a.Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
b.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
c.Printed Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
d.Ministry of Education and College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
yyztyut@126.com (Y.Z.Y.)
yanlingpeng@tyut.edu.cn (L.P.Y.)
Scan for full text
Wen-Sheng Zhao, Xin-Xin Li, Han Zha, et al. Controllable Photoelectric Properties of Carbon Dots and Their Application in Organic Solar Cells. [J]. Chinese Journal of Polymer Science 40(1):7-20(2022)
Wen-Sheng Zhao, Xin-Xin Li, Han Zha, et al. Controllable Photoelectric Properties of Carbon Dots and Their Application in Organic Solar Cells. [J]. Chinese Journal of Polymer Science 40(1):7-20(2022) DOI: 10.1007/s10118-021-2637-5.
Organic solar cells are a current research hotspot in the energy field because of their advantages of lightness, translucency, roll to roll printing and building integration. With the rapid development of small molecule acceptor materials with high-performance, the efficiency of organic solar cells has been greatly improved. Further improving the device efficiency and stability and reducing the cost of active layer materials will contribute to the industrial development of organic solar cells. As a novel type of carbon nanomaterials, carbon dots gradually show great application potential in the field of organic solar cells due to their advantages of low preparation cost, non-toxicity and excellent photoelectric performance. Firstly, the synthesis and classification of carbon dots are briefly introduced. Secondly, the photoelectric properties of carbon dots and their adjusting, including adjustable surface energy level structure, good film-forming performance and up/down conversion characteristics are summarized. Thirdly, based on these intrinsic properties, the feasibility and advantages of carbon dots used in organic solar cells are discussed. Fourthly, the application progress of carbon dots in the active layer, hole transport layer, electron transport layer, interface modification layer and down-conversion materials of organic solar cells is also reviewed. Finally, the application progress of carbon dots in organic solar cells is prospected. Several further research directions, including in-depth exploration of the controllable preparation of carbon dots and their application in the fields of interface layer and up/down conversion for improving efficiency and stability of device are pointed out.
Organic solar cellsCarbon dotsInterface layerPower conversion efficiencyStability
Chatterjee, S.; Jinnai, S.; Ie, Y . Nonfullerene acceptors for P3HT-based organic solar cells . J. Mater. Chem. A , 2021 . 9 18857 -18886 . DOI:10.1039/d1ta03219dhttp://doi.org/10.1039/d1ta03219d .
Zhao, C. W.; Zhang, Z.; Han, F. M.; Xia, D. D.; Xiao, C. Y.; Fang, J.; Zhang, Y. F.; Wu, B. H.; You, S. Y.; Wu, Y. G.; Li, W. W . An organic-inorganic hybrid electrolyte as a cathode interlayer for efficient organic solar cells . Angew. Chem. Int. Ed. , 2021 . 60 8526 -8531 . DOI:10.1002/anie.202100755http://doi.org/10.1002/anie.202100755 .
Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J . All-polymer solar cells: recent progress, challenges, and prospects . Angew. Chem. Int. Ed. , 2019 . 58 4129 -4142 . DOI:10.1002/anie.201808976http://doi.org/10.1002/anie.201808976 .
Cheng, P.; Zhan, X. W . Stability of organic solar cells: challenges and strategies . Chem. Soc. Rev. , 2016 . 45 2544 -2582 . DOI:10.1039/C5CS00593Khttp://doi.org/10.1039/C5CS00593K .
Po, R.; Carbonera, C.; Bernardi, A.; Camaioni, N . The role of buffer layers in polymer solar cells . Energ. Environ. Sci. , 2011 . 4 285 -310 . DOI:10.1039/C0EE00273Ahttp://doi.org/10.1039/C0EE00273A .
Mirsafaei, M.; Fallahpour, A. H.; Lugli, P.; Rubahn, H. G.; Adam, J.; Madsen, M . The influence of electrical effects on device performance of organic solar cells with nano-structured electrodes . Sci. Rep. , 2017 . 7 5300 DOI:10.1038/s41598-017-05591-8http://doi.org/10.1038/s41598-017-05591-8 .
Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y. F.; Zou, Y. P . Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 . 3 1140 -1151 . DOI:10.1016/j.joule.2019.01.004http://doi.org/10.1016/j.joule.2019.01.004 .
Hong, L.; Yao, H. F.; Wu, Z.; Cui, Y.; Zhang, T.; Xu, Y.; Yu, R. N.; Liao, Q.; Gao, B. W.; Xian, K. H.; Woo, H. Y.; Ge, Z. Y.; Hou, J. H . Eco-compatible solvent-processed organic photovoltaic cells with over 16% efficiency . Adv. Mater. , 2019 . 31 1903441 DOI:10.1002/adma.201903441http://doi.org/10.1002/adma.201903441 .
Zhu, F.; Chen, X. H.; Lu, Z.; Yang, J. X.; Huang, S. M.; Sun, Z . Efficiency enhancement of inverted polymer solar cells using ionic liquid-functionalized carbon nanoparticles-modified ZnO as electron selective layer . Nano-Micro. Lett. , 2014 . 6 24 -29 . DOI:10.1007/BF03353765http://doi.org/10.1007/BF03353765 .
Kim, J. K.; Park, M. J.; Kim, S. J.; Wang, D. H.; Cho, S. P.; Bae, S.; Park, J. H.; Hong, B. H . Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells . ACS Nano , 2013 . 7 7207 -7212 . DOI:10.1021/nn402606vhttp://doi.org/10.1021/nn402606v .
Dabera, G. D. M. R.; Jayawardena, K. D. G. I.; Prabhath, M. R. R.; Yahya, I.; Tan, Y. Y.; Nismy, N. A.; Shiozawa, H.; Sauer, M.; Ruiz-Soria, G.; Ayala, P.; Stolojan, V.; Adikaari, A. A. D. T.; Jarowski, P. D.; Pichler, T.; Silva, S. R. P . Hybrid carbon nanotube networks as efficient hole extraction layers for organic photovoltaics . ACS Nano , 2013 . 7 556 -565 . DOI:10.1021/nn304705thttp://doi.org/10.1021/nn304705t .
Mihailetchi, V. D.; Xie, H. X.; de Boer, B.; Koster, L. J. A.; Blom, P. W. M . Charge transport and photocurrent generation in poly(3-hexylthiophene): methanofullerene bulk-heterojunction solar cells . Adv. Funct. Mater. , 2006 . 16 699 -708 . DOI:10.1002/adfm.200500420http://doi.org/10.1002/adfm.200500420 .
Lee, Y. Y.; Tu, K. H.; Yu, C. C.; Li, S. S.; Hwang, J. Y.; Lin, C. C.; Chen, K. H.; Chen, L. C.; Chen, H. L.; Chen, C. W . Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method . ACS Nano , 2011 . 5 6564 -6570 . DOI:10.1021/nn201940jhttp://doi.org/10.1021/nn201940j .
Lee, J. M.; Kwon, B. H.; Park, H. I.; Kim, H.; Kim, M. G.; Park, J. S.; Kim, E. S.; Yoo, S.; Jeon, D. Y.; Kim, S. O . Exciton dissociation and charge-transport enhancement in organic solar cells with quantum-dot/N-doped CNT hybrid nanomaterials . Adv. Mater. , 2013 . 25 2011 -2017 . DOI:10.1002/adma.201204454http://doi.org/10.1002/adma.201204454 .
Lin, X. F.; Yang, Y. Z.; Nian, L.; Su, H.; Ou, J. M.; Yuan, Z. K.; Xie, F. Y.; Hong, W.; Yu, D. S.; Zhang, M. Q.; Ma, Y. G.; Chen, X. D . Interfacial modification layers based on carbon dots for efficient inverted polymer solar cells exceeding 10% power conversion efficiency . Nano Energy , 2016 . 26 216 -223 . DOI:10.1016/j.nanoen.2016.05.011http://doi.org/10.1016/j.nanoen.2016.05.011 .
Zheng, Z.; Awartani, O. M.; Gautam, B.; Liu, D. L.; Qin, Y. P.; Li, W. N.; Bataller, A.; Gundogdu, K.; Ade, H.; Hou, J. H . Efficient charge transfer and fine-tuned energy level alignment in a THF-processed fullerene- free organic solar cell with 11.3% efficiency . Adv. Mater. , 2017 . 29 1604241 DOI:10.1002/adma.201604241http://doi.org/10.1002/adma.201604241 .
Mishra, V.; Patil, A.; Thakur, S.; Kesharwani, P . Carbon dots: emerging theranostic nanoarchitectures . Drug. Discov. Today , 2018 . 23 1219 -1232 . DOI:10.1016/j.drudis.2018.01.006http://doi.org/10.1016/j.drudis.2018.01.006 .
Cai, T. T.; Liu, B.; Pang, E. N.; Ren, W. J.; Li, S. J.; Hu, S. L . A review on the preparation and applications of coal-based fluorescent carbon dots . New Carbon Mater. , 2020 . 35 646 -664 . DOI:10.1016/S1872-5805(20)60520-0http://doi.org/10.1016/S1872-5805(20)60520-0 .
Yue, L. J.; Wei, Y. Y.; Fan, J. B.; Chen, L.; Li, Q.; Du, J. L.; Yu, S. P.; Yang, Y. Z . Research progress in the use of cationic carbon dots for the integration of cancer diagnosis with gene treatment . New Carbon Mater. , 2021 . 36 373 -389 . DOI:10.1016/S1872-5805(21)60025-2http://doi.org/10.1016/S1872-5805(21)60025-2 .
Cui, B.; Feng, X. T.; Zhang, F.; Wang, Y. L.; Liu, X. G.; Yang, Y. Z.; Jia, H. S . The use of carbon quantum dots as fluorescent materials in white LEDs . New Carbon Mater. , 2017 . 32 385 -401 . DOI:10.1016/S1872-5805(17)60130-6http://doi.org/10.1016/S1872-5805(17)60130-6 .
Yang, S. T.; Cao, L.; Luo, P. G. J.; Lu, F. S.; Wang, X.; Wang, H. F.; Meziani, M. J.; Liu, Y. F.; Qi, G.; Sun, Y. P . Carbon dots for optical imaging in vivo . J. Am. Chem. Soc. , 2009 . 131 11308 -11309 . DOI:10.1021/ja904843xhttp://doi.org/10.1021/ja904843x .
Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A . Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments . J. Am. Chem. Soc. , 2015 . 126 12736 -12737 . DOI:10.1021/ja040082hhttp://doi.org/10.1021/ja040082h .
Zhao, Q. L.; Zhang, Z. L.; Huang, B. H.; Peng, J.; Zhang, M.; Pang, D. W . Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite . Chem. Commun. , 2008 . 5116 -5118 . DOI:10.1039/B812420Ehttp://doi.org/10.1039/B812420E .
Li, W. D.; Liu, Y.; Wang, B. Y.; Song, H. Q.; Liu, Z. Y.; Lu, S. Y.; Yang, B . Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging . Chinese Chem. Lett. , 2019 . 30 2323 -2327 . DOI:10.1016/j.cclet.2019.06.040http://doi.org/10.1016/j.cclet.2019.06.040 .
Kang, C.; Huang, Y.; Yang, H.; Yan, X. F.; Chen, Z. P . A review of carbon dots produced from biomass wastes . Nanomaterials-Basel. , 2020 . 10 2316 DOI:10.3390/nano10112316http://doi.org/10.3390/nano10112316 .
Achilleos, D. S.; Yang, W. X.; Kasap, H.; Savateev, A.; Markushyna, Y.; Durrant, J. R.; Reisner, E . Solar reforming of biomass with homogeneous carbon dots . Angew. Chem. Int. Ed. , 2020 . 59 18184 -18188 . DOI:10.1002/anie.202008217http://doi.org/10.1002/anie.202008217 .
Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B . Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging . Angew. Chem. Int. Ed. , 2013 . 52 3953 -3957 . DOI:10.1002/anie.201300519http://doi.org/10.1002/anie.201300519 .
Tomskaya, A. E.; Egorova, M. N.; Kapitonov, A. N.; Nikolaev, D. V.; Popov, V. I.; Fedorov, A. L.; Smagulova, S. A . Synthesis of luminescent N-doped carbon dots by hydrothermal treatment . Phys. Status. Solidi. B , 2018 . 255 1700222 DOI:10.1002/pssb.201700222http://doi.org/10.1002/pssb.201700222 .
Liu, Y.; Xiao, N.; Gong, N. Q.; Wang, H.; Shi, X.; Gu, W.; Ye, L . One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes . Carbon , 2014 . 68 258 -264 . DOI:10.1016/j.carbon.2013.10.086http://doi.org/10.1016/j.carbon.2013.10.086 .
Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P . Surface functionalized carbogenic quantum dots . Small , 2008 . 4 455 -458 . DOI:10.1002/smll.200700578http://doi.org/10.1002/smll.200700578 .
Wang, B. Y.; Song, H. Q.; Qu, X. L.; Chang, J. B.; Yang, B.; Lu, S. Y . Carbon dots as a new class of nanomedicines: opportunities and challenges . Coordin. Chem. Rev. , 2021 . 442 214010 DOI:10.1016/j.ccr.2021.214010http://doi.org/10.1016/j.ccr.2021.214010 .
Guo, R. T.; Li, L.; Wang, B. W.; Xiang, Y. G.; Zou, G. Q.; Zhu, Y. R.; Hou, H. S.; Ji, X. B . Functionalized carbon dots for advanced batteries . Energy Storage Mater. , 2021 . 37 8 -39 . DOI:10.1016/j.ensm.2021.01.020http://doi.org/10.1016/j.ensm.2021.01.020 .
Rigodanza, F.; Burian, M.; Arcudi, F.; Dordevic, L.; Amenitsch, H.; Prato, M . Snapshots into carbon dots formation through a combined spectroscopic approach . Nat. Commun. , 2021 . 12 2640 DOI:10.1038/s41467-021-22902-whttp://doi.org/10.1038/s41467-021-22902-w .
Li, D.; Jing, P. T.; Sun, L. H.; An, Y.; Shan, X. Y.; Lu, X. H.; Zhou, D.; Han, D.; Shen, D. Z.; Zhai, Y. C.; Qu, S. N.; Zboril, R.; Rogach, A. L . Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots . Adv. Mater. , 2018 . 30 1705913 DOI:10.1002/adma.201705913http://doi.org/10.1002/adma.201705913 .
Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B . The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective . Nano Res. , 2015 . 8 355 -381 . DOI:10.1007/s12274-014-0644-3http://doi.org/10.1007/s12274-014-0644-3 .
Lv, K. L.; Suo, W. Q.; Shao, M. D.; Zhu, Y.; Wang, X. P.; Feng, J. J.; Fang, M. W . Nitrogen doped MoS2 and nitrogen doped carbon dots composite catalyst for electroreduction CO2 to CO with high faradaic efficiency . Nano Energy , 2019 . 63 103834 DOI:10.1016/j.nanoen.2019.06.030http://doi.org/10.1016/j.nanoen.2019.06.030 .
Song, H. Q.; Liu, X. J.; Wanga, B. Y.; Tang, Z. Y.; Lu, S. Y . High production-yield solid-state carbon dots with tunable photoluminescence for white/multi-color light-emitting diodes . Sci. Bull. , 2019 . 64 1788 -1794 . DOI:10.1016/j.scib.2019.10.006http://doi.org/10.1016/j.scib.2019.10.006 .
Hola, K.; Sudolska, M.; Kalytchuk, S.; Nachtigallova, D.; Rogach, A. L.; Otyepka, M.; Zboril, R . Graphitic nitrogen triggers red fluorescence in carbon dots . ACS Nano , 2017 . 11 12402 -12410 . DOI:10.1021/acsnano.7b06399http://doi.org/10.1021/acsnano.7b06399 .
Tang, L. B.; Ji, R. B.; Li, X. M.; Bai, G. X.; Liu, C. P.; Hao, J. H.; Lin, J. Y.; Jiang, H. X.; Teng, K. S.; Yang, Z. B.; Lau, S. P . Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots . ACS Nano , 2014 . 8 6312 -6320 . DOI:10.1021/nn501796rhttp://doi.org/10.1021/nn501796r .
Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P . Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications . Small , 2015 . 11 1620 -1636 . DOI:10.1002/smll.201402648http://doi.org/10.1002/smll.201402648 .
Wu, Z. L.; Liu, Z. X.; Yuan, Y. H . Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission . J. Mater. Chem. B , 2017 . 5 3794 -3809 . DOI:10.1039/C7TB00363Chttp://doi.org/10.1039/C7TB00363C .
Yeh, T. F.; Huang, W. L.; Chung, C. J.; Chiang, I. T.; Chen, L. C.; Chang, H. Y.; Su, W. C.; Cheng, C.; Chen, S. J.; Teng, H. S . Elucidating quantum confinement in graphene oxide dots based on excitation-wavelength-independent photoluminescence . J. Phys. Chem. Lett. , 2016 . 7 2087 -2092 . DOI:10.1021/acs.jpclett.6b00752http://doi.org/10.1021/acs.jpclett.6b00752 .
Bao, L.; Zhang, Z. L.; Tian, Z. Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B. P.; Pang, D. W . Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism . Adv. Mater. , 2011 . 23 5801 -5806 . DOI:10.1002/adma.201102866http://doi.org/10.1002/adma.201102866 .
Su, Y.; Xie, Z. G.; Zheng, M . Carbon dots with concentration-modulated fluorescence: aggregation-induced multicolor emission . J. Colloid. Interf. Sci. , 2020 . 573 241 -249 . DOI:10.1016/j.jcis.2020.04.004http://doi.org/10.1016/j.jcis.2020.04.004 .
Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T . Water-soluble fluorescent carbon quantum dots and photocatalyst design . Angew. Chem. Int. Ed. , 2010 . 49 4430 -4434 . DOI:10.1002/anie.200906154http://doi.org/10.1002/anie.200906154 .
Tian, R. X.; Hu, S. L.; Wu, L. L.; Chang, Q.; Yang, J. L.; Liu, J . Tailoring surface groups of carbon quantum dots to improve photoluminescence behaviors . Appl. Surf. Sci. , 2014 . 301 156 -160 . DOI:10.1016/j.apsusc.2014.02.028http://doi.org/10.1016/j.apsusc.2014.02.028 .
Behera, R. K.; Sau, A.; Mishra, L.; Bera, K.; Mallik, S.; Nayak, A.; Basu, S.; Sarangi, M. K . Redox modifications of carbon dots shape their optoelectronics . J. Phys. Chem. C , 2019 . 123 27937 -27944 . DOI:10.1021/acs.jpcc.9b08289http://doi.org/10.1021/acs.jpcc.9b08289 .
Yang, Y. Z.; Lin, X. F.; Li, W. L.; Ou, J. M.; Yuan, Z. K.; Xie, F. Y.; Hong, W.; Yu, D. S.; Ma, Y. G.; Chi, Z. G.; Chen, X. D . One-pot large-scale synthesis of carbon quantum dots: efficient cathode interlayers for polymer solar cells . ACS Appl. Mater. Interfaces , 2017 . 9 14953 -14959 . DOI:10.1021/acsami.7b00282http://doi.org/10.1021/acsami.7b00282 .
Pan, L. L.; Sun, S.; Zhang, A. D.; Jiang, K.; Zhang, L.; Dong, C. Q.; Huang, Q.; Wu, A. G.; Lin, H. W . Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing . Adv. Mater. , 2015 . 27 7782 -7787 . DOI:10.1002/adma.201503821http://doi.org/10.1002/adma.201503821 .
Fu, M.; Ehrat, F.; Wang, Y.; Milowska, K. Z.; Reckmeier, C.; Rogach, A. L.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J . Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons . Nano Lett. , 2015 . 15 6030 -6035 . DOI:10.1021/acs.nanolett.5b02215http://doi.org/10.1021/acs.nanolett.5b02215 .
Zhan, J.; Geng, B. J.; Wu, K.; Xu, G.; Wang, L.; Guo, R. Y.; Lei, B.; Zheng, F. F.; Pan, D. Y.; Wu, M. H . A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence . Carbon , 2018 . 130 153 -163 . DOI:10.1016/j.carbon.2017.12.075http://doi.org/10.1016/j.carbon.2017.12.075 .
Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B . Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence . Adv. Mater. , 2017 . 29 1603443 DOI:10.1002/adma.201603443http://doi.org/10.1002/adma.201603443 .
Zhang, M. L.; Hu, L. L.; Wang, H. B.; Song, Y. X.; Liu, Y.; Li, H.; Shao, M. W.; Huang, H.; Kang, Z. H . One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth . Nanoscale , 2018 . 10 12734 -12742 . DOI:10.1039/C8NR01644Ehttp://doi.org/10.1039/C8NR01644E .
Jia, X. F.; Li, J.; Wang, E. K . One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence . Nanoscale , 2012 . 4 5572 -5575 . DOI:10.1039/c2nr31319ghttp://doi.org/10.1039/c2nr31319g .
Shen, J. H.; Zhu, Y. H.; Chen, C.; Yang, X. L.; Li, C. Z . Facile preparation and upconversion luminescence of graphene quantum dots . Chem. Commun. , 2011 . 47 2580 -2582 . DOI:10.1039/C0CC04812Ghttp://doi.org/10.1039/C0CC04812G .
Lu, S. Y.; Yang, B . One step synthesis of efficient orange-red emissive polymer carbon nanodots displaying unexpect two photon fluorescence . Acta Polymerica Sinica (in Chinese) , 2017 . 1200 -1206 . DOI:10.11777/j.issn1000-3304.2017.17070http://doi.org/10.11777/j.issn1000-3304.2017.17070 .
Zhan, Q. Q.; Wang, B. J.; Wen, X. Y.; He, S. L . Controlling the excitation of upconverting luminescence for biomedical theranostics: neodymium sensitizing . Opt. Mater. Express , 2016 . 6 1011 -1023 . DOI:10.1364/OME.6.001011http://doi.org/10.1364/OME.6.001011 .
Molaei, M. J . The optical properties and solar energy conversion applications of carbon quantum dots: a review . Sol. Energy , 2020 . 196 549 -566 . DOI:10.1016/j.solener.2019.12.036http://doi.org/10.1016/j.solener.2019.12.036 .
He, C.; Peng, L. K.; Lv, L. Z.; Cao, Y.; Tu, J. C.; Huang, W.; Zhang, K. X . In situ growth of carbon dots on TiO2 nanotube arrays for PEC enzyme biosensors with visible light response . RSC Adv. , 2019 . 9 15084 -15091 . DOI:10.1039/C9RA01045Ahttp://doi.org/10.1039/C9RA01045A .
Lee, E.; Ryu, J.; Jang, J . Fabrication of graphene quantum dots via size-selective precipitation and their application in upconversion-based dsscs . Chem. Commun. , 2013 . 49 9995 -9997 . DOI:10.1039/c3cc45588bhttp://doi.org/10.1039/c3cc45588b .
Zhu, S. J.; Zhang, J. H.; Liu, X.; Li, B.; Wang, X. F.; Tang, S. J.; Meng, Q. N.; Li, Y. F.; Shi, C.; Hu, R.; Yang, B . Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission . RSC Adv. , 2012 . 2 2717 -2720 . DOI:10.1039/c2ra20182hhttp://doi.org/10.1039/c2ra20182h .
Shockley, W.; Queisser, H. J . Detailed balance limit of efficiency of p-n junction solar cells . J. Appl. Phys. , 1961 . 32 510 -519 . DOI:10.1063/1.1736034http://doi.org/10.1063/1.1736034 .
Richards, B. S . Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers . Sol. Energ. Mat. Sol. C , 2006 . 90 2329 -2337 . DOI:10.1016/j.solmat.2006.03.035http://doi.org/10.1016/j.solmat.2006.03.035 .
Chen, X.; Liu, Q.; Wu, Q. L.; Du, P. W.; Zhu, J.; Dai, S. Y.; Yang, S. F . Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement . Adv. Funct. Mater. , 2016 . 26 1719 -1728 . DOI:10.1002/adfm.201505321http://doi.org/10.1002/adfm.201505321 .
Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Ding, L . 18% Efficiency organic solar cells . Sci. Bull. , 2020 . 65 272 -275 . DOI:10.1016/j.scib.2020.01.001http://doi.org/10.1016/j.scib.2020.01.001 .
Zhang, Q. Q. The preparation and application of carbon dots composites, Master's thesis, Beijing University of Chemical Technology, 2018.
Liu, X. H. Study on the fabrication and perfoemance of organic solar cells based on the modified ZnO interlayer, Doctoral Dissertation, Chinese Academy of Sciences, 2017.
Angelini, G.; De Maria, P.; Fontana, A.; Pierini, M.; Maggini, M.; Gasparrini, F.; Zappia, G . Study of the aggregation properties of a novel amphiphilic C60 fullerene derivative . Langmuir , 2001 . 17 6404 -6407 . DOI:10.1021/la001629ihttp://doi.org/10.1021/la001629i .
Kwon, W.; Lee, G.; Do, S.; Joo, T.; Rhee, S. W . Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials . Small , 2014 . 10 506 -513 . DOI:10.1002/smll.201301770http://doi.org/10.1002/smll.201301770 .
Sharma, R.; Alam, F.; Sharma, A. K.; Dutta, V.; Dhawan, S. K . Role of zinc oxide and carbonaceous nanomaterials in non-fullerene-based polymer bulk heterojunction solar cells for improved cost-to-performance ratio . J. Mater. Chem. A , 2015 . 3 22227 -22238 . DOI:10.1039/C5TA06802Ahttp://doi.org/10.1039/C5TA06802A .
Lim, H.; Lee, K. S.; Liu, Y.; Kim, H. Y.; Son, D. I . Photovoltaic performance of inverted polymer solar cells using hybrid carbon quantum dots and absorption polymer materials . Electron Mater. Lett. , 2018 . 14 581 -586 . DOI:10.1007/s13391-018-0064-8http://doi.org/10.1007/s13391-018-0064-8 .
Liu, C. Y.; Chang, K. W.; Guo, W. B.; Li, H.; Shen, L.; Chen, W. Y.; Yan, D. W . Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells . Appl. Phys. Lett. , 2014 . 105 073306 DOI:10.1063/1.4893994http://doi.org/10.1063/1.4893994 .
Zhang, X. Y.; Li, Z. Q.; Zhang, Z. H.; Liu, C. Y.; Li, J. F.; Guo, W. B.; Qu, S. N . Employing easily prepared carbon nanoparticles to improve performance of inverted organic solar cells . ACS Sustain. Chem. Eng. , 2016 . 4 2359 -2365 . DOI:10.1021/acssuschemeng.6b00036http://doi.org/10.1021/acssuschemeng.6b00036 .
Cui, B.; Yan, L. P.; Gu, H. M.; Yang, Y. Z.; Liu, X. G.; Ma, C. Q.; Chen, Y. K.; Jia, H. S . Fluorescent carbon quantum dots synthesized by chemical vapor deposition: an alternative candidate for electron acceptor in polymer solar cells . Opt. Mater. , 2018 . 75 166 -173 . DOI:10.1016/j.optmat.2017.10.010http://doi.org/10.1016/j.optmat.2017.10.010 .
Wang, Y. W.; Lan, W. X.; Li, N.; Lan, Z. J.; Li, Z.; Jia, J. N.; Zhu, F. R . Stability of nonfullerene organic solar cells: from built-in potential and interfacial passivation perspectives . Adv. Energy Mater. , 2019 . 9 1900157 DOI:10.1002/aenm.201900157http://doi.org/10.1002/aenm.201900157 .
Wang, Y. L.; Yan, L. P.; Ji, G. Q.; Wang, C.; Gu, H. M.; Luo, Q.; Chen, Q.; Chen, L. W.; Yang, Y. Z.; Ma, C. Q.; Liu, X. G . Synthesis of N, S-doped carbon quantum dots for use in organic solar cells as the ZnO modifier to eliminate the light-soaking effect . ACS Appl. Mater. Interfaces , 2019 . 11 2243 -2253 . DOI:10.1021/acsami.8b17128http://doi.org/10.1021/acsami.8b17128 .
Xu, H.; Zhang, L.; Ding, Z. C.; Hu, J. L.; Liu, J.; Liu, Y. C . Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells . Nano Res. , 2018 . 11 4293 -4301 . DOI:10.1007/s12274-018-2015-yhttp://doi.org/10.1007/s12274-018-2015-y .
Ding, Z. C.; Miao, Z. S.; Xie, Z. Y.; Liu, J . Functionalized graphene quantum dots as a novel cathode interlayer of polymer solar cells . J. Mater. Chem. A , 2016 . 4 2413 -2418 . DOI:10.1039/C5TA10102Fhttp://doi.org/10.1039/C5TA10102F .
Yan, L. P.; Yang, Y. Z.; Ma, C. Q.; Liu, X. G.; Wang, H.; Xu, B. S . Synthesis of carbon quantum dots by chemical vapor deposition approach for use in polymer solar cell as the electrode buffer layer . Carbon , 2016 . 109 598 -607 . DOI:10.1016/j.carbon.2016.08.058http://doi.org/10.1016/j.carbon.2016.08.058 .
Li, M. M.; Ni, W.; Kan, B.; Wan, X. J.; Zhang, L.; Zhang, Q.; Long, G. K.; Zuo, Y.; Chen, Y. S . Graphene quantum dots as the hole transport layer material for high-performance organic solar cells . Phys. Chem. Chem. Phys. , 2013 . 15 18973 -18978 . DOI:10.1039/c3cp53283fhttp://doi.org/10.1039/c3cp53283f .
Ding, Z. C.; Hao, Z.; Meng, B.; Xie, Z. Y.; Liu, J.; Dai, L. M . Few-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells . Nano Energy , 2015 . 15 186 -192 . DOI:10.1016/j.nanoen.2015.04.019http://doi.org/10.1016/j.nanoen.2015.04.019 .
Zhang, H. J.; Zhang, Q.; Li, M. M.; Kan, B.; Ni, W.; Wang, Y. C.; Yang, X.; Du, C. X.; Wan, X. J.; Chen, Y. S . Investigation of the enhanced performance and lifetime of organic solar cells using solution-processed carbon dots as the electron transport layers . J. Mater. Chem. C , 2015 . 3 12403 -12409 . DOI:10.1039/C5TC02957Khttp://doi.org/10.1039/C5TC02957K .
Hasani, A.; Gavgani, J. N.; Pashaki, R. M.; Baseghi, S.; Salehi, A.; Heo, D.; Kim, S. Y.; Mahyari, M . Poly(3,4 ethylenedioxythiophene):poly(styrenesulfonate)/iron(III) porphyrin supported on S and N co-doped graphene quantum dots as a hole transport layer in polymer solar cells . Sci. Adv. Mater. , 2017 . 9 1616 -1625 . DOI:10.1166/sam.2017.3181http://doi.org/10.1166/sam.2017.3181 .
Kim, J. K.; Kim, S. J.; Park, M. J.; Bae, S.; Cho, S. P.; Du, Q. G.; Wang, D. H.; Park, J. H.; Hong, B. H . Surface-engineered graphene quantum dots incorporated into polymer layers for high performance organic photovoltaics . Sci. Rep. , 2015 . 5 14276 DOI:10.1038/srep14276http://doi.org/10.1038/srep14276 .
Dang, Y.; Wang, Y. H.; Shen, S.; Huang, S.; Qu, X. W.; Pang, Y.; Silva, S. R. P.; Kang, B. N.; Lu, G. Y . Solution processed hybrid graphene-MoO3 hole transport layers for improved performance of organic solar cells . Org. Electron. , 2019 . 67 95 -100 . DOI:10.1016/j.orgel.2019.01.013http://doi.org/10.1016/j.orgel.2019.01.013 .
Zhao, W. S.; Yan, L. P.; Gu, H. M.; Li, Z. R.; Wang, Y. L.; Luo, Q.; Yang, Y. Z.; Liu, X. G.; Wang, H.; Ma, C. Q . Zinc oxide coated carbon dot nanoparticles as electron transport layer for inverted polymer solar cells . ACS Appl. Energy Mater. , 2020 . 3 11388 -11397 . DOI:10.1021/acsaem.0c02323http://doi.org/10.1021/acsaem.0c02323 .
Zhang, R. Q.; Zhao, M.; Wang, Z. Q.; Wang, Z. T.; Zhao, B.; Miao, Y. Q.; Zhou, Y. J.; Wang, H.; Hao, Y. Y.; Chen, G.; Zhu, F. R . Solution-processable ZnO/carbon quantum dots electron extraction layer for highly efficient polymer solar cells . ACS Appl. Mater. Inter. , 2018 . 10 4895 -4903 . DOI:10.1021/acsami.7b17969http://doi.org/10.1021/acsami.7b17969 .
Kang, R.; Park, S.; Jung, Y. K.; Lim, D. C.; Cha, M. J.; Seo, J. H.; Cho, S . High-efficiency polymer homo-tandem solar cells with carbon quantum-dot-doped tunnel junction intermediate layer . Adv. Energy. Mater. , 2018 . 8 1702165 DOI:10.1002/aenm.201702165http://doi.org/10.1002/aenm.201702165 .
Li, Z. Q.; Dong, J. J.; Liu, C. Y.; Zhang, X. L.; Zhang, X. Y.; Shen, L.; Guo, W. B.; Zhang, L.; Long, Y. B . Improved optical field distribution and charge extraction through an interlayer of carbon nanospheres in polymer solar cells . Chem. Mater. , 2017 . 29 2961 -2968 . DOI:10.1021/acs.chemmater.6b05307http://doi.org/10.1021/acs.chemmater.6b05307 .
Wang, J. A.; Li, H. R.; Lei, Q.; Chang, F. Z.; Fan, W. H.; Zhang, H.; Cai, L. N . Dual-interface modification effect of carbon quantum dots on the performance of polymer solar cells . J. Mater. Sci-Mater. El. , 2019 . 30 11063 -11069 . DOI:10.1007/s10854-019-01448-0http://doi.org/10.1007/s10854-019-01448-0 .
Huang, J. J.; Zhong, Z. F.; Rong, M. Z.; Zhou, X.; Chen, X. D.; Zhang, M. Q . An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency . Carbon , 2014 . 70 190 -198 . DOI:10.1016/j.carbon.2013.12.092http://doi.org/10.1016/j.carbon.2013.12.092 .
Li, Z. Q.; Zhang, X. Y.; Liu, C. Y.; Guo, J. X.; Cui, H. X.; Shen, L.; Guo, W. B . Toward efficient carbon-dots-based electron-extraction layer through surface charge engineering . ACS Appl. Mater. Interfaces , 2018 . 10 40255 -40264 . DOI:10.1021/acsami.8b13523http://doi.org/10.1021/acsami.8b13523 .
Wang, S. C.; Li, Z. J.; Xu, X. P.; Zhang, G. J.; Li, Y.; Peng, Q . Amino-functionalized graphene quantum dots as cathode interlayer for efficient organic solar cells: quantum dot size on interfacial modification ability and photovoltaic performance . Adv. Mater. Interfaces , 2019 . 6 1801480 DOI:10.1002/admi.201801480http://doi.org/10.1002/admi.201801480 .
Juang, T. Y.; Kao, J. C.; Wang, J. C.; Hsu, S. Y.; Chen, C. P . Carbonized bamboo-derived carbon nanodots as efficient cathode interfacial layers in high-performance organic photovoltaics . Adv. Mater. Interfaces , 2018 . 5 1800031 DOI:10.1002/admi.201800031http://doi.org/10.1002/admi.201800031 .
Zhang, X. Y.; Liu, C. Y.; Li, Z. Q.; Guo, J. X.; Shen, L.; Guo, W. B.; Zhang, L.; Ruan, S. P.; Long, Y. B . An easily prepared carbon quantum dots and employment for inverted organic photovoltaic devices . Chem. Eng. J. , 2017 . 315 621 -629 . DOI:10.1016/j.cej.2017.01.067http://doi.org/10.1016/j.cej.2017.01.067 .
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution