
1.Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China
zqwu@hfut.edu.cn
Scan for full text
Hui Zou, Qi-Liang Wu, Li Zhou, et al. Chiral Recognition and Resolution Based on Helical Polymers. [J]. Chinese Journal of Polymer Science 39(12):1521-1527(2021)
Hui Zou, Qi-Liang Wu, Li Zhou, et al. Chiral Recognition and Resolution Based on Helical Polymers. [J]. Chinese Journal of Polymer Science 39(12):1521-1527(2021) DOI: 10.1007/s10118-021-2615-y.
Helical polymers have attracted a great deal of attention and been extensively investigated due to their various applications. One of the most important applications of helical polymers is chiral recognition and resolution of enantiomers for the reason that a pair of enantiomers is commonly with different physiological and toxicological behaviors in biological systems. Helical polymers usually present unexpected high chiral recognition ability to a variety of racemic compounds. What’s more, the chiral recognition and resolution abilities of the system are dependent on the highly ordered helical structures of the helical polymers. This mini review mainly focuses on the recent progress in chiral recognition and resolution based on helical polymers. The synthetic methodology for helical polymers is firstly discussed briefly. Then recent advances of chiral recognition and resolution systems based on helical polymers, especially polyacetylenes and polyisocyanides, are described. We hope this mini review will inspire more interest in developing helical polymers and encourage further advances in chiral-related disciplines.
Helical polymerChiral recognitionChiral resolutionPolyacetylenesPolyisocyanides
Shen, J.; Okamoto, Y. . Efficient separation of enantiomers using stereoregular chiral polymers . Chem. Rev. , 2016 . 116 1094 -1138 . DOI:10.1021/acs.chemrev.5b00317http://doi.org/10.1021/acs.chemrev.5b00317 .
Sun, T.; Qing, G.; Su, B.; Jiang, L. . Functional biointerface materials inspired from nature . Chem. Soc. Rev. , 2011 . 40 2909 -2921 . DOI:10.1039/c0cs00124dhttp://doi.org/10.1039/c0cs00124d .
Spinks, G. M. . Advanced actuator materials powered by biomimetic helical fiber topologies . Adv. Mater. , 2020 . 32 1904093 DOI:10.1002/adma.201904093http://doi.org/10.1002/adma.201904093 .
Naaman, R.; Paltiel, Y.; Waldeck, D. H. . Chiral molecules and the spin selectivity effect . J. Phys. Chem. Lett. , 2020 . 11 3660 -3666 . DOI:10.1021/acs.jpclett.0c00474http://doi.org/10.1021/acs.jpclett.0c00474 .
Akine, S.; Sairenji, S.; Taniguchi, T.; Nabeshima, T. . Stepwise helicity inversions by multisequential metal exchange . J. Am. Chem. Soc. , 2013 . 135 12948 -12951 . DOI:10.1021/ja405979vhttp://doi.org/10.1021/ja405979v .
Rogers, J. M.; Kwon, S.; Dawson, S. J.; Mandal, P. K.; Suga, H.; Huc, I. . Ribosomal synthesis and folding of peptide-helical aromatic foldamer hybrids . Nat. Chem. , 2018 . 10 795 -795 . DOI:10.1038/s41557-018-0086-8http://doi.org/10.1038/s41557-018-0086-8 .
Lang, C.; Deng, X.; Yang, F.; Yang, B.; Wang, W.; Qi, S.; Zhang, X.; Zhang, C.; Dong, Z.; Liu, J. . Highly selective artificial potassium ion channels constructed from pore-containing helical oligomers . Angew. Chem. Int. Ed. , 2017 . 56 12668 -12671 . DOI:10.1002/anie.201705048http://doi.org/10.1002/anie.201705048 .
Hu, G.; Li, W.; Hu, Y.; Xu, A.; Yan, J.; Liu, L.; Zhang, X.; Liu, K.; Zhang, A. . Water-soluble chiral polyisocyanides showing thermoresponsive behavior . Macromolecules , 2013 . 46 1124 -1132 . DOI:10.1021/ma302536thttp://doi.org/10.1021/ma302536t .
Xu, Y.; Yang, G.; Xia, H.; Zou, G.; Zhang, Q.; Gao, J. . Enantioselective synthesis of helical polydiacetylene by application of linearly polarized light and magnetic field . Nat. Commun. , 2014 . 5 5050 DOI:10.1038/ncomms6050http://doi.org/10.1038/ncomms6050 .
Zeng, C.; Zhang, C. Y.; Zhu, J. Y.; Dong, Z. Y. . Supramolecular polymerization driven by the dimerization of single-stranded helix to double-stranded helix . Chinese J. Polym. Sci. , 2018 . 36 261 -265 . DOI:10.1007/s10118-018-2058-2http://doi.org/10.1007/s10118-018-2058-2 .
Ye, Q.; Zheng, F.; Zhang, E.; Bisoyi, H.; Zheng, S.; Zhu, D.; Lu, Q.; Zhang, H.; Li, Q. . Solvent polarity driven helicity inversion and circularly polarized luminescence in chiral aggregation induced emission fluorophores . Chem. Sci. , 2020 . 11 9989 -9993 . DOI:10.1039/D0SC04179Chttp://doi.org/10.1039/D0SC04179C .
Leigh, T.; Fernandez-Trillo, P. . Helical polymers for biological and medical applications . Nat. Rev. Chem. , 2020 . 4 291 -310 . DOI:10.1038/s41570-020-0180-5http://doi.org/10.1038/s41570-020-0180-5 .
Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. . Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions . Chem. Rev. , 2016 . 116 13752 -13990 . DOI:10.1021/acs.chemrev.6b00354http://doi.org/10.1021/acs.chemrev.6b00354 .
Zhang, Y.; Deng, J. . Chiral helical polymer materials derived from achiral monomers and their chiral applications . Polym. Chem. , 2020 . 11 5407 -5423 . DOI:10.1039/D0PY00934Bhttp://doi.org/10.1039/D0PY00934B .
Ho, R. M.; Chiang, Y. W.; Lin, S. C.; Chen, C. K. . Helical architectures from self-assembly of chiral polymers and block copolymers . Prog. Polym. Sci. , 2011 . 36 376 -453 . DOI:10.1016/j.progpolymsci.2010.09.001http://doi.org/10.1016/j.progpolymsci.2010.09.001 .
Zhu, Z.; Cui, J.; Zhang, J.; Wan, X. . Hydrogen bonding of helical vinyl polymers containing alanine moieties: a stabilized interaction of helical conformation sensitive to solvents and pH . Polym. Chem. , 2012 . 3 668 -678 . DOI:10.1039/c2py00492ehttp://doi.org/10.1039/c2py00492e .
Zhao, B.; Deng, J. . Emulsion polymerization of acetylenics for constructing optically active helical polymer nanoparticles . Polym. Rev. , 2017 . 57 119 -137 . DOI:10.1080/15583724.2015.1136642http://doi.org/10.1080/15583724.2015.1136642 .
Wang, Y. Q.; Chen, Y.; Jiang, Z. Q.; Liu, F.; Liu, F.; Zhu, Y. Y.; Liang, Y.; Wu, Z. Q. . Halogen effects on phenylethynyl palladium(II) complexes for living polymerization of isocyanides: a combined experimental and computational investigation . Sci. China Chem. , 2019 . 62 491 -499 . DOI:10.1007/s11426-018-9415-8http://doi.org/10.1007/s11426-018-9415-8 .
Lu, Y. X.; Shi, Z. M.; Li, Z. T.; Guan, Z. . Helical polymers based on intramolecularly hydrogen-bonded aromatic polyamides . Chem. Commun. , 2010 . 46 9019 -9021 . DOI:10.1039/c0cc03689ghttp://doi.org/10.1039/c0cc03689g .
Kennemur, J. G.; Novak, B. M. . Advances in polycarbodiimide chemistry . Polymer , 2011 . 52 1693 -1710 . DOI:10.1016/j.polymer.2011.02.040http://doi.org/10.1016/j.polymer.2011.02.040 .
Yang, L.; Tang, Y.; Liu, N.; Liu, C. H.; Ding, Y.; Wu, Z. Q. . Facile synthesis of hybrid silica nanoparticles grafted with helical poly(phenyl isocyanide)s and their enantioselective crystallization ability . Macromolecules , 2016 . 49 7692 -7702 . DOI:10.1021/acs.macromol.6b01870http://doi.org/10.1021/acs.macromol.6b01870 .
Akazaki, K.; Toshimitsu, F.; Ozawa, H.; Fujigaya, T.; Nakashima, N. . Recognition and one-pot extraction of right- and left-handed semiconducting single-walled carbon nanotube enantiomers using fluorene-binaphthol chiral copolymers . J. Am. Chem. Soc. , 2012 . 134 12700 -12707 . DOI:10.1021/ja304244ghttp://doi.org/10.1021/ja304244g .
Zhang, Y.; Qin, M.; Zhao, C.; Dou, X.; Xing, C.; Sun, M.; Ma, X.; Feng, C. . Controlled chiral transcription and efficient separation via graphene oxide encapsulated helical supramolecular assembly . Carbon , 2020 . 165 82 -89 . DOI:10.1016/j.carbon.2020.04.032http://doi.org/10.1016/j.carbon.2020.04.032 .
Zhang, C.; Liu, L.; Okamoto, Y. . Enantioseparation using helical polyacetylene derivatives . Trends Analyt. Chem. , 2020 . 123 115762 DOI:10.1016/j.trac.2019.115762http://doi.org/10.1016/j.trac.2019.115762 .
Tamura, K.; Miyabe, T.; Iida, H.; Yashima, E. . Separation of enantiomers on diastereomeric right- and left-handed helical poly(phenyl isocyanide)s bearing L-alanine pendants immobilized on silica gel by HPLC . Polym. Chem. , 2011 . 2 91 -98 . DOI:10.1039/C0PY00164Chttp://doi.org/10.1039/C0PY00164C .
Shi, G.; Dai, X.; Zhou, Y.; Zhang, J.; Shen, J.; Wan, X. . Synthesis and enantioseparation of proline-derived helical polyacetylenes as chiral stationary phases for HPLC . Polym. Chem. , 2020 . 11 3179 -3187 . DOI:10.1039/D0PY00205Dhttp://doi.org/10.1039/D0PY00205D .
Zhou, Y.; Zhang, C.; Zhou, Z.; Zhu, R.; Liu, L.; Bai, J.; Dong, H.; Satoh, T.; Okamoto, Y. . Influence of different sequences of L-proline dipeptide derivatives in the pendants on the helix of poly(phenylacetylene)s and their enantioseparation properties . Polym. Chem. , 2019 . 10 4810 -4817 . DOI:10.1039/C9PY00675Chttp://doi.org/10.1039/C9PY00675C .
Teraguchi, M.; Tanioka, D.; Kaneko, T.; Aoki, T. . Helix-sense-selective polymerization of achiral phenylacetylenes with two N-alkylamide groups to generate the one-handed helical polymers stabilized by intramolecular hydrogen bonds . ACS Macro Lett. , 2012 . 1 1258 -1261 . DOI:10.1021/mz300309chttp://doi.org/10.1021/mz300309c .
Zang, Y.; Nakao, K.; Yotsuyanagi, H.; Aoki, T.; Namikoshi, T.; Tsutsuba, T.; Teraguchi, M.; Kaneko, T. . Living-like helix-sense-selective polymerization of an achiral substituted acetylene having bulky substituents . Polymer , 2013 . 54 1729 -1733 . DOI:10.1016/j.polymer.2013.02.009http://doi.org/10.1016/j.polymer.2013.02.009 .
Schraff, S.; Kreienborg, N.; Trampert, J.; Sun, Y.; Orthaber, A.; Merten, C.; Pammer F. . Asymmetric chain-growth synthesis of polyisocyanide with chiral nickel precatalysts . J. Polym. Sci. , 2020 . 58 2221 -2233 . DOI:10.1002/pol.20200153http://doi.org/10.1002/pol.20200153 .
Huang, J.; Shen, L.; Zou, H.; Liu, N. . Enantiomer-selective living polymerization of rac-phenyl isocyanide using chiral palladium catalyst . Chinese J. Polym. Sci. , 2018 . 36 799 -804 . DOI:10.1007/s10118-018-2136-5http://doi.org/10.1007/s10118-018-2136-5 .
Zhu, H.; Luo, S. Z.; Wu, Z. Q. . Living and enantiomer- selective polymerization of allene initiated by Ni complex containing chiral phosphine . Chinese Chem. Lett. , 2019 . 30 153 -156 . DOI:10.1016/j.cclet.2018.03.002http://doi.org/10.1016/j.cclet.2018.03.002 .
Hu, W.; Cao, J.; Huang, Y. L.; Liang, S. . Asymmetric polymerization of N-vinylcarbazole with optically active anionic initiators . Chinese J. Polym. Sci. , 2015 . 33 1618 -1624 . DOI:10.1007/s10118-015-1689-9http://doi.org/10.1007/s10118-015-1689-9 .
Chu, J. H.; Xu, X. H.; Kang, S. M.; Liu, N.; Wu, Z. Q. . Fast living polymerization and helix-sense-selective polymerization of diazoacetates using air-stable palladium(II) catalysts . J. Am. Chem. Soc. , 2018 . 140 17773 -17781 . DOI:10.1021/jacs.8b11628http://doi.org/10.1021/jacs.8b11628 .
Liu, N.; Shi, L.; Han, X.; Qi, Q.-Y.; Wu, Z. Q.; Zhao, X. . A heteropore covalent organic framework for adsorptive removal of Cd(II) from aqueous solutions with high efficiency . Chinese Chem. Lett. , 2020 . 31 386 -390 . DOI:10.1016/j.cclet.2019.06.050http://doi.org/10.1016/j.cclet.2019.06.050 .
Huang, H.; Deng, J.; Shi, Y. . Optically active physical gels with chiral memory ability: directly prepared by helix-sense-selective polymerization . Macromolecules , 2016 . 49 2948 -2956 . DOI:10.1021/acs.macromol.6b00612http://doi.org/10.1021/acs.macromol.6b00612 .
Huang, H.; Yuan, Y.; Deng, J. . Helix-sense-selective precipitation polymerization of achiral monomer for preparing optically active helical polymer particles . Macromolecules , 2015 . 48 3406 -3413 . DOI:10.1021/acs.macromol.5b00811http://doi.org/10.1021/acs.macromol.5b00811 .
Cheng, X.; Miao, T.; Ma, H.; Yin, L.; Zhang, W.; Zhang, Z.; Zhu, X. . The construction of photoresponsive polymer particles with supramolecular helicity from achiral monomers by helix-sense-selective polymerization . Polym. Chem. , 2020 . 11 2089 -2097 . DOI:10.1039/C9PY01868Ahttp://doi.org/10.1039/C9PY01868A .
Chen, J. L.; Yang, L.; Wang, Q.; Jiang Z. Q., Liu, N.; Yin, J.; Ding, Y.; Wu, Z. Q. . Helix-sense-selective and enantiomer-selective living polymerization of phenyl isocyanide induced by reusable chiral lactide using achiral palladium initiator . Macromolecules , 2015 . 48 7737 -7746 . DOI:10.1021/acs.macromol.5b02124http://doi.org/10.1021/acs.macromol.5b02124 .
Shimomura, K.; Ikai, T.; Kanoh, S.; Yashima, E.; Maeda, K. . Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state . Nat. Chem. , 2014 . 6 429 -434 . DOI:10.1038/nchem.1916http://doi.org/10.1038/nchem.1916 .
Seo, K. U.; Jin, Y. J.; Kim, H.; Sakaguchi, T.; Kwak, G. . Kinetic study on achiral-to-chiral transformation of achiral poly(diphenylacetylene)s via thermal annealing in chiral solvent: molecular design guideline for conformational change toward optically dissymmetric structures . Macromolecules , 2018 . 51 34 -41 . DOI:10.1021/acs.macromol.7b02328http://doi.org/10.1021/acs.macromol.7b02328 .
Yan, Z.; Cai, S.; Tan, J.; Zhang, J.; Yan, C.; Xu, T.; Wan, X. . Induced circular dichroism of isotactic poly(2-vinylpyridine) with diverse and tunable “sergeants-and-soldiers” type chiral amplification . ACS Macro Lett. , 2019 . 8 789 -794 . DOI:10.1021/acsmacrolett.9b00216http://doi.org/10.1021/acsmacrolett.9b00216 .
Jiang, S.; Zhao, Y.; Wang, L.; Yin, L.; Zhang, Z.; Zhu, J.; Zhang, W.; Zhu, X. . Photocontrollable induction of supramolecular chirality in achiral side chain Azo-containing polymers through preferential chiral solvation . Polym. Chem. , 2015 . 6 4230 -4239 . DOI:10.1039/C5PY00496Ahttp://doi.org/10.1039/C5PY00496A .
Zhang, C.; Wang, H.; Geng, Q.; Yang, T.; Liu, L.; Sakai, R.; Satoh, T.; Kakuchi, T.; Okamoto, Y. . Synthesis of helical poly(phenylacetylene)s with amide linkage bearing l-phenylalanine and l-phenylglycine ethyl ester pendants and their applications as chiral stationary phases for HPLC . Macromolecules , 2013 . 46 8406 -8415 . DOI:10.1021/ma4015802http://doi.org/10.1021/ma4015802 .
Shi, G.; Dai, X.; Xu, Q.; Shen, J.; Wan, X. . Enantioseparation by high-performance liquid chromatography on proline-derived helical polyacetylenes . Polym. Chem. , 2021 . 12 242 -253 . DOI:10.1039/D0PY01398Fhttp://doi.org/10.1039/D0PY01398F .
Hirose, D.; Isobe, A.; Quinoa, E.; Freire, F.; Maeda, K. . Three-state switchable chiral stationary phase based on helicity control of an optically active poly(phenylacetylene) derivative by using metal cations in the solid state . J. Am. Chem. Soc. , 2019 . 141 8592 -8598 . DOI:10.1021/jacs.9b03177http://doi.org/10.1021/jacs.9b03177 .
Ishidate, R.; Sato, T.; Ikai, T.; Kanoh, S.; Yashima, E.; Maeda, K. . Helicity induction and memory effect in poly(biphenylylacetylene)s bearing various functional groups and their use as switchable chiral stationary phases for HPLC . Polym. Chem. , 2019 . 10 6260 -6268 . DOI:10.1039/C9PY01425Jhttp://doi.org/10.1039/C9PY01425J .
Liu, N.; Ma, C. H.; Sun, R. W.; Huang, J.; Li, C.; Wu, Z. Q. . Facile synthesis and chiral recognition of block and star copolymers containing stereoregular helical poly(phenyl isocyanide) and polyethylene glycol blocks . Polym. Chem. , 2017 . 8 2152 -2163 . DOI:10.1039/C7PY00028Fhttp://doi.org/10.1039/C7PY00028F .
Zhang, Z. H.; Qiao, C. Y.; Zhang, J.; Zhang, W. M.; Yin, J.; Wu, Z. Q. . Synthesis of unimolecular micelles with incorporated hyperbranched Boltorn H30 polyester modified with hyperbranched helical poly(phenyl isocyanide) chains and their enantioselective crystallization performance . Macromol. Rapid Commun. , 2017 . 38 1700315 DOI:10.1002/marc.201700315http://doi.org/10.1002/marc.201700315 .
Wang, Q.; Chu, B. F.; Chu, J. H.; Liu, N.; Wu, Z. Q. . Facile synthesis of optically active and thermoresponsive star block copolymers carrying helical polyisocyanide arms and their thermo-triggered chiral resolution ability . ACS Macro Lett. , 2018 . 7 127 -131 . DOI:10.1021/acsmacrolett.7b00875http://doi.org/10.1021/acsmacrolett.7b00875 .
Liu, N.; Sun, R. W.; Lu, H. J.; Li, X. L.; Liu, C. H.; Wu, Z. Q. . Synthesis and chiroptical properties of helical polystyrenes stabilized by intramolecular hydrogen bonding . Polym. Chem. , 2017 . 8 7069 -7075 . DOI:10.1039/C7PY01633Fhttp://doi.org/10.1039/C7PY01633F .
Liu, N.; Lu, H. J.; Jiang, Z. Q.; Lu, Y. B.; Zou, H.; Zhou, L.; Wu, Z. Q. . Facile synthesis of helical rod-coil block polymers by the combination of ATRP and Pd(II)-initiated isocyanides polymerizations . Macromol. Chem. Phys. , 2019 . 220 1800574 DOI:10.1002/macp.201800574http://doi.org/10.1002/macp.201800574 .
Wang, Q.; Huang, J.; Jiang, Z. Q.; Zhou, L.; Liu, N.; Wu, Z. Q. . Synthesis of core cross-linked star polymers carrying helical poly(phenyl isocyanide) arms via “core-first” strategy and their surface chiral recognition ability . Polymer , 2018 . 136 92 -100 . DOI:10.1016/j.polymer.2017.12.057http://doi.org/10.1016/j.polymer.2017.12.057 .
Xiao, Y.; Wang, H. Q.; Zhang, H.; Jiang, Z. Q.; Wang, Y. Q.; Li, H.; Yin, J.; Zhu, Y. Y.; Wu, Z. Q. . Grafting polymerization of single-handed helical poly(phenyl isocyanide)s on graphene oxide and their application in enantioselective separation . J. Polym. Sci., Part A: Polym. Chem. , 2017 . 55 2092 -2103 . DOI:10.1002/pola.28599http://doi.org/10.1002/pola.28599 .
Lin, Y. L.; Chu, J. H.; Lu, H. J.; Liu, N.; Wu, Z. Q. . Facile synthesis of optically active and magnetic nanoparticles carrying helical poly(phenyl isocyanide) arms and their application in enantioselective crystallization . Macromol. Rapid Commun. , 2018 . 39 1700685 DOI:10.1002/marc.201700685http://doi.org/10.1002/marc.201700685 .
Chu, B. F.; Chu, J. H.; Zhao, S. Q.; Liu, N.; Wu, Z. Q. . Facile synthesis of optically active helical poly(phenyl isocyanide) brushes on a silicon surface and their chiral resolution ability . Polym. Chem. , 2018 . 9 1379 -1384 . DOI:10.1039/C8PY00097Bhttp://doi.org/10.1039/C8PY00097B .
Lu, W.; Lou, L.; Hu, F.; Jiang, L.; Shen, Z. . Optically active polyacrylamides bearing an oxazoline pendant: influence of stereoregularity on both chiroptical properties and chiral recognition . J. Polym. Sci., Part A: Polym. Chem. , 2010 . 48 5411 -5418 . DOI:10.1002/pola.24346http://doi.org/10.1002/pola.24346 .
Xu, L.; Valasek, M.; Hennrich, F.; Sedghamiz, E.; Penaloza-Amion, M.; Haussinger, D.; Wenzel, W.; Kappes, M.; Mayor, M. . Nantiomeric separation of semiconducting single-walled carbon nanotubes by acid cleavable chiral polyfluorene . ACS Nano , 2021 . 15 4699 -4709 . DOI:10.1021/acsnano.0c09235http://doi.org/10.1021/acsnano.0c09235 .
Senthilkumar, T.; Asha, S. K. . An easy ‘Filter-and-Separate’ method for enantioselective separation and chiral sensing of substrates using a biomimetic homochiral polymer . Chem. Commun. , 2015 . 51 8931 -8934 . DOI:10.1039/C5CC01532Dhttp://doi.org/10.1039/C5CC01532D .
Salikolimi, K.; Praveen, V. K.; Sudhakar, A. A.; Yamada, K.; Horimoto, N. N.; Ishida, Y. . Helical supramolecular polymers with rationally designed binding sites for chiral guest recognition . Nat. Commun. , 2020 . 11 2311 DOI:10.1038/s41467-020-16127-6http://doi.org/10.1038/s41467-020-16127-6 .
0
Views
5
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621