a.College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
b.Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
c.School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
luwei@nimte.ac.cn (W.L.)
tao.chen@nimte.ac.cn (T.C.)
Scan for full text
Xiao-Ling Zuo, Shao-Fan Wang, Xiao-Xia Le, et al. Self-healing Polymeric Hydrogels: Toward Multifunctional Soft Smart Materials. [J]. Chinese Journal of Polymer Science 39(10):1262-1280(2021)
Xiao-Ling Zuo, Shao-Fan Wang, Xiao-Xia Le, et al. Self-healing Polymeric Hydrogels: Toward Multifunctional Soft Smart Materials. [J]. Chinese Journal of Polymer Science 39(10):1262-1280(2021) DOI: 10.1007/s10118-021-2612-1.
The concept of self-healing that involves a built-in ability to heal in response to damage wherever and whenever it occurs in a material, analogous to the healing process in living organisms, has emerged a couple of decades ago. Driven primarily by the demands for life-like materials and soft smart materials, therefore, the development of self-healing polymeric hydrogels has continually attracted the attention of the scientific community. Here, this review is intended to give an in-depth overview of the state-of-the-art advances in the field of self-healing polymeric hydrogels. Specifically, recently emerging trends in self-healing polymeric hydrogels are summarized, and notably, recommendations to endow these hydrogels with fascinating multi-functionalities including luminescence, conductivity/magnetism and shape memory ,etc., are presented. To close, the current challenges and future opportunities in this field are also discussed.
Polymeric hydrogelsSelf-healingMulti-functionalitiesSmart materials
Shang, J. J.; Le, X. X.; Zhang, J. W.; Chen, T.; Theato, P . Trends in polymeric shape memory hydrogels and hydrogel actuators . Polym. Chem. , 2019 . 10 1036 -1055 . DOI:10.1039/C8PY01286Ehttp://doi.org/10.1039/C8PY01286E .
Wichterle, O.; Lim, D . Hydrophilic gels for biological use . Nature , 1960 . 185 117 -118 . DOI:10.1038/185117a0http://doi.org/10.1038/185117a0 .
Wheeler, J. C.; Woods, J. A.; Cox, M. J.; Cantrell, R. W.; Watkins, F. H.; Edlich, R. F . Evolution of hydrogel polymers as contact lenses, surface coatings, dressings, and drug delivery systems . J. Long Term Eff. Med. Implants. , 1996 . 6 207 -217. .
Jeon, I.; Cui, J. X.; Illeperuma, W. R. K.; Aizenberg, J.; Vlassak, J. J . Extremely stretchable and fast self-healing hydrogels . Adv. Mater. , 2016 . 28 4678 -4683 . DOI:10.1002/adma.201600480http://doi.org/10.1002/adma.201600480 .
Phadke, A.; Zhang, C.; Arman, B.; Hsu, C. C.; Mashelkar, R. A.; Lele, A. K.; Tauber, M. J.; Arya, G.; Varghese, S . Rapid self-healing hydrogels . Proc. Natl. Acad. Sci. USA , 2012 . 109 4383 -4388 . DOI:10.1073/pnas.1201122109http://doi.org/10.1073/pnas.1201122109 .
Cai, L. L.; Liu, S.; Guo, J. W.; Jia, Y. G . Polypeptide-based self-healing hydrogels: design and biomedical applications . Acta Biomat. , 2020 . 113 84 -100 . DOI:10.1016/j.actbio.2020.07.001http://doi.org/10.1016/j.actbio.2020.07.001 .
Wei, Z.; Yang, J. H.; Zhou, J. X.; Xu, F.; Zrinyi, M.; Dussault, P. H.; Osada, Y.; Chen, Y. M . Self-healing gels based on constitutional dynamic chemistry and their potential applications . Chem. Soc. Rev. , 2014 . 43 8114 -8131 . DOI:10.1039/C4CS00219Ahttp://doi.org/10.1039/C4CS00219A .
Yang, Y.; Ding, X. C.; Urban, M. W . Chemical and physical aspects of self-healing materials . Prog. Polym. Sci. , 2015 . 49−50 34 -59 . DOI:10.1016/j.progpolymsci.2015.06.001http://doi.org/10.1016/j.progpolymsci.2015.06.001 .
Ahn, B. K.; Lee, D. W.; Israelachvili, J. N.; Waite, J. H . Surface-initiated self-healing of polymers in aqueous media . Nat. Mater. , 2014 . 13 867 -872 . DOI:10.1038/nmat4037http://doi.org/10.1038/nmat4037 .
Eyring, H . Plasticity, and diffusion as examples of absolute reaction rates . J. Chem. Phys , 1936 . 4 283 -291 . DOI:10.1063/1.1749836http://doi.org/10.1063/1.1749836 .
Taylor, D. L.; Panhuis, M. I. H . Self-healing hydrogels . Adv. Mater. , 2016 . 28 9060 -9093 . DOI:10.1002/adma.201601613http://doi.org/10.1002/adma.201601613 .
Mondal, S.; Das, S.; Nandi, A. K . A review on recent advances in polymer and peptide hydrogels . Soft Matter , 2020 . 16 1404 -1454 . DOI:10.1039/C9SM02127Bhttp://doi.org/10.1039/C9SM02127B .
Chen, J.; Huang, Y. K.; Ma, X. Y.; Lei, Y . Functional self-healing materials and their potential applications in biomedical engineering . Adv. Compos. Hybrid Mater. , 2018 . 1 94 -113 . DOI:10.1007/s42114-017-0009-yhttp://doi.org/10.1007/s42114-017-0009-y .
Yin, Q. Y.; Dai, C. H.; Chen, H.; Gou, K.; Guan, H. Z.; Wang, P. H.; Jiang, J. T.; Weng, G. S . Tough double metal-ion cross-linked elastomers with temperature-adaptable self-healing and luminescence properties . Chinese J. Polym. Sci. , 2021 . 39 554 -565 . DOI:10.1007/s10118-021-2517-zhttp://doi.org/10.1007/s10118-021-2517-z .
Li, C. H.; Zuo, J. L . Self-healing polymers based on coordination bonds . Adv. Mater. , 2020 . 32 1903762 .
Xun, X. C.; Zhang, Z.; Zhao, X.; Zhao, B.; Gao, F. F.; Kang, Z.; Liao, Q. L.; Zhang, Y . Highly robust and self-powered electronic skin based on tough conductive self-healing elastomer . ACS Nano , 2020 . 14 9066 -9072 . DOI:10.1021/acsnano.0c04158http://doi.org/10.1021/acsnano.0c04158 .
Sima, W. X.; Shao, Q. Q.; Sun, P. T.; Liang, C.; Yang, M.; Yin, Z.; Deng, Q . Magnetically gradient-distributed microcapsule/epoxy composites: Low capsule load and highly targeted self-healing performance . Chem. Eng. J. , 2021 . 405 126908 DOI:10.1016/j.cej.2020.126908http://doi.org/10.1016/j.cej.2020.126908 .
Hornat, C. C.; Urban, M. W . Shape memory effects in self-healing polymers . Prog. Polym. Sci. , 2020 . 102 101208 DOI:10.1016/j.progpolymsci.2020.101208http://doi.org/10.1016/j.progpolymsci.2020.101208 .
Zhu, D. Y.; Rong, M. Z.; Zhang, M. Q . Self-healing polymers and composites . Prog. Polym. Sci. , 2015 . 49-50 175 -220 . DOI:10.1016/j.progpolymsci.2015.07.002http://doi.org/10.1016/j.progpolymsci.2015.07.002 .
Blaiszik, B. J.; Kramer, S. L. B.; Olugebefola, S. C.; Moore, J. S. Sottos, N. R.; White, S. R . Self-healing polymers and composites . Annu. Rev. Mater. Res. , 2010 . 40 179 -211 . DOI:10.1146/annurev-matsci-070909-104532http://doi.org/10.1146/annurev-matsci-070909-104532 .
Liu, J.; Zhang, X. C.; Chen, X.; Qu, L. L . Stimuli-responsive dendronized polymeric hydrogels through Schiff-base chemistry showing remarkable topological effects . Polym. Chem. , 2018 . 9 378 -387 . DOI:10.1039/C7PY01865Ghttp://doi.org/10.1039/C7PY01865G .
Neal, J. A.; Mozhdehi, D.; Guan, Z. B . Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds . J. Am. Chem. Soc. , 2015 . 137 4846 -4850 . DOI:10.1021/jacs.5b01601http://doi.org/10.1021/jacs.5b01601 .
Gao, Z. Y.; Gotland, B.; Tronci, G.; Thornton, P. D. . A redox-responsive hyaluronic acid-based hydrogel for chronic wound management . J. Mater. Chem. B , 2019 . 7 7494 -7501 . DOI:10.1039/C9TB01683Jhttp://doi.org/10.1039/C9TB01683J .
Zhang, Y. C.; Le, X. X.; Jian, Y. K.; Lu, W.; Zhang, J. W.; Chen, T . 3D fluorescent hydrogel origami for multistage data security protection . Adv. Funct. Mater. , 2019 . 29 1905514 DOI:10.1002/adfm.201905514http://doi.org/10.1002/adfm.201905514 .
Meng, H.; Xiao, P.; Gu, J. C.; Wen, X. F.; Xu, J.; Zhao, C. Z.; Zhang, J. W.; Chen, T . Self-healable macro-/microscopic shape memory hydrogels based on supramolecular interactions . Chem. Commun. , 2014 . 50 12277 DOI:10.1039/C4CC04760Ehttp://doi.org/10.1039/C4CC04760E .
Shao, C. Y.; Wang, M.; Chang, H. L.; Xu, F.; Yang, J . A self-Healing cellulose nanocrystal-poly(ethylene glycol) nanocomposite hydrogel via Diels-Alder click reaction . ACS Sustain. Chem. Eng. , 2017 . 5 6167 -6174 . DOI:10.1021/acssuschemeng.7b01060http://doi.org/10.1021/acssuschemeng.7b01060 .
Xia, N. N.; Xiong, X. M.; Rong, M. Z.; Zhang, M. Q.; Kong, F . Self-healing of polymer in acidic water toward strength restoration through the synergistic effect of hydrophilic and hydrophobic interactions . ACS Appl. Mater. Interfaces , 2017 . 9 37300 -37309 . DOI:10.1021/acsami.7b11230http://doi.org/10.1021/acsami.7b11230 .
Wang, Y. M.; Huang, F. R.; Chen, X. B.; Wang, X. W.; Zhang, W. B.; Peng, J.; Li, J. Q.; Zhai, M. L . Stretchable, conductive, and self-healing hydrogel with super metal adhesion . Chem. Mater. , 2018 . 30 4289 -4297 . DOI:10.1021/acs.chemmater.8b01260http://doi.org/10.1021/acs.chemmater.8b01260 .
Tamate, R.; Hashimoto, K.; Horii, T.; Hirasawa, M.; Li, X.; Shibayama, M.; Watanabe, M . Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production . Adv. Mater. , 2018 . 30 1802792 DOI:10.1002/adma.201802792http://doi.org/10.1002/adma.201802792 .
Li, L.; Yan, B.; Yang, J.; Chen, L.; Zeng, H . Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property . Adv. Mater , 2015 . 27 1294 -1299 . DOI:10.1002/adma.201405166http://doi.org/10.1002/adma.201405166 .
Nishimura, T.; Sum, N.; Mukai, S. A.; Sasaki, Y.; Akiyoshi, K . Supramacromolecular injectable hydrogels by crystallization-driven self-assembly of carbohydrate-conjugated poly(2-isopropyloxazoline)s for biomedical applications . J. Mater. Chem. B , 2019 . 7 6362 -6369 . DOI:10.1039/C9TB00918Chttp://doi.org/10.1039/C9TB00918C .
Nakahata, M.; Takashima, Y. Harada, A . Highly flexible, tough, and self-healing supramolecular polymeric materials using host-guest interaction . Macromol. Rapid Commun. , 2016 . 37 86 -92 . DOI:10.1002/marc.201500473http://doi.org/10.1002/marc.201500473 .
Wei, Z. J.; He, J.; Liang, T.; Oh, H.; Athas, J.; Tong, Z.; Wang, C. Y.; Nie, Z. H . Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions . Polym. Chem. , 2013 . 4 4601 -4605 . DOI:10.1039/c3py00692ahttp://doi.org/10.1039/c3py00692a .
Wei, S. X.; Li, Z.; Lu, W.; Liu, H.; Zhang, J. W.; Chen, T.; Tang, B. Z . Multicolor fluorescent polymeric hydrogels: colorfulness is more shining than homochromy . Angew. Chem. Int. Ed. , 2021 . 60 8608 -8624 . DOI:10.1002/anie.202007506http://doi.org/10.1002/anie.202007506 .
Peivandi, A.; Tian, L.; Mahabir, R.; Hosseinidoust, Z . Hierarchically structured, self-healing, fluorescent, bioactive hydrogels with self-organizing bundles of phage nanofilaments . Chem. Mater , 2019 . 31 5442 -5449 . DOI:10.1021/acs.chemmater.9b00720http://doi.org/10.1021/acs.chemmater.9b00720 .
Zhang, Y. D. Y.; Ding, Z. Y.; Liu, Y.; Zhang, Y. P.; Jiang, S. M. . White-light-emitting hydrogels with self-healing properties and adjustable emission colors . J. Colloid Interf. Sci , 2021 . 582 825 -833 . DOI:10.1016/j.jcis.2020.08.080http://doi.org/10.1016/j.jcis.2020.08.080 .
Zhu, C. N.; Bai, T. W.; Wang, H.; Bai, W.; Ling, J.; Sun, J. Z. Huang, F. H.; Wu, Z. L.; Zheng, Q . Single chromophore-based white-light-emitting hydrogel with tunable fluorescence and patternability . ACS Appl. Nano Mater. , 2018 . 10 39343 -39352 . DOI:10.1021/acsami.8b12619http://doi.org/10.1021/acsami.8b12619 .
Zhao, Q.; Chen, Y.; Li, S. H.; Liu, Y . Tunable white-light emission by supramolecular self-sorting in highly swollen hydrogels . Chem. Commun. , 2018 . 54 200 -203 . DOI:10.1039/C7CC08822Ahttp://doi.org/10.1039/C7CC08822A .
Yang, D. Q.; Wang, Y. G.; Li, Z. Q.; Xu, Y.; Cheng, F.; Li, P.; Li, H. R . Color-tunable luminescent hydrogels with tough mechanical strength and self-healing ability . J. Mater. Chem. C , 2018 . 6 1153 -1159 . DOI:10.1039/C7TC05593Ehttp://doi.org/10.1039/C7TC05593E .
Chen, H.; Ma, X.; Wu, S. F.; Tian, H . A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness . Angew. Chem. Int. Ed. , 2014 . 126 14373 -14376 . DOI:10.1002/ange.201407402http://doi.org/10.1002/ange.201407402 .
Li, B.; Lin, C. L.; Lu, C. J.; Zhang, J. J.; He, T.; Qiu, H. Y.; Yin, S. C . Rapid and reversible thermochromic supramolecular polymer hydrogel and its application in protected quick response code . Mater. Chem. Front. , 2020 . 4 869 -874 . DOI:10.1039/C9QM00699Khttp://doi.org/10.1039/C9QM00699K .
Xie, S. W.; Ren, B. P.; Gong, G.; Zhang, D.; Chen, Y.; Xu, L. J.; Zhang, C. F.; Xu, J. X.; Zheng, J . Lanthanide-doped upconversion nanoparticle-cross-linked double-network hydrogels with strong bulk/interfacial toughness and tunable full-color fluorescence for bioimaging and biosensing . ACS Appl. Nano Mater. , 2020 . 3 2774 -2786 . DOI:10.1021/acsanm.0c00105http://doi.org/10.1021/acsanm.0c00105 .
Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z . Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole . Chem. Commun. , 2001 . 1740 -1741 . DOI:10.1039/B105159Hhttp://doi.org/10.1039/B105159H .
Li, J.; Wang, J. X.; Li, H. X.; Song, N.; Wang, D.; Tang, B. Z . Supramolecular materials based on AIE luminogens (AIEgens): construction and applications . Chem. Soc. Rev. , 2020 . 49 1144 -1172 . DOI:10.1039/C9CS00495Ehttp://doi.org/10.1039/C9CS00495E .
Ji, X. F.; Li, Z.; Hu, Y. B.; Xie, H. L.; Wu, W. J.; Song, F. Y.; Liu, H. X.; Wang, J. G.; Jiang, M. J.; Lam, J. W. Y.; Tang, B. Z . Bioinspired hydrogels with muscle-like structure for AIEgen-guided selective self-healing . CCS Chem. , 2020 . 3 1146 -1156 . DOI:10.31635/ccschem.020.202000302http://doi.org/10.31635/ccschem.020.202000302 .
Guaresti, O.; Crocker, L.; Palomares, T.; Alonso-Varona, A.; Eceiza, A.; Fruk, L.; Gabilondo, N . Light-driven assembly of biocompatible fluorescent chitosan hydrogels with self-healing ability . J. Mater. Chem. B , 2020 . 8 9804 -9811 . DOI:10.1039/D0TB01746Ahttp://doi.org/10.1039/D0TB01746A .
Ma, C. X.; Lu, W.; Yang, X. X.; He, J.; Le, X. X.; Wang, L.; Zhang, J. W.; Serpe, M. J.; Huang, Y. J.; Chen, T . Bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors . Adv. Funct. Mater. , 2018 . 28 1704568 DOI:10.1002/adfm.201704568http://doi.org/10.1002/adfm.201704568 .
Wu, B. Y.; Le, X. X.; Jian, Y. K.; Lu, W.; Yang, Z. Y.; Zheng, Z. K.; Theato, P.; Zhang, J. W.; Zhang, A.; Chen, T . pH and thermo dual-responsive fluorescent hydrogel actuator . Macromol. Rapid Commun. , 2019 . 40 1800648 DOI:10.1002/marc.201800648http://doi.org/10.1002/marc.201800648 .
Deng, Z. X.; Wang, H.; Ma, P. X.; Guo, B. L . Self-healing conductive hydrogels: preparation, properties and applications . Nanoscale , 2020 . 12 1224 -1246 . DOI:10.1039/C9NR09283Hhttp://doi.org/10.1039/C9NR09283H .
Bao, R.; Tan, B. Y.; Liang, S.; Zhang, N.;. Wang, W; Liu, W. G . A π-π conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction . Biomaterials , 2017 . 122 63 -71 . DOI:10.1016/j.biomaterials.2017.01.012http://doi.org/10.1016/j.biomaterials.2017.01.012 .
Gao, G. R.; Yang, F. G.; Zhou, F. H.; He, J.; Lu, W.; Xiao, P.; Yan, H. Z.; Pan, C. F.; Chen, T.; Wang, Z. L . Bioinspired self-healing human-machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates . Adv. Mater. , 2020 . 32 2004290 DOI:10.1002/adma.202004290http://doi.org/10.1002/adma.202004290 .
Darabi, M. A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y. Q.; Chang, Q.; Jiang, J. Z.; Cai, J.; Wang, Q.; Luo, G. X.; Xing, M . Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability . Adv. Mater. , 2018 . 30 1705922 DOI:10.1002/adma.201705922http://doi.org/10.1002/adma.201705922 .
Shuai, L. Y. Z.; Guo, Z. H.; Zhang, P. P.; Wan, J. M.; Pu, X.; Wang, Z. L . Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles . Nano Energy , 2020 . 78 105389 DOI:10.1016/j.nanoen.2020.105389http://doi.org/10.1016/j.nanoen.2020.105389 .
Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y . A bioinspired mineral hydrogel as a self-Healable, mechanically adaptable ionic skin for highly sensitive pressure sensing . Adv. Mater. , 2017 . 29 1700321 DOI:10.1002/adma.201700321http://doi.org/10.1002/adma.201700321 .
Gao, F.; Xie, W. S.; Miao, Y. Q.; Wang, D.; Guo, Z. H.; Ghosal, A.; Li, Y. S.; Wei, Y.; Feng, S. S.; Zhao, L. Y.; Fan, H. M . Magnetic hydrogel with optimally adaptive functions for breast cancer recurrence prevention . Adv. Healthc. Mater. , 2019 . 8 1900203 DOI:10.1002/adhm.201900203http://doi.org/10.1002/adhm.201900203 .
Zhang, Y. L.; Yang, B.; Zhang, X. Y.; Xu, L. X.; Tao, L.; Lia, S. X.; Wei, Y . A magnetic self-healing hydrogel . Chem. Commun. , 2012 . 48 9305 -9307 . DOI:10.1039/c2cc34745hhttp://doi.org/10.1039/c2cc34745h .
Gang, F. L.; Yan, H.; Ma, B C. Y.; Jiang, L.; Gu, Y. Y.; Liu, Z. Y.; Zhao, L. Y.; Wang, X. M.; Zhang, J. W.; Sun, X. D . Robust magnetic double-network hydrogels with self-healing, MR imaging, cytocompatibility and 3D printability . Chem. Commun. , 2019 . 55 12412 -12412 . DOI:10.1039/C9CC90441Ghttp://doi.org/10.1039/C9CC90441G .
Zhang, D. C.; Zhang, J. W.; Jian, Y. K.; Wu, B. Y.; Yan, H. Z.; Lu, H. H.; Wei, S. X.; Wu, S.; Xue, Q. J.; Chen, T . Multi-field synergy manipulating soft polymeric hydrogel transformers . Adv. Intell. Syst. , 2021 . 3 2000208 DOI:10.1002/aisy.202000208http://doi.org/10.1002/aisy.202000208 .
Zhang, Y. L.; Wang, Y.; Wen, Y. Y.; Zhong, Q. F.; Zhao, Y. J . Self-healable magnetic structural color hydrogels . ACS Appl. Mater. Interfaces , 2020 . 12 7486 -7493 . DOI:10.1021/acsami.9b22579http://doi.org/10.1021/acsami.9b22579 .
Wang, L.; Yang, X. F.; Chen, H. M.; Yang, G.; Gong, T.; Li, W. B.; Zhou, S. B . Multi-stimuli sensitive shape memory poly(vinyl alcohol)-graft-polyurethane . Polym. Chem. , 2013 . 4 4461 -4468 . DOI:10.1039/c3py00519dhttp://doi.org/10.1039/c3py00519d .
Zhang, Y. Y.; Gao H. J.; Wang, H.; Xu, Z. Y.; Chen, X. W.; Liu, B.; Shi, Y.; Lu, Y.; Wen, L. F.; Li, Y.; Li, Z. S.; Men, Y. F.; Feng, X. Q.; Liu, W. G . Radiopaque highly stiff and tough shape memory hydrogel microcoils for permanent embolization of arteries . Adv. Funct. Mater. , 2018 . 28 1705962 DOI:10.1002/adfm.201705962http://doi.org/10.1002/adfm.201705962 .
Zhang, Y. C.; Le, X. X.; Lu, W.; Jian, Y. K.; Zhang, J. W.; Chen, T . An “off-the-Shelf” shape memory hydrogel based on the dynamic borax-diol ester bonds . Macromol. Mater. Eng. , 2018 . 303 1800144 DOI:10.1002/mame.201800144http://doi.org/10.1002/mame.201800144 .
Le, X. X.; Lu, W.; Zheng, J.; Tong, D. Y.; Zhao, N.; Ma, C. X.; Xiao, H.; Zhang, J. W.; Huang, Y. J.; Chen, T . Stretchable supramolecular hydrogels with triple shape memory effect . Chem. Sci. , 2016 . 7 6715 -6720 . DOI:10.1039/C6SC02354Ahttp://doi.org/10.1039/C6SC02354A .
Meng, H.; Zheng, J.; Wen, X. F.; Cai, Z. Q.; Zhang, J. W.; Chen, T. . pH- and sugar-induced shape memory hydrogel based on reversible penylboronic acid-diol ester bonds . Macromol. Rapid Commun. , 2015 . 36 533 -537 . DOI:10.1002/marc.201400648http://doi.org/10.1002/marc.201400648 .
Li, Z. W.; Lu, W.; Ngai, T.; Le, X. X.; Zheng, J.; Zhao, N.; Huang, Y. J.; Wen, X. F.; Zhang, J. W.; Chen, T . Mussel-inspired multifunctional supramolecular hydrogels with self-healing, shape memory and adhesive properties . Polym. Chem. , 2016 . 7 5343 -5346 . DOI:10.1039/C6PY01112Hhttp://doi.org/10.1039/C6PY01112H .
Qiu, H. Y.; Wei, S. X.; Liu, H.; Zhan, B. B.; Yan, H. Z.; Lu, W.; Zhang, J. W.; Wu, S.; Chen, T . Programming multistate aggregation-induced emissive polymeric hydrogel into 3D structures for on-demand information decryption and transmission . Adv. Intell. Syst. , 2021 . 3 2000239 DOI:10.1002/aisy.202000239http://doi.org/10.1002/aisy.202000239 .
Jiang, L. B.; Lu, Y.; Liu, X. Y.; Tu, H.; Zhang, J. W.; Shi, X. W.; Deng H. B.; Du, Y. M . Layer-by-layer immobilization of quaternized carboxymethyl chitosan/organic rectorite and alginate onto nanofibrous mats and their antibacterial application . Carbohydr. Polym. , 2015 . 121 428 -435 . DOI:10.1016/j.carbpol.2014.12.069http://doi.org/10.1016/j.carbpol.2014.12.069 .
Yan, K.; Xu, F. Y.; Wang, C. Y.; Li, Y. Y.; Chen, Y. L.; Li, X. F.; Lu, Z. T. Wang, D . A multifunctional metal-biopolymer coordinated double network hydrogel combined with multistimulus responsiveness, self-healing, shape memory and antibacterial properties . Biomater. Sci. , 2020 . 8 3193 -3201 . DOI:10.1039/D0BM00425Ahttp://doi.org/10.1039/D0BM00425A .
Lu, X. K.; Chan, C. Y.; Lee, K. I.; Ng, P. F.; Fei, B.; Xin, J. H.; Fu, J . Super-tough and thermo-healable hydrogel-promising for shape-memory absorbent fiber . J. Mater. Chem. B , 2014 . 2 7631 -7638 . DOI:10.1039/C4TB01289Ehttp://doi.org/10.1039/C4TB01289E .
Zhang, H. J.; Han, D. H.; Yan, Q.; Fortin, D.; Xia, H. S.; Zhao, Y . Light-healable hard hydrogels through photothermally induced melting-crystallization phase transition . J. Mater. Chem. A , 2014 . 2 13373 -13379 . DOI:10.1039/C4TA02463Jhttp://doi.org/10.1039/C4TA02463J .
Yang, L.; Wang, Z. H.; Fei, G. X.; Xia, H. S . Polydopamine particles reinforced poly(vinyl alcohol) hydrogel with NIR light triggered shape memory and self-healing capability . Macromol. Rapid Commun. , 2017 . 38 1700421 DOI:10.1002/marc.201700421http://doi.org/10.1002/marc.201700421 .
Ye, F. M.; Li, M.; Ke, D. N.; Wang, L. P.; Lu, Y . Ultrafast self-healing and injectable conductive hydrogel for strain and pressure sensors . Adv. Mater. Technol. , 2019 . 4 1900346 DOI:10.1002/admt.201900346http://doi.org/10.1002/admt.201900346 .
Wang, Z. F.; Ren, Y. P.; Zhu, Y.; Hao, L. J.; Chen, Y. H.; An, G.; Wu, H. K.; Shi, X. T.; Mao, C. B . A novel rapidly self-healing host-guest supramolecular hydrogel with high mechanical strength and excellent biocompatibility . Angew. Chem. Int. Ed. , 2018 . 57 9008 -9012 . DOI:10.1002/anie.201804400http://doi.org/10.1002/anie.201804400 .
Zheng, J.; Xiao, P.; Liu, W.; Zhang, J. W.; Huang, Y. J.; Chen, T . Mechanical robust and self-healable supramolecular hydrogel . Macromol. Rapid Commun. , 2016 . 37 265 -270 . DOI:10.1002/marc.201500571http://doi.org/10.1002/marc.201500571 .
Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.; Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P . Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity . Nat. Mater. , 2013 . 12 932 -937 . DOI:10.1038/nmat3713http://doi.org/10.1038/nmat3713 .
Long, T. J.; Li, Y. X.; Fang, X.; Sun, J. Q . Salt-Mediated polyampholyte hydrogels with high mechanical strength, excellent self-healing property, and satisfactory electrical conductivity . Adv. Funct. Mater. , 2018 . 28 1804416 DOI:10.1002/adfm.201804416http://doi.org/10.1002/adfm.201804416 .
Hussain, I.; Sayed, S. M.; Liu, S. L.; Oderinde, O.; Yao, F.; Fu, G. D . Glycogen-based self-healing hydrogels with ultra-stretchable, flexible, and enhanced mechanical properties via sacrificial bond interactions . Int. J. Biol. Macromol. , 2018 . 117 648 -658 . DOI:10.1016/j.ijbiomac.2018.04.088http://doi.org/10.1016/j.ijbiomac.2018.04.088 .
Lin, J.; Zheng, S. Y.; Xiao, R.; Yin, J.; Wu, Z. L.; Zheng, Q.; Qian, J . Constitutive behaviors of tough physical hydrogels with dynamic metal-coordinated bonds . J. Mech. Phys. Solids , 2020 . 139 103935 DOI:10.1016/j.jmps.2020.103935http://doi.org/10.1016/j.jmps.2020.103935 .
Li, S. D.; Chen, N.; Li, X. P.; Li, Y.; Xie, Z. P.; Ma, Z. Y.; Zhao, J.; Hou, X.; Yuan, X. B . Bioinspired double-dynamic-bond crosslinked bioadhesive enables post-wound closure care . Adv. Funct. Mater. , 2020 . 30 2000130 DOI:10.1002/adfm.202000130http://doi.org/10.1002/adfm.202000130 .
Liu, T. Q.; Peng, X.; Chen, Y. Y.; Zhang, J. N.; Jiao, C.; Wang, H. L . Solid-phase esterification between poly(vinyl alcohol) and malonic acid and its function in toughening hydrogels . Polym. Chem. , 2020 . 11 4787 -4797 . DOI:10.1039/D0PY00023Jhttp://doi.org/10.1039/D0PY00023J .
Li, K.; Wang, J. X.; Li, P.; Fan, Y. B . Ternary hydrogel with tunable mechanical and self-healing properties based on the synergistic effects of multi-dynamic bonds . J. Mater. Chem. B , 2020 . 8 4660 -4671 . DOI:10.1039/C9TB02885Dhttp://doi.org/10.1039/C9TB02885D .
Xu, C. H.; Zhan, W.; Tang, X. Z.; Mo, F.; Fu, L. H.; Lin, B. F . Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages . Polym. Test. , 2018 . 66 155 -163 . DOI:10.1016/j.polymertesting.2018.01.016http://doi.org/10.1016/j.polymertesting.2018.01.016 .
Kawamoto, K.; Grindy, S. C.; Liu, J.; Holten-Andersen, N.; Johnson, J. A . Dual role for 1,2,4,5-tetrazines in polymer networks: combining Diels-Alder reactions and metal coordination to generate functional supramolecular gels . ACS Macro Lett. , 2015 . 4 458 -461 . DOI:10.1021/acsmacrolett.5b00221http://doi.org/10.1021/acsmacrolett.5b00221 .
Lv, Y. K.; Pan, Z.; Song, C. Z.; Chen, Y. L.; Qian, X . Locust bean gum/gellan gum double-network hydrogels with superior self-healing and pH-driven shape-memory properties . Soft Matter , 2019 . 15 6171 -6179 . DOI:10.1039/C9SM00861Fhttp://doi.org/10.1039/C9SM00861F .
Qiao, L. Y.; Liu, C. D.; Liu, C.; Yang, L. Q.; Zhang, M. X.; Liu, W. T.; Wang, J. Y.; Jian, X. G . Self-healing alginate hydrogel based on dynamic acylhydrazone and multiple hydrogen bonds . J. Mater. Sci. , 2019 . 54 8814 -8828 . DOI:10.1007/s10853-019-03483-yhttp://doi.org/10.1007/s10853-019-03483-y .
Cong, H. P.; Wang, P.; Yu, S. H . Highly elastic and superstretchable graphene oxide/polyacrylamide hydrogels . Small , 2014 . 10 448 -453 . DOI:10.1002/smll.201301591http://doi.org/10.1002/smll.201301591 .
Yang, J.; Wang, X. P.; Xie, X. M . In situ synthesis of poly(acrylic acid) physical hydrogels from silica nanoparticles . Soft Matter , 2012 . 8 1058 -1063 . DOI:10.1039/C1SM06647Ahttp://doi.org/10.1039/C1SM06647A .
Zhang, Y. W.; Yuan, B.; Zhang, Y. Q.; Cao, Q. P.; Yang, C.; Li, Y.; Zhou, J. H . Biomimetic lignin/poly(ionic liquids) composite hydrogel dressing with excellent mechanical strength, self-healing properties, and reusability . Chem. Eng. J. , 2020 . 400 125984 DOI:10.1016/j.cej.2020.125984http://doi.org/10.1016/j.cej.2020.125984 .
Luo, F.; Sun, T. L.; Nakajima, T.; Kurokawa, T.; Zhao, Y.; Sato, K.; Ihsan, A. B.; Li, X. F.; Guo, H. L.; Gong, J. P . Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels . Adv. Mater. , 2015 . 27 2722 -2727 . DOI:10.1002/adma.201500140http://doi.org/10.1002/adma.201500140 .
Wu, Z. N.; Yao, Q. F.; Zang, S. Q.; Xie, J. P . Aggregation-induced emission in luminescent metal nanoclusters . Natl. Sci. Rev. , 2020 . DOI:10.1093/nsr/nwaa208http://doi.org/10.1093/nsr/nwaa208 .
Zhao, X. X; Sun, W. W.; Geng, D. C.; Fu, W.; Dan, J. D.; Xie, Y.; Kent, P. R. C.; Zhou, W.; Pennycook, S. J.; Loh, K. P . Edge segregated polymorphism in 2D molybdenum carbide . Adv. Mater. , 2019 . 31 1808343 DOI:10.1002/adma.201808343http://doi.org/10.1002/adma.201808343 .
Hui, C. Y.; Long, R . A constitutive model for the large deformation of a self-healing gel . Soft Matter , 2012 . 8 8209 -8216 . DOI:10.1039/c2sm25367dhttp://doi.org/10.1039/c2sm25367d .
0
Views
5
Downloads
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution