1.Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640, China
mszhtang@scut.edu.cn (Z.H.T)
psbcguo@scut.edu.cn (B.C.G)
Scan for full text
Zheng-Hai Tang, Hui Zeng, Si-Qi Wei, et al. Structural Manipulation of Aminal-crosslinked Polybutadiene for Recyclable and Healable Elastomers. [J]. Chinese Journal of Polymer Science 39(10):1337-1344(2021)
Zheng-Hai Tang, Hui Zeng, Si-Qi Wei, et al. Structural Manipulation of Aminal-crosslinked Polybutadiene for Recyclable and Healable Elastomers. [J]. Chinese Journal of Polymer Science 39(10):1337-1344(2021) DOI: 10.1007/s10118-021-2626-8.
Recently, increasingly growing efforts have been devoted to incorporating dynamic covalent bonds into covalently crosslinked networks to address the persistent trade-offs between chemical crosslinking and malleability. Herein, a series of dynamic aminal bond crosslinked polybutadiene rubbers (PAPB) are prepared by crosslinking aldehyde group-terminated polybutadiene rubber (APB) with piperazine. By varying the molecular weight of APB, the crosslinking density of PAPB is changed, which offers the platform to regulate the mechanical characteristics and dynamic properties. Specially, with the decrease of APB molecular weight,i.e,. with the increase of crosslinking density, the modulus of PAPB gradually increases while the elongation at break conversely decreases, and the activation energy for network rearrangement initially decreases and then increases. The resultant PAPB exhibit vitrimer-like behaviors that can alter the network topologies at elevated temperatures without the loss of structural integrity through dissociative aminal exchange reactions, while the protic source can accelerate aminal dissociation and result in network dissolution even at room temperature. Due to the aminal exchange, PAPB are thermally malleable and can almost restore the original mechanical characteristics after recycling; besides, they are capable of healing at a relatively low crosslinking density.
AminalRecyclabilityHealingStructural manipulationDynamic covalent network
Kloxin, C. J.; Bowman, C. N. . Covalent adaptable networks: smart, reconfigurable and responsive network systems . Chem. Soc. Rev. , 2013 . 42 7161 -7173 . DOI:10.1039/C3CS60046Ghttp://doi.org/10.1039/C3CS60046G .
Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. . Dynamic covalent chemistry . Angew. Chem. Int. Ed. , 2002 . 41 898 -952 . DOI:10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-Ehttp://doi.org/10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E .
Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. . Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities . Prog. Polym. Sci. , 2018 . 80 39 -93 . DOI:10.1016/j.progpolymsci.2018.03.002http://doi.org/10.1016/j.progpolymsci.2018.03.002 .
Wu, S.; Tang, Z.; Guo, B. . Design and performance of rubbers cross-linked with dynamic covalent bonds . Acta Polymerica Sinica (in Chinese) , 2019 . 50 442 -450. .
Jin, Y.; Lei, Z.; Taynton, P.; Huang, S.; Zhang, W. . Malleable and recyclable thermosets: the next generation of plastics . Matter , 2019 . 1 1456 -1493 . DOI:10.1016/j.matt.2019.09.004http://doi.org/10.1016/j.matt.2019.09.004 .
Chen, Y.; Tang, Z.; Liu, Y.; Wu, S.; Guo, B. . Mechanically robust, self-healable, and reprocessable elastomers enabled by dynamic dual cross-links . Macromolecules , 2019 . 52 3805 -3812 . DOI:10.1021/acs.macromol.9b00419http://doi.org/10.1021/acs.macromol.9b00419 .
Roy, N.; Bruchmann, B.; Lehn, J. M. . Dynamers: dynamic polymers as self-healing materials . Chem. Soc. Rev. , 2015 . 44 3786 -3807 . DOI:10.1039/C5CS00194Chttp://doi.org/10.1039/C5CS00194C .
Bai, J.; Li, H.; Shi, Z.; Yin, J. . An eco-friendly scheme for the cross-linked polybutadiene elastomer via thiol-ene and Diels-Alder click chemistry . Macromolecules , 2015 . 48 3539 -3546 . DOI:10.1021/acs.macromol.5b00389http://doi.org/10.1021/acs.macromol.5b00389 .
Polgar, L. M.; van Duin, M.; Broekhuis, A. A.; Picchioni, F. . Use of Diels-Alder chemistry for thermoreversible cross-linking of rubbers: the next step toward recycling of rubber products? . Macromolecules , 2015 . 48 7096 -7105 . DOI:10.1021/acs.macromol.5b01422http://doi.org/10.1021/acs.macromol.5b01422 .
Denissen, W.; Winne, J. M.; Du Prez, F. E. . Vitrimers: permanent organic networks with glass-like fluidity . Chem. Sci. , 2016 . 7 30 -38 . DOI:10.1039/C5SC02223Ahttp://doi.org/10.1039/C5SC02223A .
Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. . Silica-like malleable materials from permanent organic networks . Science , 2011 . 334 965 -968 . DOI:10.1126/science.1212648http://doi.org/10.1126/science.1212648 .
Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. . Metal-catalyzed transesterification for healing and assembling of thermosets . J. Am. Chem. Soc. , 2012 . 134 7664 -7667 . DOI:10.1021/ja302894khttp://doi.org/10.1021/ja302894k .
Yang, Y.; Terentjev, E. M.; Wei, Y.; Ji, Y. . Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures . Nat. Commun. , 2018 . 9 1906 DOI:10.1038/s41467-018-04257-xhttp://doi.org/10.1038/s41467-018-04257-x .
Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W. . Heat- or water-driven malleability in a highly recyclable covalent network polymer . Adv. Mater. , 2014 . 26 3938 -3942 . DOI:10.1002/adma.201400317http://doi.org/10.1002/adma.201400317 .
Zhang, H.; Wang, D.; Liu, W.; Li, P.; Liu, J.; Liu, C.; Zhang, J.; Zhao, N.; Xu, J. . Recyclable polybutadiene elastomer based on dynamic imine bond . J. Polym. Sci., Part A: Polym. Chem. , 2017 . 55 2011 -2018 . DOI:10.1002/pola.28577http://doi.org/10.1002/pola.28577 .
Lei, Z. Q.; Xiang, H. P.; Yuan, Y. J.; Rong, M. Z.; Zhang, M. Q. . Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds . Chem. Mater. , 2014 . 26 2038 -2046 . DOI:10.1021/cm4040616http://doi.org/10.1021/cm4040616 .
Canadell, J.; Goossens, H.; Klumperman, B. . Self-healing materials based on disulfide links . Macromolecules , 2011 . 44 2536 -2541 . DOI:10.1021/ma2001492http://doi.org/10.1021/ma2001492 .
Lu, Y. X.; Tournilhac, F.; Leibler, L.; Guan, Z. . Making insoluble polymer networks malleable via olefin metathesis . J. Am. Chem. Soc. , 2012 . 134 8424 -8427 . DOI:10.1021/ja303356zhttp://doi.org/10.1021/ja303356z .
Zheng, P.; McCarthy, T. J. . A surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism . J. Am. Chem. Soc. , 2012 . 134 2024 -2027 . DOI:10.1021/ja2113257http://doi.org/10.1021/ja2113257 .
Bao, C.; Jiang, Y. J.; Zhang, H.; Lu, X.; Sun, J. . Room-temperature self-healing and recyclable tough polymer composites using nitrogen-coordinated boroxines . Adv. Funct. Mater. , 2018 . 28 1800560 DOI:10.1002/adfm.201800560http://doi.org/10.1002/adfm.201800560 .
Cromwell, O. R.; Chung, J.; Guan, Z. . Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds . J. Am. Chem. Soc. , 2015 . 137 6492 -6495 . DOI:10.1021/jacs.5b03551http://doi.org/10.1021/jacs.5b03551 .
Guerre, M.; Taplan, C.; Nicolay, R.; Winne, J. M.; Du Prez, F. E. . Fluorinated vitrimer elastomers with a dual temperature response . J. Am. Chem. Soc. , 2018 . 140 13272 -13284 . DOI:10.1021/jacs.8b07094http://doi.org/10.1021/jacs.8b07094 .
Van Zee, N. J.; Nicolaÿ, R. . Vitrimers: permanently crosslinked polymers with dynamic network topology . Prog. Polym. Sci. , 2020 . 104 101233 -101245 . DOI:10.1016/j.progpolymsci.2020.101233http://doi.org/10.1016/j.progpolymsci.2020.101233 .
Yang, Y.; Zhang, S.; Zhang, X.; Gao, L.; Wei, Y.; Ji, Y. . Detecting topology freezing transition temperature of vitrimers by AIE luminogens . Nat. Commun. , 2019 . 10 3165 -3165 . DOI:10.1038/s41467-019-11144-6http://doi.org/10.1038/s41467-019-11144-6 .
Capelot, M.; Unterlass, M. M.; Tournilhac, F.; Leibler, L. . Catalytic control of the vitrimer glass transition . ACS Macro Lett. , 2012 . 1 789 -792 . DOI:10.1021/mz300239fhttp://doi.org/10.1021/mz300239f .
Denissen, W.; Droesbeke, M.; Nicolay, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. . Chemical control of the viscoelastic properties of vinylogous urethane vitrimers . Nat. Commun. , 2017 . 8 14857 -14864 . DOI:10.1038/ncomms14857http://doi.org/10.1038/ncomms14857 .
He, C.; Shi, S.; Wang, D.; Helms, B. A.; Russell, T. P. . Poly (oxime-ester) vitrimers with catalyst-free bond exchange . J. Am. Chem. Soc. , 2019 . 141 13753 -13757 . DOI:10.1021/jacs.9b06668http://doi.org/10.1021/jacs.9b06668 .
Delahaye, M.; Winne, J. M.; Du Prez, F. E. . Internal catalysis in covalent adaptable networks: phthalate monoester transesterification as a versatile dynamic cross-linking chemistry . J. Am. Chem. Soc. , 2019 . 141 15277 -15287 . DOI:10.1021/jacs.9b07269http://doi.org/10.1021/jacs.9b07269 .
Ying, H.; Zhang, Y.; Cheng, J. . Dynamic urea bond for the design of reversible and self-healing polymers . Nat. Commun. , 2014 . 5 1 -9. .
Tang, Z.; Liu, Y.; Guo, B.; Zhang, L. . Malleable, mechanically strong, and adaptive elastomers enabled by interfacial exchangeable bonds . Macromolecules , 2017 . 50 7584 -7592 . DOI:10.1021/acs.macromol.7b01261http://doi.org/10.1021/acs.macromol.7b01261 .
Liu, Y.; Tang, Z.; Chen, Y.; Zhang, C.; Guo, B. . Engineering of β-hydroxyl esters into elastomer-nanoparticle interface toward malleable, robust, and reprocessable vitrimer composites . ACS Appl. Mater. Interfaces , 2018 . 10 2992 -3001 . DOI:10.1021/acsami.7b17465http://doi.org/10.1021/acsami.7b17465 .
Liu, Y.; Tang, Z.; Chen, J.; Xiong, J.; Wang, D.; Wang, S.; Wu, S.; Guo, B. . Tuning the mechanical and dynamic properties of imine bond crosslinked elastomeric vitrimers by manipulating the crosslinking degree . Polym. Chem. , 2020 . 11 1348 -1355 . DOI:10.1039/C9PY01826Chttp://doi.org/10.1039/C9PY01826C .
Hayashi, M.; Yano, R. . Fair Investigation of cross-Link density effects on the bond-exchange properties for trans-esterification-based vitrimers with identical concentrations of reactive groups . Macromolecules , 2020 . 53 182 -189 . DOI:10.1021/acs.macromol.9b01896http://doi.org/10.1021/acs.macromol.9b01896 .
Chao, A.; Zhang, D. . Investigation of secondary amine-derived aminal bond exchange toward the development of covalent adaptable networks . Macromolecules , 2019 . 52 495 -503 . DOI:10.1021/acs.macromol.8b02654http://doi.org/10.1021/acs.macromol.8b02654 .
Billman, J. H.; Ho, J. Y. C.; Caswell, L. R. . The formation of solid derivatives of aldehydes. I. 2-Substituted-1,3-bis(p-methoxybenzyl)-tetrahydroimidazoles . J. Org. Chem. , 1952 . 17 1375 -1378 . DOI:10.1021/jo50010a015http://doi.org/10.1021/jo50010a015 .
Hine, J.; Narducy, K. W. . Imines, imidazolidines, and imidazolidinium ions from the reactions of ethylenediamine derivatives with isobutyraldehyde and acetone . J. Am. Chem. Soc. , 1973 . 95 3362 -3368 . DOI:10.1021/ja00791a047http://doi.org/10.1021/ja00791a047 .
Tuszynski, G. P.; Kallen, R. G. . Tetrahydrofolic acid model studies. I. Equilibrium and kinetic studies of the reactions of symmetrically substituted N,N'-diphenylethylenediamines with formaldehyde. Carbinolamine and imidazolidine formation . J. Am. Chem. Soc. , 1975 . 97 2860 -2875 . DOI:10.1021/ja00843a042http://doi.org/10.1021/ja00843a042 .
Zhou, Q.; Jie, S.; Li, B.-G. . Preparation of hydroxyl-terminated polybutadiene with high cis-1,4 content . Ind. Eng. Chem. Res. , 2014 . 53 17884 -17893 . DOI:10.1021/ie503652ghttp://doi.org/10.1021/ie503652g .
Katritzky, A. R.; Katritzky, A. R.; Yannakopoulou, K.; Yannakopoulou, K.; Lang, H. . Aminal exchange . Perkin 2: an International Journal of Physical Organic Chemistry , 1994 . 1867 -1870. .
Zhang, L.; Rowan, S. J. . Effect of sterics and degree of cross-linking on the mechanical properties of dynamic poly(alkylurea-urethane) networks . Macromolecules , 2017 . 50 5051 -5060 . DOI:10.1021/acs.macromol.7b01016http://doi.org/10.1021/acs.macromol.7b01016 .
Zhang, G.; Zhao, Q.; Yang, L.; Zou, W.; Xi, X.; Xie, T. . Exploring dynamic equilibrium of Diels-Alder reaction for solid state plasticity in remoldable shape memory polymer network . ACS Macro Lett. , 2016 . 5 805 -808 . DOI:10.1021/acsmacrolett.6b00357http://doi.org/10.1021/acsmacrolett.6b00357 .
Elling, B. R.; Dichtel, W. R. . Reprocessable cross-linked polymer networks: are associative exchange mechanisms desirable? . ACS Central Sci. , 2020 . 6 1488 -1496 . DOI:10.1021/acscentsci.0c00567http://doi.org/10.1021/acscentsci.0c00567 .
0
Views
4
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution