a.Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
b.Xi’an Jiaotong University Suzhou Academy, Suzhou 215123, China
zhichengzhang@mail.xjtu.edu.cn
Scan for full text
Hong-Hong Gong, Ying Zhang, Yi-Pin Cheng, et al. The Application of Controlled/Living Radical Polymerization in Modification of PVDF-based Fluoropolymer. [J]. Chinese Journal of Polymer Science 39(9):1110-1126(2021)
Hong-Hong Gong, Ying Zhang, Yi-Pin Cheng, et al. The Application of Controlled/Living Radical Polymerization in Modification of PVDF-based Fluoropolymer. [J]. Chinese Journal of Polymer Science 39(9):1110-1126(2021) DOI: 10.1007/s10118-021-2616-x.
Fluorinated polymers are important materials that are widely used in many areas as taking the advantage of inertness to chemical corrosion, prominent weather resistance, low flammability, and good thermal stability. Poly(vinylidene fluoride) (PVDF) based fluoropolymers is the most common type of commercial fluoropolymer especially used as dielectric materials. However, there are always some shortcomings in practical applications, so it is necessary to modify PVDF-based fluoropolymers for better application. Controlled/living radical polymerization (CRP) and related techniques have become a powerful approach to tailoring the chemical and physical properties of materials and have given rise to great advances in modification of PVDF-based fluoropolymers.
CRPPVDF-based fluoropolymersATRPRAFT
Corrigan, N.; Jung, K.; Moad, G.; Hawker, C. J.; Matyjaszewski, K.; Boyer, C. . Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications . Prog. Polym. Sci. , 2020 . 111 101311 DOI:10.1016/j.progpolymsci.2020.101311http://doi.org/10.1016/j.progpolymsci.2020.101311 .
Yeow, J.; Chapman, R.; Gormley, A. J.; Boyer, C. . Up in the air: oxygen tolerance in controlled/living radical polymerisation . Chem. Soc. Rev. , 2018 . 47 4357 -4387 . DOI:10.1039/C7CS00587Chttp://doi.org/10.1039/C7CS00587C .
Ouchi, M.; Sawamoto, M. . 50th Anniversary perspective: metal-catalyzed living radical polymerization: discovery and perspective . Macromolecules , 2017 . 50 2603 -2614 . DOI:10.1021/acs.macromol.6b02711http://doi.org/10.1021/acs.macromol.6b02711 .
Anastasaki, A.; Nikolaou, V.; Nurumbetov, G.; Wilson, P.; Kempe, K.; Quinn, J. F.; Davis, T. P.; Whittaker, M. R.; Haddleton, D. M. . Cu(0)-mediated living radical polymerization: a versatile tool for materials synthesis . Chem. Rev. , 2016 . 116 835 -877 . DOI:10.1021/acs.chemrev.5b00191http://doi.org/10.1021/acs.chemrev.5b00191 .
Zetterlund, P. B.; Thickett, S. C.; Perrier, S.; Bourgeat-Lami, E.; Lansalot, M. . Controlled/living radical polymerization in dispersed systems: an update . Chem. Rev. , 2015 . 115 9745 -9800 . DOI:10.1021/cr500625khttp://doi.org/10.1021/cr500625k .
Poli, R.; Allan, L. E. N.; Shaver, M. P. . Iron-mediated reversible deactivation controlled radical polymerization . Prog. Polym. Sci. , 2014 . 39 1827 -1845 . DOI:10.1016/j.progpolymsci.2014.06.003http://doi.org/10.1016/j.progpolymsci.2014.06.003 .
Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. . Nitroxide-mediated polymerization . Prog. Polym. Sci. , 2013 . 38 63 -235 . DOI:10.1016/j.progpolymsci.2012.06.002http://doi.org/10.1016/j.progpolymsci.2012.06.002 .
Bagheri, A.; Fellows, C. M.; Boyer, C. . Reversible deactivation radical polymerization: from polymer network synthesis to 3D printing . Adv. Sci. , 2021 . 8 2003701 DOI:10.1002/advs.202003701http://doi.org/10.1002/advs.202003701 .
An, Z.; Zhu, S.; An, Z. . Heterogeneous photocatalytic reversible deactivation radical polymerization . Polym. Chem. , 2021 . 12 2357 -2373 . DOI:10.1039/D1PY00130Bhttp://doi.org/10.1039/D1PY00130B .
Gong, H.; Gu, Y.; Chen, M. . Controlled/living radical polymerization of semifluorinated (meth)acrylates . Synlett , 2018 . 29 1543 -1551 . DOI:10.1055/s-0036-1591974http://doi.org/10.1055/s-0036-1591974 .
Zoppe, J. O.; Ataman, N. C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H. A. . Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes . Chem. Rev. , 2017 . 117 1105 -1318 . DOI:10.1021/acs.chemrev.6b00314http://doi.org/10.1021/acs.chemrev.6b00314 .
Ogura, Y.; Takenaka, M.; Sawamoto, M.; Terashima, T. . Fluorous gradient copolymers via in-situ transesterification of a perfluoromethacrylate in tandem living radical polymerization: precision synthesis and physical properties . Macromolecules , 2018 . 51 864 -871 . DOI:10.1021/acs.macromol.7b02512http://doi.org/10.1021/acs.macromol.7b02512 .
Ogura, Y.; Terashima, T.; Sawamoto, M. . Amphiphilic PEG-functionalized gradient copolymers via tandem catalysis of living radical polymerization and transesterification . Macromolecules , 2017 . 50 822 -831 . DOI:10.1021/acs.macromol.6b02358http://doi.org/10.1021/acs.macromol.6b02358 .
Ren, J. M.; McKenzie, T. G.; Fu, Q.; Wong, E. H. H.; Xu, J.; An, Z.; Shanmugam, S.; Davis, T. P.; Boyer, C.; Qiao, G. G. . Star polymers . Chem. Rev. , 2016 . 116 6743 -6836 . DOI:10.1021/acs.chemrev.6b00008http://doi.org/10.1021/acs.chemrev.6b00008 .
Jennings, J.; He, G.; Howdle, S. M.; Zetterlund, P. B. . Block copolymer synthesis by controlled/living radical polymerization in heterogeneous systems . Chem. Soc. Rev. , 2016 . 45 5055 -5084 . DOI:10.1039/C6CS00253Fhttp://doi.org/10.1039/C6CS00253F .
Messina, M. S.; Messina, K. M. M.; Bhattacharya, A.; Montgomery, H. R.; Maynard, H. D. . Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP . Prog. Polym. Sci. , 2020 . 100 101186 DOI:10.1016/j.progpolymsci.2019.101186http://doi.org/10.1016/j.progpolymsci.2019.101186 .
Keddie, D. J. . A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization . Chem. Soc. Rev. , 2014 . 43 496 -505 . DOI:10.1039/C3CS60290Ghttp://doi.org/10.1039/C3CS60290G .
Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K. . ATRP in the design of functional materials for biomedical applications . Prog. Polym. Sci. , 2012 . 37 18 -37 . DOI:10.1016/j.progpolymsci.2011.08.001http://doi.org/10.1016/j.progpolymsci.2011.08.001 .
Navarro, L. A.; Enciso, A. E.; Matyjaszewski, K.; Zauscher, S. . Enzymatically degassed surface-initiated atom transfer radical polymerization with real-time monitoring . J. Am. Chem. Soc. , 2019 . 141 3100 -3109 . DOI:10.1021/jacs.8b12072http://doi.org/10.1021/jacs.8b12072 .
Ran, J.; Wu, L.; Zhang, Z.; Xu, T. . Atom transfer radical polymerization (ATRP): a versatile and forceful tool for functional membranes . Prog. Polym. Sci. , 2014 . 39 124 -144 . DOI:10.1016/j.progpolymsci.2013.09.001http://doi.org/10.1016/j.progpolymsci.2013.09.001 .
Matyjaszewski, K. . Atom transfer radical polymerization (ATRP): current status and future perspectives . Macromolecules , 2012 . 45 4015 -4039 . DOI:10.1021/ma3001719http://doi.org/10.1021/ma3001719 .
Whitfield, R.; Parkatzidis, K.; Bradford, K. G. E.; Truong, N. P.; Konkolewicz, D.; Anastasaki, A. . Low ppm CuBr-triggered atom transfer radical polymerization under mild conditions . Macromolecules , 2021 . 54 3075 -3083 . DOI:10.1021/acs.macromol.0c02519http://doi.org/10.1021/acs.macromol.0c02519 .
Zhou, Y. N.; Li, J. J.; Wu, Y. Y.; Luo, Z. H. . Role of external field in polymerization: mechanism and kinetics . Chem. Rev. , 2020 . 120 2950 -3048 . DOI:10.1021/acs.chemrev.9b00744http://doi.org/10.1021/acs.chemrev.9b00744 .
Pan, X.; Fantin, M.; Yuan, F.; Matyjaszewski, K. . Externally controlled atom transfer radical polymerization . Chem. Soc. Rev. , 2018 . 47 5457 -5490 . DOI:10.1039/C8CS00259Bhttp://doi.org/10.1039/C8CS00259B .
Chmielarz, P.; Fantin, M.; Park, S.; Isse, A. A.; Gennaro, A.; Magenau, A. J. D.; Sobkowiak, A.; Matyjaszewski, K. . Electrochemically mediated atom transfer radical polymerization (eATRP) . Prog. Polym. Sci. , 2017 . 69 47 -78 . DOI:10.1016/j.progpolymsci.2017.02.005http://doi.org/10.1016/j.progpolymsci.2017.02.005 .
Szczepaniak, G.; Fu, L.; Jafari, H.; Kapil, K.; Matyjaszewski, K. . Making ATRP more practical: oxygen tolerance . Acc. Chem. Res. , 2021 . 54 1779 -1790 . DOI:10.1021/acs.accounts.1c00032http://doi.org/10.1021/acs.accounts.1c00032 .
Wang, G.; Wang, Z.; Lee, B.; Yuan, R.; Lu, Z.; Yan, J.; Pan, X.; Song, Y.; Bockstaller, M. R.; Matyjaszewski, K. . Polymerization-induced self-assembly of acrylonitrile via ICAR ATRP . Polymer , 2017 . 129 57 -67 . DOI:10.1016/j.polymer.2017.09.029http://doi.org/10.1016/j.polymer.2017.09.029 .
Abreu, C. M. R.; Fu, L.; Carmali, S.; Serra, A. C.; Matyjaszewski, K.; Coelho, J. F. J. . Aqueous SARA ATRP using inorganic sulfites . Polym. Chem. , 2017 . 8 375 -387 . DOI:10.1039/C6PY01779Ghttp://doi.org/10.1039/C6PY01779G .
Wang, G.; Schmitt, M.; Wang, Z.; Lee, B.; Pan, X.; Fu, L.; Yan, J.; Li, S.; Xie, G.; Bockstaller, M. R.; Matyjaszewski, K. . Polymerization-induced self-assembly (PISA) using ICAR ATRP at low catalyst concentration . Macromolecules , 2016 . 49 8605 -8615 . DOI:10.1021/acs.macromol.6b01966http://doi.org/10.1021/acs.macromol.6b01966 .
Song, Y.; Ye, G.; Lu, Y.; Chen, J.; Wang, J.; Matyjaszewski, K. . Surface-initiated ARGET ATRP of poly(glycidyl methacrylate) from carbon nanotubes via bioinspired catechol chemistry for efficient adsorption of uranium ions . ACS Macro Lett. , 2016 . 5 382 -386 . DOI:10.1021/acsmacrolett.6b00099http://doi.org/10.1021/acsmacrolett.6b00099 .
Krys, P.; Wang, Y.; Matyjaszewski, K.; Harrisson, S. . Radical generation and termination in SARA ATRP of methyl acrylate: effect of solvent, ligand, and chain length . Macromolecules , 2016 . 49 2977 -2984 . DOI:10.1021/acs.macromol.6b00345http://doi.org/10.1021/acs.macromol.6b00345 .
Pan, X.; Fang, C.; Fantin, M.; Malhotra, N.; So, W. Y.; Peteanu, L. A.; Isse, A. A.; Gennaro, A.; Liu, P.; Matyjaszewski, K. . Mechanism of photoinduced metal-free atom transfer radical polymerization: experimental and computational studies . J. Am. Chem. Soc. , 2016 . 138 2411 -2425 . DOI:10.1021/jacs.5b13455http://doi.org/10.1021/jacs.5b13455 .
O'Donnell, J. M. . Reversible addition-fragmentation chain transfer polymerization in microemulsion . Chem. Soc. Rev. , 2012 . 41 3061 -3076 . DOI:10.1039/c2cs15275dhttp://doi.org/10.1039/c2cs15275d .
Gregory, A.; Stenzel, M. H. . Complex polymer architectures via RAFT polymerization: from fundamental process to extending the scope using click chemistry and nature's building blocks . Prog. Polym. Sci. , 2012 . 37 38 -105 . DOI:10.1016/j.progpolymsci.2011.08.004http://doi.org/10.1016/j.progpolymsci.2011.08.004 .
Li, R.; An, Z. . Achieving ultrahigh molecular weights with diverse architectures for unconjugated monomers through oxygen-tolerant photoenzymatic RAFT polymerization . Angew. Chem. Int. Ed. , 2020 . 59 22258 -22264 . DOI:10.1002/anie.202010722http://doi.org/10.1002/anie.202010722 .
Shen, L.; Guo, H.; Zheng, J.; Wang, X.; Yang, Y.; An, Z. . RAFT polymerization-induced self-assembly as a strategy for versatile synthesis of semifluorinated liquid-crystalline block copolymer nanoobjects . ACS Macro Lett. , 2018 . 7 287 -292 . DOI:10.1021/acsmacrolett.8b00070http://doi.org/10.1021/acsmacrolett.8b00070 .
Liu, Z.; Lv, Y.; An, Z. . Enzymatic cascade catalysis for the synthesis of multiblock and ultrahigh-molecular-weight polymers with oxygen tolerance . Angew. Chem. Int. Ed. , 2017 . 56 13852 -13856 . DOI:10.1002/anie.201707993http://doi.org/10.1002/anie.201707993 .
Gong, H.; Gu, Y.; Zhao, Y.; Quan, Q.; Han, S.; Chen, M. . Precise synthesis of ultra-high-molecular-weight fluoropolymers enabled by chain-transfer-agent differentiation under visible-light irradiation . Angew. Chem. Int. Ed. , 2020 . 59 919 -927 . DOI:10.1002/anie.201912698http://doi.org/10.1002/anie.201912698 .
Gong, H.; Zhao, Y.; Shen, X.; Lin, J.; Chen, M. . Organocatalyzed photocontrolled radical polymerization of semifluorinated (meth)acrylates driven by visible light . Angew. Chem. Int. Ed. , 2018 . 57 333 -337 . DOI:10.1002/anie.201711053http://doi.org/10.1002/anie.201711053 .
Lee, K.; Corrigan, N.; Boyer, C. . Rapid high-resolution 3D printing and surface functionalization via type I photoinitiated RAFT polymerization . Angew. Chem. Int. Ed. , 2021 . 60 8839 -8850 . DOI:10.1002/anie.202016523http://doi.org/10.1002/anie.202016523 .
Wu, C.; Jung, K.; Ma, Y.; Liu, W.; Boyer, C. . Unravelling an oxygen-mediated reductive quenching pathway for photopolymerisation under long wavelengths . Nat. Commun. , 2021 . 12 478 DOI:10.1038/s41467-020-20640-zhttp://doi.org/10.1038/s41467-020-20640-z .
Fukada, E.; Takashita, S. . Piezoelectric effect in polarized poly(vinylidene fluoride) . JPn. J. Appl. Phys. , 1969 . 8 960 -960 . DOI:10.1143/JJAP.8.960http://doi.org/10.1143/JJAP.8.960 .
Lu, L.; Ding, W.; Liu, J.; Yang, B. . Flexible PVDF based piezoelectric nanogenerators . Nano Energy , 2020 . 78 105251 DOI:10.1016/j.nanoen.2020.105251http://doi.org/10.1016/j.nanoen.2020.105251 .
Kalimuldina, G.; Turdakyn, N.; Abay, I.; Medeubayev, A.; Nurpeissova, A.; Adair, D.; Bakenov, Z. . A review of piezoelectric PVDF film by electrospinning and its applications . Sensors , 2020 . 20 5214 DOI:10.3390/s20185214http://doi.org/10.3390/s20185214 .
Kalani, S.; Kohandani, R.; Bagherzadeh, R. . Review on flexible electrospun polyvinylidene fluoride-barium titanate hybrid structure pressure sensor with enhanced efficiency . RSC Adv. , 2020 . 10 35090 -35098 . DOI:10.1039/D0RA05675Hhttp://doi.org/10.1039/D0RA05675H .
Yan, J.; Liu, M.; Jeong, Y. G.; Kang, W.; Li, L.; Zhao, Y.; Deng, N.; Cheng, B.; Yang, G. . Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting . Nano Energy , 2019 . 56 662 -692 . DOI:10.1016/j.nanoen.2018.12.010http://doi.org/10.1016/j.nanoen.2018.12.010 .
Barbosa, J. C.; Dias, J. P.; Lanceros-Mendez, S.; Costa, C. M. . Recent advances in poly(vinylidene fluoride) and its copolymers for lithium-ion battery separators . Membranes , 2018 . 8 45 DOI:10.3390/membranes8030045http://doi.org/10.3390/membranes8030045 .
Chen, X.; Han, X.; Shen, Q. D. . PVDF-based ferroelectric polymers in modern flexible electronics . Adv. Electron. Mater. , 2017 . 3 1600460 DOI:10.1002/aelm.201600460http://doi.org/10.1002/aelm.201600460 .
Xin, Y.; Sun, H.; Tian, H.; Guo, C.; Li, X.; Wang, S.; Wang, C. . The use of polyvinylidene fluoride (PVDF) films as sensors for vibration measurement: a brief review . Ferroelectrics , 2016 . 502 28 -42 . DOI:10.1080/00150193.2016.1232582http://doi.org/10.1080/00150193.2016.1232582 .
Gardiner, J. . Fluoropolymers: origin, production, and industrial and commercial applications . Aust. J. Chem. , 2015 . 68 13 -22 . DOI:10.1071/CH14165http://doi.org/10.1071/CH14165 .
Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. . Electroactive phases of poly(vinylidene fluoride): determination, processing and applications . Prog. Polym. Sci. , 2014 . 39 683 -706 . DOI:10.1016/j.progpolymsci.2013.07.006http://doi.org/10.1016/j.progpolymsci.2013.07.006 .
Wang, Y.; Zhou, X.; Chen, Q.; Chu, B.; Zhang, Q. . Recent development of high energy density polymers for dielectric capacitors . IEEE Trans. Dielectr. Electr. Insul. , 2010 . 17 1036 -1042 . DOI:10.1109/TDEI.2010.5539672http://doi.org/10.1109/TDEI.2010.5539672 .
Zhu, L.; Wang, Q. . Novel ferroelectric polymers for high energy density and low loss dielectrics . Macromolecules , 2012 . 45 2937 -2954 . DOI:10.1021/ma2024057http://doi.org/10.1021/ma2024057 .
Cui, Z.; Hassankiadeh, N. T.; Zhuang, Y.; Drioli, E.; Lee, Y. M. . Crystalline polymorphism in poly(vinylidenefluoride) membranes . Prog. Polym. Sci. , 2015 . 51 94 -126 . DOI:10.1016/j.progpolymsci.2015.07.007http://doi.org/10.1016/j.progpolymsci.2015.07.007 .
Ameduri, B. . From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends . Chem. Rev. , 2009 . 109 6632 -6686 . DOI:10.1021/cr800187mhttp://doi.org/10.1021/cr800187m .
Kalfoglou, N. K.; Williams, H. L. . Mechanical relaxations of poly(vinylidene fluoride) and some of its copolymers . J. Appl. Polym. Sci. , 1973 . 17 3367 -3373 . DOI:10.1002/app.1973.070171111http://doi.org/10.1002/app.1973.070171111 .
Wang, Z.; Zhang, Z.; Chung, T. C. M. . High dielectric VDF/TrFE/CTFE terpolymers prepared by hydrogenation of VDF/CTFE copolymers: synthesis and characterization . Macromolecules , 2006 . 39 4268 -4271 . DOI:10.1021/ma060738mhttp://doi.org/10.1021/ma060738m .
Wang, Y.; Yao, M.; Ma, R.; Yuan, Q.; Yang, D.; Cui, B.; Ma, C.; Liu, M.; Hu, D. . Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage . J. Mater. Chem. A , 2020 . 8 884 -917 . DOI:10.1039/C9TA11527Ghttp://doi.org/10.1039/C9TA11527G .
Wan, C.; Bowen, C. R. . Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure . J. Mater. Chem. A , 2017 . 5 3091 -3128 . DOI:10.1039/C6TA09590Ahttp://doi.org/10.1039/C6TA09590A .
Zhang, Z.; Chung, T. C. M. . Study of VDF/TrFE/CTFE terpolymers for high pulsed capacitor with high energy density and low energy loss . Macromolecules , 2007 . 40 783 -785 . DOI:10.1021/ma0627119http://doi.org/10.1021/ma0627119 .
Lu, Y.; Claude, J.; Zhang, Q.; Wang, Q. . Microstructures and dielectric properties of the ferroelectric fluoropolymers synthesized via reductive dechlorination of poly(vinylidene fluoride-co-chlorotrifluoroethylene)s . Macromolecules , 2006 . 39 6962 -6968 . DOI:10.1021/ma061311ihttp://doi.org/10.1021/ma061311i .
Lu, Y.; Claude, J.; Neese, B.; Zhang, Q.; Wang, Q. . A Modular approach to ferroelectric polymers with chemically tunable curie temperatures and dielectric constants . J. Am. Chem. Soc. , 2006 . 128 8120 -8121 . DOI:10.1021/ja062306xhttp://doi.org/10.1021/ja062306x .
Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q. M. . A dielectric polymer with high electric energy density and fast discharge speed . Science , 2006 . 313 (5785 ):334 -336 . DOI:10.1126/science.1127798http://doi.org/10.1126/science.1127798 .
Li, Z.; Wang, Y.; Cheng, Z. Y. . Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer . Appl. Phys. Lett. , 2006 . 88 062904 DOI:10.1063/1.2170425http://doi.org/10.1063/1.2170425 .
Améduri, B.; Boutevin, B.; Kostov, G. . Fluoroelastomers: synthesis, properties and applications . Prog. Polym. Sci , 2001 . 26 105 -187 . DOI:10.1016/S0079-6700(00)00044-7http://doi.org/10.1016/S0079-6700(00)00044-7 .
Cho, K. Y.; Jung, H. Y.; Sung, K. A.; Kim, W. K.; Sung, S. J.; Park, J. K.; Choi, J. H.; Sung, Y. E. . Preparation and charateristics of Nafion membrane coated with a PVDF copolymer/recast Nafion blend for direct methanol fuel cell . J. Power Sources , 2006 . 159 524 -528 . DOI:10.1016/j.jpowsour.2005.10.106http://doi.org/10.1016/j.jpowsour.2005.10.106 .
Wang, M.; Zhao, F.; Dong, S. . A single ionic conductor based on nafion and its electrochemical properties used as lithium polymer electrolyte . J. Phys. Chem. B , 2004 . 108 1365 -1370. .
Cheng, C. L.; Wan, C. C.; Wang, Y. Y. . Microporous PVDF-HFP based gel polymer electrolytes reinforced by PEGDMA network . Electrochem. Commun. , 2004 . 6 531 -535 . DOI:10.1016/j.elecom.2004.04.001http://doi.org/10.1016/j.elecom.2004.04.001 .
Lovinger, A. J.; Johnson, G. E.; Bair, H. E.; Anderson, E. W. . Structural, dielectric, and thermal investigation of the Curie transition in a tetrafluoroethylene copolymer of vinylidene fluoride . J. Appl. Phys. , 1984 . 56 2412 -2418 . DOI:10.1063/1.334303http://doi.org/10.1063/1.334303 .
Lovinger, A. J.; Furukawa, T.; Davis, G. T.; Broadhurst, M. G. . Crystallographic changes characterizing the Curie transition in three ferroelectric copolymers of vinylidene fluoride and trifluoroethylene: 2. Oriented or poled samples . Polymer , 1983 . 24 1233 -1239 . DOI:10.1016/0032-3861(83)90051-4http://doi.org/10.1016/0032-3861(83)90051-4 .
Ohigashi, H.; Koga, K. . Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor . JPn. J. Appl. Phys. , 1982 . 21 L455 DOI:10.1143/JJAP.21.L455http://doi.org/10.1143/JJAP.21.L455 .
Li, J.; Gong, H.; Yang, Q.; Xie, Y.; Yang, L.; Zhang, Z. . Linear-like dielectric behavior and low energy loss achieved in poly(ethyl methacrylate) modified poly(vinylidene-co-trifluoroethylene) . Appl. Phys. Lett. , 2014 . 104 263901 DOI:10.1063/1.4886391http://doi.org/10.1063/1.4886391 .
Li, J.; Hu, X.; Gao, G.; Ding, S.; Li, H.; Yang, L.; Zhang, Z. . Tuning phase transition and ferroelectric properties of poly(vinylidene fluoride-co-trifluoroethylene) via grafting with desired poly(methacrylic ester)s as side chains . J. Mater. Chem. C , 2013 . 1 1111 -1121 . DOI:10.1039/C2TC00431Chttp://doi.org/10.1039/C2TC00431C .
Li, J.; Tan, S.; Ding, S.; Li, H.; Yang, L.; Zhang, Z. . High-field antiferroelectric behaviour and minimized energy loss in poly(vinylidene-co-trifluoroethylene)-graft-poly(ethyl methacrylate) for energy storage application . J. Mater. Chem. , 2012 . 22 23468 -23476 . DOI:10.1039/c2jm35532ahttp://doi.org/10.1039/c2jm35532a .
Zhang M. F.; Russell T. P. . Graft copolymers from poly(vinylidene fluoride-co-chlorotrifluoroethylene) via atom transfer radical polymerization . Macromolecules , 2006 . 39 3513 -3539. .
Guan, F.; Wang, J.; Yang, L.; Tseng, J. K.; Han, K.; Wang, Q.; Zhu, L. . Confinement-induced high-field antiferroelectric-like behavior in a poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymer . Macromolecules , 2011 . 44 2190 -2199 . DOI:10.1021/ma102910vhttp://doi.org/10.1021/ma102910v .
Guan, F.; Yang, L.; Wang, J.; Guan, B.; Han, K.; Wang, Q.; Zhu, L. . Confined ferroelectric properties in poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymers for electric energy storage applications . Adv. Funct. Mater. , 2011 . 21 3176 -3188 . DOI:10.1002/adfm.201002015http://doi.org/10.1002/adfm.201002015 .
Yang, L.; Allahyarov, E.; Guan, F.; Zhu, L. . Crystal orientation and temperature effects on double hysteresis loop behavior in a poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymer . Macromolecules , 2013 . 46 9698 -9711 . DOI:10.1021/ma401660khttp://doi.org/10.1021/ma401660k .
Hu, X.; Li, J.; Li, H.; Zhang, Z. . Synthesis and characterization of poly(vinylidene fluoride-co-chlorotrifluoroethylene)-grafted-poly(acrylonitrile) via single electron transfer-living radical polymerization process . J. Polym. Sci., Part A: Polym. Chem. , 2012 . 50 3126 -3134 . DOI:10.1002/pola.26099http://doi.org/10.1002/pola.26099 .
Hu, X.; Li, J.; Li, H.; Zhang, Z. . Cu(0)/2,6-bis(imino)pyridines catalyzed single-electron transfer-living radical polymerization of methyl methacrylate initiated with poly(vinylidene fluoride-co-chlorotrifluoroethylene) . J. Polym. Sci., Part A: Polym. Chem. , 2013 . 51 4378 -4388 . DOI:10.1002/pola.26853http://doi.org/10.1002/pola.26853 .
Gong, H.; Li, J.; Di, D.; Li, N.; Zhang, Z. . Influence of less active initiator on the living performance of atom transfer radical polymerization and the structure of the synthesized grafted copolymer . RSC Adv. , 2015 . 5 19117 -19127 . DOI:10.1039/C4RA15190Ahttp://doi.org/10.1039/C4RA15190A .
Gong, H.; Zhang, X.; Zhang, Y.; Zheng, A.; Tan, S.; Zhang, Z. . Chemical composition characterization of poly(vinylidene fluoride-chlorotrifluoroethylene)-based copolymers with F-H decoupled 1H NMR . RSC Adv. , 2016 . 6 75880 -75889 . DOI:10.1039/C6RA11757Khttp://doi.org/10.1039/C6RA11757K .
Gong, H.; Miao, B.; Zhang, X.; Lu, J.; Zhang, Z. . High-field antiferroelectric-like behavior in uniaxially stretched poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)-grafted-poly(methyl methacrylate) films with high energy density . RSC Adv. , 2016 . 6 1589 -1599 . DOI:10.1039/C5RA22617Ahttp://doi.org/10.1039/C5RA22617A .
Park B. J.; Kim N. U.; Ryu D. Y.; Kim J. H. . P (VDF-co-CTFE)-g-P2VP amphiphilic graft copolymers: synthesis, structure, and permeation properties . Polym. Adv. Technol. , 2019 . 30 2707 -2720 . DOI:10.1002/pat.4700http://doi.org/10.1002/pat.4700 .
Zhang, M.; Russell, T. P. . Graft copolymers from poly(vinylidene fluoride-co-chlorotrifluoroethylene) via atom transfer radical polymerization . Macromolecules , 2006 . 39 3531 -3539 . DOI:10.1021/ma060128mhttp://doi.org/10.1021/ma060128m .
Valade, D.; Boyer, C.; Ameduri, B.; Boutevin, B. . Poly(vinylidene fluoride)-b-poly(styrene) block copolymers by iodine transfer polymerization (ITP): synthesis, characterization, and kinetics of ITP . Macromolecules , 2006 . 39 8639 -8651 . DOI:10.1021/ma061392ihttp://doi.org/10.1021/ma061392i .
Destarac, M.; Matyjaszewski, K.; Silverman, E.; Ameduri, B.; Boutevin, B. . Atom transfer radical polymerization initiated with vinylidene fluoride telomers . Macromolecules , 2000 . 33 4613 -4615 . DOI:10.1021/ma9918351http://doi.org/10.1021/ma9918351 .
Hester, J. F.; Banerjee, P.; Won, Y. Y.; Akthakul, A.; Acar, M. H.; Mayes, A. M. . ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives . Macromolecules , 2002 . 35 7652 -7661 . DOI:10.1021/ma0122270http://doi.org/10.1021/ma0122270 .
Samanta, S.; Chatterjee, D. P.; Layek, R. K.; Nandi, A. K. . Multifunctional porous poly(vinylidene fluoride)-graft-poly(butyl methacrylate) with good Li+ ion conductivity . Macromol. Chem. Phys. , 2011 . 212 134 -149 . DOI:10.1002/macp.201000472http://doi.org/10.1002/macp.201000472 .
Samanta, S.; Chatterjee, D. P.; Manna, S.; Mandal, A.; Garai, A.; Nandi, A. K. . Multifunctional hydrophilic poly(vinylidene fluoride) graft copolymer with supertoughness and supergluing properties . Macromolecules , 2009 . 42 3112 -3120 . DOI:10.1021/ma9003117http://doi.org/10.1021/ma9003117 .
Shen, J.; Zhang, Q.; Yin, Q.; Cui, Z.; Li, W.; Xing, W. . Fabrication and characterization of amphiphilic PVDF copolymer ultrafiltration membrane with high anti-fouling property . J. Membr. Sci. , 2017 . 521 93 -103 . DOI:10.1016/j.memsci.2016.09.006http://doi.org/10.1016/j.memsci.2016.09.006 .
Xue, J.; Chen, L.; Wang;, H. L.; Zhang Z. B.; Zhu, X. L.; Kang, E. T.; Neoh, K. G. . Stimuli-responsive multifunctional membranes of controllable morphology from poly(vinylidene fluoride)-graft-poly[2-(N,N-dimethylamino)ethyl methacrylate] prepared via atom transfer radical polymerization . Langmuir , 2008 . 24 14151 -14158 . DOI:10.1021/la801402uhttp://doi.org/10.1021/la801402u .
Atanu, K.; Dhruba, P. C.; Nabasmita, M.; Arun, K. N. . Multi-functional poly(vinylidene fluoride) graft copolymers . J. Polym. Sci., Part A: Polym. Chem. , 2017 . 55 2569 -2584 . DOI:10.1002/pola.28671http://doi.org/10.1002/pola.28671 .
Zhao, T.; Zhang, L.; Zhang, Z.; Zhou, N.; Cheng, Z.; Zhu, X. . A novel approach to modify poly(vinylidene fluoride) via iron-mediated atom transfer radical polymerization using activators generated by electron transfer . J. Polym. Sci., Part A: Polym. Chem. , 2011 . 49 2315 -2324 . DOI:10.1002/pola.24651http://doi.org/10.1002/pola.24651 .
Tan, S.; Zhang, Y.; Niu, Z.; Zhang, Z. . Copper(0) mediated single electron transfer controlled radical polymerization toward C-F bonds on poly(vinylidene fluoride) . Macromol. Rapid Commun. , 2018 . 39 1700561 DOI:10.1002/marc.201700561http://doi.org/10.1002/marc.201700561 .
Peng, B.; Wang, J.; Li, M.; Wang, M.; Tan, S.; Zhang, Z. . Activation of different C-F bonds in fluoropolymers for Cu(0)-mediated single electron transfer radical polymerization . Polym. Chem. , 2021 . 12 3132 -3141 . DOI:10.1039/d1py00376chttp://doi.org/10.1039/d1py00376c .
Duan, Y.; Li, Q.; Peng, B.; Tan, S.; Zhang, Z. . Grafting modification of poly(vinylidene fluoride-hexafluoropropylene) via Cu(0) mediated controlled radical polymerization . React. Funct. Polym. , 2021 . 164 104939 DOI:10.1016/j.reactfunctpolym.2021.104939http://doi.org/10.1016/j.reactfunctpolym.2021.104939 .
Li F.; Jia Y.; Guo R.; Wang M. . Preparation of composite anion-exchange membrane with acid-blocking performance for brine reclamation by bipolar membrane electrodialysis . Sep. Purif. Technol. , 2020 . 254 117587 .
Burcu, O.; Mustafa, Hulusi U.; Nilhan, Kayaman A. . Preparation of poly (bis[2-(methacryloyloxy)ethyl] phosphate) crosslinked polymer brushes on poly(vinylidene fluoride) nanofibers . Mater. Chem. Phys. , 2018 . 217 168 -174 . DOI:10.1016/j.matchemphys.2018.06.044http://doi.org/10.1016/j.matchemphys.2018.06.044 .
Meng, P.; Xingran, Z.; Mingxian, L.; Zhichao, W.; Zhiwei, W. . Surface modification of polyvinylidene fluoride membrane by atom-transfer radical-polymerization of quaternary ammonium compound for mitigating biofouling . J. Membr. Sci. , 2018 . 570-571 286 -293. .
Yiwang, C.; Lei, Y.; Weihong, Y.; Kang, E. T.; Neoh, K. G. . Poly(vinylidene fluoride) with grafted poly(ethylene glycol) side chains via the RAFT-mediated process and pore size control of the copolymer membranes . Macromolecules , 2003 . 36 9451 -9457 . DOI:10.1021/ma035194shttp://doi.org/10.1021/ma035194s .
Ying, L.; Yu, W. H.; Kang, E. T.; Neoh, K. G. . Functional and surface-active membranes from poly(vinylidene fluoride)-graft-poly(acrylic acid) prepared via RAFT-mediated graft copolymerization . Langmuir , 2004 . 20 6032 -6040 . DOI:10.1021/la049383vhttp://doi.org/10.1021/la049383v .
Xue, L.; Xuefeng, H.; Tao, C. . Construction of hierarchical fouling resistance surfaces onto poly(vinylidene fluoride) membranes for combating membrane biofouling . Langmuir , 2017 . 33 4477 -4489 . DOI:10.1021/acs.langmuir.7b00191http://doi.org/10.1021/acs.langmuir.7b00191 .
Marc, G.; Rahaman, S. M. W.; Bruno, A.; Rinaldo, P.; Vincent, L. . Limits of vinylidene fluoride RAFT polymerization . Macromolecules , 2016 . 49 5386 -5396 . DOI:10.1021/acs.macromol.6b01087http://doi.org/10.1021/acs.macromol.6b01087 .
Marc, G.; Gérald, L.; Thibaut, S.; Cédric, T.; Bruno, A.; Gilles, S.; Vincent, L. . A journey into the microstructure of PVDF made by RAFT . Macromol. Chem. Phys. , 2016 . 217 2275 -2285 . DOI:10.1002/macp.201600109http://doi.org/10.1002/macp.201600109 .
Marc, G.; Rahaman, S. M. W.; Bruno, A.; Rinaldo, P.; Vincent, L. . RAFT synthesis of well-defined PVDF-b-PVAc block copolymers . Polym. Chem. , 2016 . 7 6918 -6933 . DOI:10.1039/C6PY01247Ghttp://doi.org/10.1039/C6PY01247G .
Marc, G.; Mona, S.; Franck, G.; Bruno, A.; Vincent, L. . Polymerization-induced self-assembly of PVAc-b-PVDF block copolymers via RAFT dispersion polymerization of vinylidene fluoride in dimethyl carbonate . Polym. Chem. , 2017 . 8 1477 -1487 . DOI:10.1039/C6PY02203Khttp://doi.org/10.1039/C6PY02203K .
Fatima, Ezzahra B.; Mustapha, R.; Gilles, S.; Cedric, T.; Bruno, A. . Core–shell structured poly(vinylidene fluoride)-grafted-BaTiO3 nanocomposites prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of VDF for high energy storage capacitors . Polym. Chem. , 2019 . 10 891 -904 . DOI:10.1039/C8PY01706Ahttp://doi.org/10.1039/C8PY01706A .
Holmberg, S.; Holmlund, P.; Nicolas, R.; Wilén, C. E.; Kallio, T.; Sundholm, G.; Sundholm, F. . Versatile synthetic route to tailor-made proton exchange membranes for fuel cell applications by combination of radiation chemistry of polymers with nitroxide-mediated living free radical graft polymerization . Macromolecules , 2004 . 37 9909 -9915 . DOI:10.1021/ma0353641http://doi.org/10.1021/ma0353641 .
Chen, J.; Tan, S.; Gao, G.; Li, H.; Zhang, Z. . Synthesis and characterization of thermally self-curable fluoropolymer triggered by TEMPO in one pot for high performance rubber applications . Polym. Chem. , 2014 . 5 2130 -2141 . DOI:10.1039/c3py01390ahttp://doi.org/10.1039/c3py01390a .
Lienafa, L.; Monge, S.; Guillaneuf, Y.; Ameduri, B.; Siri, D.; Gigmes, D.; Robin, J. J. . Preparation of PVDF-grafted-PS involving nitroxides . Eur. Polym. J. , 2018 . 109 55 -63 . DOI:10.1016/j.eurpolymj.2018.08.052http://doi.org/10.1016/j.eurpolymj.2018.08.052 .
Tao, C.; Neoh, K. G.; Kang, E. T.; Teo, S. L. M. . Surface-functionalized and surface-functionalizable poly(vinylidene fluoride) graft copolymer membranes via click chemistry and atom transfer radical polymerization . Langmuir , 2011 . 27 2936 -2945 . DOI:10.1021/la2001514http://doi.org/10.1021/la2001514 .
Cai, T.; Neoh, K. G.; Kang, E. T. Surface-functionalized and surface-functionalizable poly(vinylidene fluoride) membranes via controlled/living radical polymerization and click chemistry. In Progress in Controlled Radical Polymerization: Materias and Applications, American Chemical Society: 2012; 1101, 211−229.
Vukićević, R.; Schwadtke, U.; Schmücker, S.; Schäfer, P.; Kuckling, D.; Beuermann, S. . Alkyne-azide coupling of tailored poly(vinylidene fluoride) and polystyrene for the synthesis of block copolymers . Polym. Chem. , 2012 . 3 409 -414 . DOI:10.1039/C1PY00427Ahttp://doi.org/10.1039/C1PY00427A .
Fei, H.; Baiwen, L.; Shaojun, Y.; Bin, L.; Cleo, C.; Simo, Olavi P. . PVDF film tethered with RGD-click-poly(glycidyl methacrylate) brushes by combination of direct surface-initiated ATRP and click chemistry for improved cytocompatibility . RSC Adv. , 2014 . 4 105 -117 . DOI:10.1039/C3RA44789Hhttp://doi.org/10.1039/C3RA44789H .
Marc, G.; Mona, S.; Cedric, T.; Gilles, S.; Bruno, A.; Vincent, L. . Self-assembly of poly(vinylidene fluoride)-block-poly(2-(dimethylamino)ethylmethacrylate) block copolymers prepared by CuAAC click coupling . Polym. Chem. , 2017 . 8 5203 -5211 . DOI:10.1039/C7PY00346Chttp://doi.org/10.1039/C7PY00346C .
Yogesh, P.; Panayiotis, B.; George, P.; Sarah, A.; Nikos, H.; Valentin, R. . A novel poly(vinylidene fluoride)-based 4-miktoarm star terpolymer: synthesis and self-assembly . Mol. Pharm. , 2018 . 15 3005 -3009 . DOI:10.1021/acs.molpharmaceut.8b00010http://doi.org/10.1021/acs.molpharmaceut.8b00010 .
Zhao, Y.; Gong, H.; Jiang, K.; Yan, S.; Lin, J.; Chen, M. . Organocatalyzed photoredox polymerization from aromatic sulfonyl halides: facilitating graft from aromatic C-H bonds . Macromolecules , 2018 . 51 938 -946 . DOI:10.1021/acs.macromol.8b00134http://doi.org/10.1021/acs.macromol.8b00134 .
Hu, X.; Zhang, Y.; Cui, G.; Zhu, N.; Guo, K. . Poly(vinylidene fluoride-co-chlorotrifluoroethylene) modification via organocatalyzed atom transfer radical polymerization . Macromol. Rapid Commun. , 2017 . 38 1700399 DOI:10.1002/marc.201700399http://doi.org/10.1002/marc.201700399 .
Hu, X.; Cui, G.; Zhu, N.; Zhai, J.; Guo, K. . Photoinduced Cu(II)-mediated RDRP to P(VDF-co-CTFE)-g-PAN . Polymers , 2018 . 10 68 DOI:10.3390/polym10010068http://doi.org/10.3390/polym10010068 .
Hu, X.; Cui, G.; Zhang, Y.; Zhu, N.; Guo, K. . Copper(II) photoinduced graft modification of P(VDF-co-CTFE) . Eur. Polym. J. , 2018 . 100 228 -232 . DOI:10.1016/j.eurpolymj.2018.01.033http://doi.org/10.1016/j.eurpolymj.2018.01.033 .
Tan, S.; Xiong, J.; Zhao, Y.; Liu, J.; Zhang, Z. . Synthesis of poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly(methyl methacrylate) with low dielectric loss by photo-induced metal-free ATRP . J. Mater. Chem. C , 2018 . 6 4131 -4139 . DOI:10.1039/C8TC00781Khttp://doi.org/10.1039/C8TC00781K .
Yang, Q.; Ladmiral, V.; Ameduri B. . PhotoRAFT polymerization of vinylidene fluoride using a household white LED as light source at room temperature . ChemPhotoChem , 2019 . 3 1095 -1099 . DOI:10.1002/cptc.201900139http://doi.org/10.1002/cptc.201900139 .
0
Views
6
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution