature , 1978 . 272 226 -229 . DOI:10.1038/272226a0http://doi.org/10.1038/272226a0 .
Wu, W.; Wignall, G. D.; Mandelkern, L . A SANS study of the plastic deformation mechanism in polyethylene . Polymer , 1992 . 33 4137 -4140 . DOI:10.1016/0032-3861(92)90617-6http://doi.org/10.1016/0032-3861(92)90617-6 .
Li, R.; Yang, G. X.; Qin, Y. N.; Liu, L.; Jiang, Z. Y . Molecular mobility in the amorphous phase determines the critical strain of fibrillation in the tensile stretching of polyethylene . Chinese J. Polym. Sci. , 2020 . 38 740 -747 . DOI:10.1007/s10118-020-2362-5http://doi.org/10.1007/s10118-020-2362-5 .
Hiss, R.; Hobeika, S.; Lynn, C.; Strobl, G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers . A comparative study . Macromolecules , 1999 . 32 4390 -4403 . DOI:10.1021/ma981776bhttp://doi.org/10.1021/ma981776b .
Men, Y.; Rieger, J.; Strobl, G . Role of the entangled amorphous network in tensile deformation of semicrystalline polymers . Phys. Rev. Lett. , 2003 . 91 095502 DOI:10.1103/PhysRevLett.91.095502http://doi.org/10.1103/PhysRevLett.91.095502 .
Liu, G.; Zhang, X.; Wang, D. . Stress induced reversible crystal transition in polymers . Polym. Int. , 2015 . 64 951 -956 . DOI:10.1002/pi.4903http://doi.org/10.1002/pi.4903 .
Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro, H.; Tanaka, T.; Yoda, K . Structures of two crystalline forms of poly(butylene terephthalate) and reversible transition between them by mechanical deformation . Macromolecules , 1976 . 9 266 -273 . DOI:10.1021/ma60050a018http://doi.org/10.1021/ma60050a018 .
Saraf, R. F.; Porter, R. S . Deformation of semicrystalline polymers via crystal-crystal phase transition . J. Polym. Sci., Part B: Polym. Phys. , 1988 . 26 1049 -1057 . DOI:10.1002/polb.1988.090260509http://doi.org/10.1002/polb.1988.090260509 .
Ma, Z.; Shao, C.; Wang, X.; Zhao, B.; Li, X.; An, H.; Yan, T.; Li, Z.; Li, L . Critical stress for drawing-induced α crystal-mesophase transition in isotactic polypropylene . Polymer , 2009 . 50 2706 -2715 . DOI:10.1016/j.polymer.2009.04.010http://doi.org/10.1016/j.polymer.2009.04.010 .
Auriemma, F.; Ruiz de Ballesteros, O.; De Rosa, C . Origin of the elastic behavior of syndiotactic polypropylene . Macromolecules , 2001 . 34 4485 -4491 . DOI:10.1021/ma002021jhttp://doi.org/10.1021/ma002021j .
Auriemma, F.; De Rosa, C . Time-resolved study of the martensitic phase transition in syndiotactic polypropylene . Macromolecules , 2003 . 36 9396 -9410 . DOI:10.1021/ma0350718http://doi.org/10.1021/ma0350718 .
Hall, I. H.; Pass, M. G . Chain conformation of poly(tetramethylene terephthalate) and its change with strain . Polymer , 1976 . 17 807 -816 . DOI:10.1016/0032-3861(76)90036-7http://doi.org/10.1016/0032-3861(76)90036-7 .
Tashiro, K.; Nakai, Y.; Kobayashi, M.; Tadokoro, H . Solid-state transition of poly(butylene terephthalate) induced by mechanical deformation . Macromolecules , 1980 . 13 137 -145 . DOI:10.1021/ma60073a026http://doi.org/10.1021/ma60073a026 .
Ichikawa, Y.; Suzuki, J.; Washiyama, J.; Moteki, Y.; Noguchi, K.; Okuyama, K . Strain-induced crystal modification in poly(tetramethylene succinate) . Polymer , 1994 . 35 3338 -3339 . DOI:10.1016/0032-3861(94)90144-9http://doi.org/10.1016/0032-3861(94)90144-9 .
Liu, G.; Zheng, L.; Zhang, X.; Li, C.; Jiang, S.; Wang, D . Reversible lamellar thickening induced by crystal transition in poly(butylene succinate) . Macromolecules , 2012 . 45 5487 -5493 . DOI:10.1021/ma300530ahttp://doi.org/10.1021/ma300530a .
Liu, G.; Zheng, L.; Zhang, X.; Li, C.; Wang, D . Critical stress for crystal transition in poly(butylene succinate)-based crystalline-amorphous multiblock copolymers . Macromolecules , 2014 . 47 7533 -7539 . DOI:10.1021/ma501832zhttp://doi.org/10.1021/ma501832z .
Ichikawa, Y.; Washiyama, J.; Moteki, Y.; Noguchi, K.; Okuyama, K . Crystal modification in poly(ethylene succinate) . Polym. J. , 1995 . 27 1264 -1266 . DOI:10.1295/polymj.27.1264http://doi.org/10.1295/polymj.27.1264 .
Ichikawa, Y.; Noguchi, K.; Okuyama, K.; Washiyama, J . Crystal transition mechanisms in poly(ethylene succinate) . Polymer , 2001 . 42 3703 -3708 . DOI:10.1016/S0032-3861(00)00702-3http://doi.org/10.1016/S0032-3861(00)00702-3 .
Liu, G.; Zheng, L.; Zhang, X.; Li, C.; Wang, D . Stress induced lamellar thickening in poly(ethylene succinate) . Polymer , 2013 . 54 6860 -6866 . DOI:10.1016/j.polymer.2013.10.037http://doi.org/10.1016/j.polymer.2013.10.037 .
Cai, Z. W.; Zhang, Y.; Li, J. Q.; Xue, F. F.; Shang, Y. R.; He, X. H.; Feng, J. C.; Wu, Z. H.; Jiang, S. C . Real time synchrotron SAXS and WAXS investigations on temperature related deformation and transitions of β-iPP with uniaxial stretching . Polymer , 2012 . 53 1593 -1601 . DOI:10.1016/j.polymer.2012.02.012http://doi.org/10.1016/j.polymer.2012.02.012 .
Zhang, C.; Liu, G.; Song, Y.; Zhao, Y.; Wang, D . Structural evolution of β-iPP during uniaxial stretching studied by in-situ WAXS and SAXS . Polymer , 2014 . 55 6915 -6923 . DOI:10.1016/j.polymer.2014.10.049http://doi.org/10.1016/j.polymer.2014.10.049 .
Zhang, C.; Liu, G.; Jiang, Q.; Yang, J.; Zhao, Y.; Wang, D . A WAXS/SAXS study on the deformation behavior of β-nucleated propylene-ethylene random copolymer subjected to uniaxial stretching . RSC Adv. , 2015 . 5 44610 -44617 . DOI:10.1039/C5RA04952Khttp://doi.org/10.1039/C5RA04952K .
Liu, Y.; Cui, K.; Tian, N.; Zhou, W.; Meng, L.; Li, L.; Ma, Z.; Wang, X . Stretch-induced crystal–crystal transition of polybutene-1: an in situ synchrotron radiation wide-angle X-ray scattering study . Macromolecules , 2012 . 45 2764 -2772 . DOI:10.1021/ma2026513http://doi.org/10.1021/ma2026513 .
Bunn, C. W.; Bragg, W. H. Molecular structure and rubber-like elasticity I . The crystal structures of β gutta-percha, rubber and polychloroprene . Proc. Roy. Soc. London. Series A. Math. Phys. Sci. , 1942 . 180 40 -66 . DOI:10.1098/rspa.1942.0024http://doi.org/10.1098/rspa.1942.0024 .
Goodman, A.; Schilder, H.; Aldrich, W. . The thermomechanical properties of gutta-percha: II. The history and molecular chemistry of gutta-percha . Or. Surg. Or. Med., Or. Pa. , 1974 . 37 954 -961 . DOI:10.1016/0030-4220(74)90448-4http://doi.org/10.1016/0030-4220(74)90448-4 .
Mandelkern, L.; Quinn, F. A.; Roberts, D. E. . Thermodynamics of crystallization in high polymers: gutta percha . J. Am. Chem. Soc. , 1956 . 78 926 -932 . DOI:10.1021/ja01586a016http://doi.org/10.1021/ja01586a016 .
Sarina; Zhang, J.; Zhang, L . Dynamic mechanical properties of Eucommia ulmoides gum with different degree of cross-linking . Polym. Bull. , 2012 . 68 2021 -2032 . DOI:10.1007/s00289-012-0712-3http://doi.org/10.1007/s00289-012-0712-3 .
Zhang, J.; Zhang, T.; Dong, M.; Liu, G.; Dong, Y . Study on degrees of mesomorphic zone of polymer II. Determination of the degree of mesomorphic zone of eucommia ulmoides gum and natural rubber by dynamic mechanical thermal analysis and differential scanning calorimetry . Polym. Test. , 2017 . 63 550 -557 . DOI:10.1016/j.polymertesting.2017.09.024http://doi.org/10.1016/j.polymertesting.2017.09.024 .
Liu, G.; Zhang, X.; Zhang, T.; Zhang, J.; Zhang, P.; Wang, W . Determination of the content of Eucommia ulmoides gum by variable temperature Fourier transform infrared spectrum . Polym. Test. , 2017 . 63 582 -586 . DOI:10.1016/j.polymertesting.2017.09.023http://doi.org/10.1016/j.polymertesting.2017.09.023 .
Lovering, E. G.; Wooden, D. C . Transitions in trans-1,4-polyisoprene . J. Polym. Sci., Part B: Polym. Phys. , 1969 . 7 1639 -1649 . DOI:10.1002/pol.1969.160071002http://doi.org/10.1002/pol.1969.160071002 .
Flanagan, R. D.; Rijke, A. M. Polymorphism in polymers. I . The equilibrium melting temperature of two crystalline modifications of trans-1,4-polyisoprene . J. Polym. Sci., Part B: Polym. Phys. , 1972 . 10 1207 -1219 . DOI:10.1002/pol.1972.160100703http://doi.org/10.1002/pol.1972.160100703 .
Ratri, P . J.; Tashiro, K.; Iguchi, M. Experimentally- and theoretically-evaluated ultimate 3-dimensional elastic constants of trans-1,4-polyisoprene α and β crystalline forms on the basis of the newly-refined crystal structure information . Polymer , 2012 . 53 3548 -3558 . DOI:10.1016/j.polymer.2012.06.003http://doi.org/10.1016/j.polymer.2012.06.003 .
Lu, J.; Yang, H.; Ji, Y.; Li, X.; Lv, Y.; Su, F.; Li, L . Strong memory effect of metastable β form trans-1,4-polyisoprene above equilibrium melting temperature . Macromol. Chem. Phys. , 2017 . 218 1700235 DOI:10.1002/macp.201700235http://doi.org/10.1002/macp.201700235 .
Martuscelli, E.; Mancarella, C . Deformation of trans-1,4-polyisoprene spherulite: small angle X-ray diffraction, thermal differential analysis and density studies . Polymer , 1973 . 14 71 -77 . DOI:10.1016/0032-3861(73)90099-2http://doi.org/10.1016/0032-3861(73)90099-2 .
Ratri, P. J.; Tashiro, K . Phase-transition behavior of a crystalline polymer near the melting point: case studies of the ferroelectric phase transition of poly(vinylidene fluoride) and the β-to-α transition of trans-1,4-polyisoprene . Polym. J. , 2013 . 45 1107 -1114 . DOI:10.1038/pj.2013.42http://doi.org/10.1038/pj.2013.42 .
Ratri, P. J.; Tashiro, K . Application of the simultaneous measurement system of WAXD, SAXS and transmission FTIR spectra to the study of structural changes in the cold- and melt-crystallization processes of trans-1,4-polyisoprene . Polym. J. , 2013 . 45 1019 -1026 . DOI:10.1038/pj.2013.31http://doi.org/10.1038/pj.2013.31 .
Ratri, P. J.; Tashiro, K . Structural study of the ordering processes of cold drawn trans-1,4-polyisoprene samples in the heating process on the basis of wide- and small-angle X-ray scattering measurements . J. Phys. Conf. Ser. , 2018 . 1095 012029 DOI:10.1088/1742-6596/1095/1/012029http://doi.org/10.1088/1742-6596/1095/1/012029 .
Weng, G. S.; Bao, J. B.; Xu, Y. C.; Chen, Z. R . New insight into stretch induced structural evolution of α trans-1,4-polyisoprene characterized by real time synchrotron WAXS and SAXS measurements . J. Polym. Res. , 2013 . 20 104 DOI:10.1007/s10965-013-0104-xhttp://doi.org/10.1007/s10965-013-0104-x .
Weng, G. S.; Wu, J. R.; Xu, Y. C.; Bao, J. B.; Huang, G.; Chen, Z. R . Study on the stretch induced phase transition of α trans-1,4-polyisoprene by in-situ SAXS and WAXS measurements . J. Polym. Res. , 2014 . 21 576 DOI:10.1007/s10965-014-0576-3http://doi.org/10.1007/s10965-014-0576-3 .
Du, A.; Liu, K.; Yang, L.; Gu, Z . Comparison of crystallization behavior of trans-1,4-polyisoprene under different crystallization temperature, pressure and tension . J. Polym. Res. , 2019 . 26 172 DOI:10.1007/s10965-019-1830-5http://doi.org/10.1007/s10965-019-1830-5 .
G'Sell, C.; Hiver, J . M.; Dahoun, A.; Souahi, A. Video-controlled tensile testing of polymers and metals beyond the necking point . J. Mater. Sci. , 1992 . 27 5031 -5039 . DOI:10.1007/BF01105270http://doi.org/10.1007/BF01105270 .
Gavish, M.; Brennan, P.; Woodward, A. E . Infrared spectral correlations for crystalline and amorphous trans-1,4-polyisoprene . Macromolecules , 1988 . 21 2075 -2079 . DOI:10.1021/ma00185a033http://doi.org/10.1021/ma00185a033 .
Flory, P. J . Theory of elastic mechanisms in fibrous proteins . J. Am. Chem. Soc. , 1956 . 78 5222 -5235 . DOI:10.1021/ja01601a025http://doi.org/10.1021/ja01601a025 .
Keller, A.; Cheng, S. Z. D . The role of metastability in polymer phase transitions . Polymer , 1998 . 39 4461 -4487 . DOI:10.1016/S0032-3861(97)10320-2http://doi.org/10.1016/S0032-3861(97)10320-2 .
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621