1.MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
wwgao@zju.edu.cn (W.W.G.)
chaogao@zju.edu.cn (C.G.)
Scan for full text
Piao Ma, Peng Li, Ya Wang, et al. Liquid Crystalline Microdroplets of Graphene Oxide
Piao Ma, Peng Li, Ya Wang, et al. Liquid Crystalline Microdroplets of Graphene Oxide
Study of stable liquid crystal (LC) microdroplets is of great significance for LC dynamics in confined space or at topological surface. However, the fabrication of LC microdroplets with diverse shape without ionic gelation agents still remains challenging due to the fluid instability. Here, we utilize the microfluidic technology to prepare graphene oxide (GO) LC microdroplets with various morphologies based on the anomalous rheological property of GO aqueous dispersion. Different from LC of one-dimensional polymer, LC containing two-dimensional GO sheets exhibits considerable viscoelasticity and weak extensibility, resulting from the planar molecular conformation and the absence of intermolecular entanglements. The low extensibility ensures that GO aqueous suspension is discretized into monodispersed microdroplets rather than thin thread in the microfluidic channels. The large viscoelasticity and ultra-long relaxation time of GO LC enable the diverse stable morphologies of microdroplets. The droplet morphology is well controlled from sphere to teardrop by modulating the competition between GO viscoelasticity and interfacial tension. The two-dimensional GO LC featuring unique rheological property provides a novel system for the microfluidic field, and corresponding topological stability enriches the LC dynamics and opens a new pathway for designing graphene-based materials.
Graphene oxideLiquid crystalMicrodropletsMicrofluidics
Dutta, D.; Fruitwala, H.; Kohli, A.; Weiss, R. A. . Polymer blends containing liquid crystals: a review . Polym. Eng. Sci. , 1990 . 30 1005 -1018 . DOI:10.1002/pen.760301704http://doi.org/10.1002/pen.760301704 .
Stevenson, C. L.; Bennett, D. B.; Lechuga-Ballesteros, D. . Pharmaceutical liquid crystals: the relevance of partially ordered systems . J. Pharm. Sci. , 2010 . 94 1861 -1880. .
Yang, Q.; Jiang, Y.; Fan, D.; Zheng, K.; Zhang, J.; Xu, Z.; Yao, W.; Zhang, Q.; Song, Y.; Zheng, Q.; Fan, L.; Gao, W.; Gao, C. . Nonsphere drop impact assembly of graphene oxide liquid crystals . ACS Nano , 2019 . 13 8382 -8391 . DOI:10.1021/acsnano.9b03926http://doi.org/10.1021/acsnano.9b03926 .
Hamlington, B. D.; Steinhaus, B.; Feng, J. J.; Link, D.; Shelley, M. J.; Shen, A. Q. . Liquid crystal droplet production in a microfluidic device . Liq. Cryst. , 2007 . 34 861 -870 . DOI:10.1080/02678290601171485http://doi.org/10.1080/02678290601171485 .
Zhang, C. X.; Li, Z. F.; Zhou, Q. F.; Zhou, H. B. . Study on liquid crystal polymers with two-dimensional mesogenic units . Chinese J. Polym. Sci. , 1993 . 11 348 -353. .
Bollhorst, T.; Rezwan, K.; Maas, M. . Colloidal capsules: nano- and microcapsules with colloidal particle shells . Chem. Soc. Rev. , 2017 . 46 2091 -2126 . DOI:10.1039/C6CS00632Ahttp://doi.org/10.1039/C6CS00632A .
Cira, N. J.; Benusiglio, A.; Prakash, M. . Vapour-mediated sensing and motility in two-component droplets . Nature , 2015 . 519 446 -450 . DOI:10.1038/nature14272http://doi.org/10.1038/nature14272 .
Xin, G.; Zhu, W.; Deng, Y.; Cheng, J.; Zhang, L. T.; Chung, A. J. . Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres . Nat. Nanotechnol. , 2019 . 14 168 -175 . DOI:10.1038/s41565-018-0330-9http://doi.org/10.1038/s41565-018-0330-9 .
Dickinson, E. . Stabilising emulsion-based colloidal structures with mixed food ingredients . Sci. Food Agric. , 2013 . 93 710 -721 . DOI:10.1002/jsfa.6013http://doi.org/10.1002/jsfa.6013 .
Chen, L. J.; Gong, L. L.; Lin, Y. L.; Jin, X. Y.; Li, H. Y.; Li, S. S.; Che, K. J.; Cai, Z. P.; Yang, C. J. . Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers . Lab. Chip. , 2016 . 16 1206 -13 . DOI:10.1039/C6LC00070Chttp://doi.org/10.1039/C6LC00070C .
Tomasz, S. K.; Ott, S.; Piotr, G. . Droplet microfluidics for microbiology: techniques, applications and challenges . Lab. Chip. , 2016 . 16 2168 -2187 . DOI:10.1039/C6LC00367Bhttp://doi.org/10.1039/C6LC00367B .
Steinhaus, B.; Shen, A. Q.; Sureshkumar, R. . Dynamics of viscoelastic fluid filaments in microfluidic devices . Phys. Fluids , 2007 . 19 5 .
Geschiere, S. D.; Ziemecka, I.; Steijn, V.; Koper, G. J.; Esch, J. H.; Kreutzer, M. T. . Slow growth of the Rayleigh-Plateau instability in aqueous two phase systems . Biomicrofluidics , 2012 . 6 22007 -2200711 . DOI:10.1063/1.3700117http://doi.org/10.1063/1.3700117 .
Park, J. Y.; Suh, K. Y.; Seo, S. M.; Lee, H. H. . Anisotropic rupture of polymer strips driven by rayleigh instability . J. Chem. Phys. , 2006 . 124 214710 DOI:10.1063/1.2206580http://doi.org/10.1063/1.2206580 .
Fang, W. Z.; Peng, L.; Liu, Y. J.; Wang, F.; Gao, C. . A review on graphene oxide two-dimensional macromolecules: from single molecules to macro-assembly . Chinese J. Polym. Sci. , 2020 . 39 267 -308. .
Xu, J. H.; Li, S. W.; Tan, J.; Wang, Y. J.; Luo, G. S. . Preparation of highly monodisperse droplet in a T-junction microfluidic device . Aiche J. , 2006 . 52 3005 -3010 . DOI:10.1002/aic.10924http://doi.org/10.1002/aic.10924 .
Downs, F. G.; Lunn, D. J.; Booth, M. J.; Sauer, J. B.; Bayley, H. . Multi-responsive hydrogel structures from patterned droplet networks . Nat. Chem. , 2020 . 12 363 -371 . DOI:10.1038/s41557-020-0444-1http://doi.org/10.1038/s41557-020-0444-1 .
Jiang, Y.; Guo, F.; Xu, Z.; Gao, W.; Gao, C. . Artificial colloidal liquid metacrystals by shearing microlithography . Nat. Commun. , 2019 . 10 4111 DOI:10.1038/s41467-019-11941-zhttp://doi.org/10.1038/s41467-019-11941-z .
Yeo, S. J.; Oh, M. J.; Jun, H. M.; Lee, M.; Bae, J. G.; Kim, Y.; Park, K. J.; Lee, S.; Lee, D.; Weon, B. M. . A plesiohedral cellular network of graphene bubbles for ultralight, strong, and superelastic materials . Adv. Mater. , 2018 . 30 1802997 .
Mei, S.; Feng, X.; Jin, Z. . Fabrication of polymer nanospheres based on rayleigh instability in capillary channels . Macromolecules , 2011 . 44 1615 -1620 . DOI:10.1021/ma102573phttp://doi.org/10.1021/ma102573p .
Xia, J. H.; Jiang, Y.; Gong, S. H.; Sun, Z.; Wang. Y. H. . Effects of side chains with similar lengths and different structures of polyimides on liquid crystal alignment behavior . Chinese J. Polym. Sci. , 2014 . 32 1610 -1619 . DOI:10.1007/s10118-014-1550-6http://doi.org/10.1007/s10118-014-1550-6 .
Kadam, N. R. . Non-spherical polymersomes: formation and characterization . J. Pharmaceut. Biomed. , 2015 . 8 13 -19. .
Christopher, G. F.; Anna, S. L. . Microfluidic methods for generating continuous droplet streams . J. Phy. D. Appl. Phys. , 2007 . 40 319 -336 . DOI:10.1088/0022-3727/40/19/R01http://doi.org/10.1088/0022-3727/40/19/R01 .
Wang, W. C.; Pan, Y. X.; Shi, K.; Peng, C.; Jia, X. L. . Hierarchical porous polymer beads prepared by polymerization-induced phase separation and emulsion-template in a microfluidic device . Chinese J. Polym. Sci. , 2014 . 32 1646 -1654 . DOI:10.1007/s10118-014-1547-1http://doi.org/10.1007/s10118-014-1547-1 .
Sengupta, A.; Herminghaus, S.; Bahr, C. . Liquid crystal microfluidics: surface, elastic and viscous interactions at microscales . Liq. Cryst. Rev. , 2014 . 2 73 -110 . DOI:10.1080/21680396.2014.963716http://doi.org/10.1080/21680396.2014.963716 .
Yao, B.; Chen, J.; Huang, L.; Zhou, Q.; Shi, G. . Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures . Adv. Mater. , 2016 . 28 1623 -1629 . DOI:10.1002/adma.201504594http://doi.org/10.1002/adma.201504594 .
Zhu, P. G.; Wang, L. Q. . Passive and active droplet generation with microfluidics: a review . Lab. Chip. , 2017 . 17 34 -75 . DOI:10.1039/C6LC01018Khttp://doi.org/10.1039/C6LC01018K .
Ji, E. K.; Han, T. H.; Sun, H. L.; Ju, Y. K.; Sang, O. K. . Graphene oxide liquid crystals . Angew. Chem. Int. Ed. , 2011 . 50 3043 -3047 . DOI:10.1002/ange.201004692http://doi.org/10.1002/ange.201004692 .
Xu, Z.; Gao, C. . Aqueous liquid crystals of graphene oxide . ACS Nano , 2011 . 5 2908 DOI:10.1021/nn200069whttp://doi.org/10.1021/nn200069w .
Yao, W.; Mao, R.; Gao, W.; Chen, W.; Xu, Z.; Gao, C. . Piezoresistive effect of superelastic graphene aerogel spheres . Carbon , 2020 . 158 418 -425 . DOI:10.1016/j.carbon.2019.11.005http://doi.org/10.1016/j.carbon.2019.11.005 .
Zhao, X.; Yao, W.; Gao, W.; Chen, H.; Gao, C. . Wet-spun superelastic graphene aerogel millispheres with group effect . Adv. Mater. , 2017 . 29 1701482 DOI:10.1002/adma.201701482http://doi.org/10.1002/adma.201701482 .
Lopez-Polin, G.; Gomez-Navarro, C.; Parente, V.; Guinea, F.; Gomez-Herrero, J. . Increasing the elastic modulus of graphene by controlled defect creation . Nat. Phys. , 2015 . 11 26 -31 . DOI:10.1038/nphys3183http://doi.org/10.1038/nphys3183 .
Xu, Z.; Gao, C. . Graphene in macroscopic order: liquid crystals and wet-spun fibers . Acc. Chem. Res. , 2014 . 47 1267 -76 . DOI:10.1021/ar4002813http://doi.org/10.1021/ar4002813 .
Lv, L.; Zhang, P.; Cheng, H.; Zhao, Y.; Zhang, Z.; Shi, G. . Solution-processed ultraelastic and strong air-bubbled graphene foams . Small , 2016 . 12 3229 -1629 . DOI:10.1002/smll.201600509http://doi.org/10.1002/smll.201600509 .
Ho, D. H.; Jun, H. M.; Yeo, S. J.; Hong, P.; Oh, M. J.; Weon, B. M.; Lee, W. B. . Ultralightweight strain-responsive 3D graphene network . J. Phys. Chem. C , 2019 . 123 9884 -9893 . DOI:10.1021/acs.jpcc.9b00630http://doi.org/10.1021/acs.jpcc.9b00630 .
Jiang, Y.; Wang, Y.; Xu, Z.; Gao, C. . Conformation engineering of two-dimensional macromolecules: a case study with graphene oxide . Acc. Chem. Res. , 2020 . 1 175 -187 . DOI:10.1021/accountsmr.0c00027http://doi.org/10.1021/accountsmr.0c00027 .
Sheng, J. J. . Preferred calculation formula and buoyancy effect on capillary number: discussion of capillary number . Asia-Pacific J. Chem. Eng. , 2015 . 10 25 -47 . DOI:10.1002/apj.1883http://doi.org/10.1002/apj.1883 .
Li, P.; Yang, M.; Liu, Y.; Qin, H.; Liu, J.; Meng, F.; Lin, J.; Wang, F.; Gao, C . Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization . Nat. Commun. , 2020 . 11 2645 .
Wang, Y.; Wang, S.; Li, P.; Rajendran, S.; Xu, Z.; Liu, S.; Gou, F.; He, Y.; Li, Z.; Xu, Z.; Gao, C . Conformational scaling relations of two-dimensional macromolecular graphene oxide in solution . Matter , 2020 . 3 230 -245 . DOI:10.1016/j.matt.2020.04.023http://doi.org/10.1016/j.matt.2020.04.023 .
Pawar, A. B.; Caggioni, M.; Ergun, R.; Hartel, R. W.; Spicer, P. T. . Arrested coalescence in pickering emulsions . Soft Matter , 2011 . 7 7710 DOI:10.1039/c1sm05457khttp://doi.org/10.1039/c1sm05457k .
Caggioni, M.; Bayles, A. V.; Lenis, J.; Furst, E. M.; Spicer, P. T. . Interfacial stability and shape change of anisotropic endoskeleton droplets . Soft Matter , 2014 . 10 7647 DOI:10.1039/C4SM01482Khttp://doi.org/10.1039/C4SM01482K .
0
Views
4
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution