a.Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, and Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
b.Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
c.Key Laboratory of Carbon Materials, National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
zhangxh@dhu.edu.cn
Scan for full text
Xiao-Hua Zhang, Meng-Xiao Jiao, Xin Wang, et al. Preheat Compression Molding for Polyetherketoneketone: Effect of Molecular Mobility. [J]. Chinese Journal of Polymer Science 40(2):175-184(2022)
Xiao-Hua Zhang, Meng-Xiao Jiao, Xin Wang, et al. Preheat Compression Molding for Polyetherketoneketone: Effect of Molecular Mobility. [J]. Chinese Journal of Polymer Science 40(2):175-184(2022) DOI: 10.1007/s10118-021-2649-1.
Polyetherketoneketone (PEKK) is a new evolving polymeric material, and is considered as another important member of the polyaryletherketone (PAEK) family in addition to polyetheretherketone (PEEK). Hot compression molding can be used to compact and consolidate the PEKK products, where the temperature and pressure play key roles to affect the molecular mobility, entanglement and crystallization, and thus the mechanical properties of PEKKs. In this study, a preheating treatment was introduced in the compression molding, and it is found that such preheating is very essential to avoid the formation of crystal Form II, based on the increased chain entanglement. Molecular dynamics simulations revealed that the molecular mobility is always suppressed when a compression is applied. Therefore, by increasing the entanglement ,via, the preheating and maintaining such entanglement in the consequent compression molding, strong and tough PEKK materials were obtained, with a negligible fraction of crystal Form II.
PolyetherketoneketoneMolecular mobilityCompression moldingMechanical properties
Al-Mezrakchi, R.; Creasy, T.; Sue, H. J.; Bremner, T. . Manipulation of thick-walled PEEK bushing crystallinity and modulus via instrumented compression molding . J. Appl. Polym. Sci. , 2021 . 138 49930 DOI:10.1002/app.49930http://doi.org/10.1002/app.49930 .
Alqurashi, H.; Khurshid, Z.; Syed, A. U. Y.; Rashid Habib, S.; Rokaya, D.; Zafar, M. S. . Polyetherketoneketone (PEKK): an emerging biomaterial for oral implants and dental prostheses . J. Adv. Res. , 2021 . 28 87 -95 . DOI:10.1016/j.jare.2020.09.004Gethttp://doi.org/10.1016/j.jare.2020.09.004Get .
Attwood, T. E.; Dawson, P. C.; Freeman, J. L.; Hoy, L. R. J.; Rose, J. B.; Staniland, P. A. . Synthesis and properties of polyaryletherketones . Polymer , 1981 . 22 1096 -1103 . DOI:10.1016/0032-3861(81)90299-8http://doi.org/10.1016/0032-3861(81)90299-8 .
Audoit, J.; Rivière, L.; Dandurand, J.; Lonjon, A.; Dantras, E.; Lacabanne, C. . Thermal, mechanical and dielectric behaviour of poly(aryl ether ketone) with low melting temperature . J. Therm. Anal. Calorim. , 2019 . 135 2147 -2157 . DOI:10.1007/s10973-018-7292-xhttp://doi.org/10.1007/s10973-018-7292-x .
Benedetti, L.; Brulé, B.; Decraemer, N.; Davies, R.; Evans, K. E.; Ghita, O. . A route to improving elongation of high-temperature laser sintered PEKK . Addit. Manuf. , 2020 . 36 101540 DOI:10.1016/j.addma.2020.101540http://doi.org/10.1016/j.addma.2020.101540 .
Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. . Molecular dynamics with coupling to an external bath . J. Chem. Phys. , 1984 . 81 3684 -3690 . DOI:10.1063/1.448118http://doi.org/10.1063/1.448118 .
Blundell, D. J.; Osborn, B. N. . The morphology of poly(aryl-ether-ether-ketone) . Polymer , 1983 . 24 953 -958 . DOI:10.1016/0032-3861(83)90144-1http://doi.org/10.1016/0032-3861(83)90144-1 .
Cebe, P.; Chung, S. Y.; Hong, S. D. . Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature . J. Appl. Polym. Sci. , 1987 . 33 487 -503 . DOI:10.1002/app.1987.070330217http://doi.org/10.1002/app.1987.070330217 .
Cheng, S. Z. D.; Ho, R. M.; Hsiao, B. S.; Gardner, K. H. . Polymorphism and crystal structure identification in poly(aryl ether ketone ketone)s . Macromol. Chem. Phys. , 1996 . 197 185 -213 . DOI:10.1002/macp.1996.021970115http://doi.org/10.1002/macp.1996.021970115 .
Choupin, T.; Debertrand, L.; Fayolle, B.; Régnier, G.; Paris, C.; Cinquin, J.; Brulé, B. . Influence of thermal history on the mechanical properties of poly(ether ketone ketone) copolymers . Polym. Cryst. , 2019 . 2 e10086 DOI:10.1002/pcr2.10086http://doi.org/10.1002/pcr2.10086 .
Conrad, T. L.; Jaekel, D. J.; Kurtz, S. M.; Roeder, R. K. . Effects of the mold temperature on the mechanical properties and crystallinity of hydroxyapatite whisker-reinforced polyetheretherketone scaffolds . J. Biomed. Mater. Res. Part B , 2013 . 101B 576 -583 . DOI:10.1002/jbm.b.32859http://doi.org/10.1002/jbm.b.32859 .
Dar, U. A.; Xu, Y. J.; Zakir, S. M.; Saeed, M. U. . The effect of injection molding process parameters on mechanical and fracture behavior of polycarbonate polymer . J. Appl. Polym. Sci. , 2017 . 134 44474 DOI:10.1002/app.44474http://doi.org/10.1002/app.44474 .
Day, M.; Deslandes, Y.; Roovers, J.; Suprunchuk, T. . Effect of molecular weight on the crystallization behaviour of poly(aryl ether ether ketone): a differential scanning calorimetry study . Polymer , 1991 . 32 1258 -1266 . DOI:10.1016/0032-3861(91)90230-Ghttp://doi.org/10.1016/0032-3861(91)90230-G .
Gardner, K. H.; Hsiao, B. S.; Faron, K. L. . Polymorphism in poly(aryl ether ketone)s . Polymer , 1994 . 35 2290 -2295 . DOI:10.1016/0032-3861(94)90763-3http://doi.org/10.1016/0032-3861(94)90763-3 .
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. . GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation . J. Chem. Theory Comput. , 2008 . 4 435 -447 . DOI:10.1021/ct700301qhttp://doi.org/10.1021/ct700301q .
Jiang, Z.; Chen, R.; Lu, Y.; Whiteside, B.; Coates, P.; Wu, Z.; Men, Y. . Crystallization temperature dependence of cavitation and plastic flow in the tensile deformation of poly(ε-caprolactone) . J. Phys. Chem. B , 2017 . 121 6673 -6684 . DOI:10.1021/acs.jpcb.7b02595http://doi.org/10.1021/acs.jpcb.7b02595 .
Jones, D. P.; Leach, D. C.; Moore, D. R. . Mechanical properties of poly(ether-ether-ketone) for engineering applications . Polymer , 1985 . 26 (9 ):1385 -1393 . DOI:10.1016/0032-3861(85)90316-7http://doi.org/10.1016/0032-3861(85)90316-7 .
Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. . Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids . J. Am. Chem. Soc. , 1996 . 118 11225 -11236 . DOI:10.1021/ja9621760http://doi.org/10.1021/ja9621760 .
Kumar, D.; Rajmohan, T.; Venkatachalapathi, S. . Wear behavior of PEEK matrix composites: a review . Mater. Today: Proc. , 2018 . 5 14583 -14589 . DOI:10.1016/j.matpr.2018.03.049http://doi.org/10.1016/j.matpr.2018.03.049 .
Kurtz, S. M.; N. Devine, J. . PEEK biomaterials in trauma, orthopedic, and spinal implants . Biomaterials , 2007 . 28 4845 -4869 . DOI:10.1016/j.biomaterials.2007.07.013http://doi.org/10.1016/j.biomaterials.2007.07.013 .
Lee, Y.; Porter, R. S. . Effects of thermal history on crystallization of poly(ether ether ketone) (PEEK) . Macromolecules , 1988 . 21 2770 -2776 . DOI:10.1021/ma00187a022http://doi.org/10.1021/ma00187a022 .
Li, C.; Strachan, A. . Prediction of PEKK properties related to crystallization by molecular dynamics simulations with a united-atom model . Polymer , 2019 . 174 25 -32 . DOI:10.1016/j.polymer.2019.04.053http://doi.org/10.1016/j.polymer.2019.04.053 .
Lustiger, A.; Uralil, F. S.; Newaz, G. M. . Processing and structural optimization of PEEK composites . Polym. Compos. , 1990 . 11 65 -75 . DOI:10.1002/pc.750110109http://doi.org/10.1002/pc.750110109 .
Men, Y. . Critical strains determine the tensile deformation mechanism in semicrystalline polymers . Macromolecules , 2020 . 53 9155 -9157 . DOI:10.1021/acs.macromol.0c02076http://doi.org/10.1021/acs.macromol.0c02076 .
Mullins, M. J.; Woo, E. P. . The synthesis and properties of poly(aromatic ketones) . J. Macromol. Sci. Rev. Macromol. Chem. Phys. , 1987 . C27 313 -341 . DOI:10.1080/07366578708081918http://doi.org/10.1080/07366578708081918 .
Mylläri, V.; Ruoko, T. P.; Vuorinen, J.; Lemmetyinen, H. . Characterization of thermally aged polyetheretherketone fibres—mechanical, thermal, rheological and chemical property changes . Polym. Degrad. Stab. , 2015 . 120 419 -426 . DOI:10.1016/j.polymdegradstab.2015.08.003http://doi.org/10.1016/j.polymdegradstab.2015.08.003 .
Roland, S.; Moghaddam, M.; Tencé-Girault, S.; Fayolle, B. . Evolution of mechanical properties of aged poly(ether ketone ketone) explained by a microstructural approach . Polym. Degrad. Stab. , 2021 . 183 109412 DOI:10.1016/j.polymdegradstab.2020.109412http://doi.org/10.1016/j.polymdegradstab.2020.109412 .
Rudolph, N. M.; Osswald, T. A.; Ehrenstein, G. W. . Influence of pressure on volume, temperature and crystallization of thermoplastics during polymer processing . Int. Polym. Proc. , 2011 . 26 239 -248 . DOI:10.3139/217.2417http://doi.org/10.3139/217.2417 .
Sarasua, J. R.; Remiro, P. M.; Pouyet, J. . Effects of thermal history on mechanical behavior of PEEK and its short-fiber composites . Polym. Compos. , 1996 . 17 468 -477 . DOI:10.1002/pc.10635http://doi.org/10.1002/pc.10635 .
Seguela, R. . Critical review of the molecular topology of semicrystalline polymers: the origin and assessment of intercrystalline tie molecules and chain entanglements . J. Polym. Sci. Part B: Polym. Phys. , 2005 . 43 1729 -1748 . DOI:10.1002/polb.20414http://doi.org/10.1002/polb.20414 .
Shukla, D.; Negi, Y. S.; Uppadhyaya, J. S.; Kumar, V. . Synthesis and modification of poly(ether ether ketone) and their properties: a review . Polym. Rev. , 2012 . 52 189 -228 . DOI:10.1080/15583724.2012.668151http://doi.org/10.1080/15583724.2012.668151 .
van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. . GROMACS: fast, flexible, and free . J. Comput. Chem. , 2005 . 26 1701 -1718 . DOI:10.1002/jcc.20291http://doi.org/10.1002/jcc.20291 .
Tencé-Girault, S.; Quibel, J.; Cherri, A.; Roland, S.; Fayolle, B.; Bizet, S.; Iliopoulos, I. . Quantitative structural study of cold-crystallized PEKK . ACS Appl. Polym. Mater. , 2021 . 3 1795 -1808 . DOI:10.1021/acsapm.0c01380http://doi.org/10.1021/acsapm.0c01380 .
Veazey, D.; Hsu, T.; Gomez, E. D. . Next generation high-performance carbon fiber thermoplastic composites based on polyaryletherketones . J. Appl. Polym. Sci. , 2017 . 134 44441 DOI:10.1002/app.44441http://doi.org/10.1002/app.44441 .
Wang, P.; Yu, H.; Ma, R.; Wang, Y.; Liu, C.; Shen, C. . Temperature-dependent orientation of poly(ether ether ketone) under uniaxial tensile and its correlation with mechanical properties . J. Therm. Anal. Calorim. , 2020 . 141 1361 -1369 . DOI:10.1007/s10973-019-09155-yhttp://doi.org/10.1007/s10973-019-09155-y .
Wang, Q.; Xue, Q.; Liu, H.; Shen, W.; Xu, J. . The effect of particle size of nanometer ZrO2 on the tribological behaviour of PEEK . Wear , 1996 . 198 216 -219 . DOI:10.1016/0043-1648(96)07201-8http://doi.org/10.1016/0043-1648(96)07201-8 .
Xie, J.; Wang, S.; Cui, Z.; Wu, J. . Process optimization for compression molding of carbon fiber-reinforced thermosetting polymer . Materials , 2019 . 12 2430 DOI:10.3390/ma12152430http://doi.org/10.3390/ma12152430 .
Xu, Q.; Shang, Y.; Jiang, Z.; Wang, Z.; Zhou, C.; Liu, X.; Yan, Q.; Li, X.; Zhang, H. . Effect of molecular weight on mechanical properties and microstructure of 3D printed poly(ether ether ketone) . Polym. Int. , 2021 . 70 1065 -1072 . DOI:10.1002/pi.6166http://doi.org/10.1002/pi.6166 .
Zhang, X. . Carbon nanotube/polyetheretherketone nanocomposites: mechanical, thermal, and electrical properties . J. Compos. Mater. , 2021 . 55 2115 -2132 . DOI:10.1177/0021998320981134http://doi.org/10.1177/0021998320981134 .
0
Views
5
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution