
a.Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China
b.Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
jzdu@tongji.edu.cn
Scan for full text
Sha Lin, Hui Sun, Erik Jan Cornel, et al. Denting Nanospheres with a Short Peptide. [J]. Chinese Journal of Polymer Science 39(12):1538-1549(2021)
Sha Lin, Hui Sun, Erik Jan Cornel, et al. Denting Nanospheres with a Short Peptide. [J]. Chinese Journal of Polymer Science 39(12):1538-1549(2021) DOI: 10.1007/s10118-021-2599-7.
Dented nanospheres show promising potential in drug delivery, nanomotors,etc,. However, it is still challenging to prepare them by homopolymer self-assembly because of the strict structural requirements of the homopolymer. Herein, we propose a strategy for preparing dented nanospheres from homopolymers by co-assembly with a short peptide. They were co-assembled from poly(2-hydroxy-3-((4-(ethoxycarbonyl)phenyl)amino)propyl methacrylate) (PHBzoMA,59,) and (,S,)-2-((,S,)-2-((((9,H,-fluoren-9-yl)methoxy)carbonyl)amino)-3-phenylpropanamido)-3-phenylpropanoic acid (Fmoc-FF-OH). PHBzoMA homopolymers can only self-assemble into nanospheres without dent, and the addition of a short peptide introduced hydrogen bonding and complementary ,π-π, stacking interactions led to the final dented nanosphere morphology. The weight fractions of the short peptide can be adjusted to regulate the final morphology. It was confirmed that the radius of curvature of the dent on the surface was related to the organic bubble inside the protospheres prepared at critical aggregation concentration (CAC). The organic bubble can be adjusted by altering the kind of organic solvent and solution pH, which allowed control over the dented nanosphere dimension. The use of different organic solvents with various polarities allows adjustment of the interfacial tension, and hence the denting degree. This degree can also be controlled by manipulating the solution pH to (de)protonate the short peptide and homopolymer. Furthermore, the versatility of this method was highlighted by using a different homopolymer and the applicability of the resulting dented nanospheres was demonstrated by decoration with gold nanoparticles. Overall, this study provided important insights and a new simple strategy to prepare dented nanospheres in a controlled fashion.
Dented nanospheresHomopolymerShort peptideHydrogen bondingπ-π Stacking
Sandanaraj, B. S.; Vutukuri, D. R.; Simard, J. M.; Klaikherd, A.; Hong, R.; Rotello, V. M.; Thayumanavan, S. . Noncovalent modification of chymotrypsin surface using an amphiphilic polymer scaffold: implications in modulating protein function . J. Am. Chem. Soc. , 2005 . 127 10693 -10698 . DOI:10.1021/ja051947+http://doi.org/10.1021/ja051947+ .
Savariar, E. N.; Aathimanikandan, S. V.; Thayumanavan, S. . Supramolecular assemblies from amphiphilic homopolymers: testing the scope . J. Am. Chem. Soc. , 2006 . 128 16224 -16230 . DOI:10.1021/ja065213ohttp://doi.org/10.1021/ja065213o .
Chen, S.; Lin, S.; Xi, Y. J.; Xiao, Y. F.; Du, J. Z. . Polymersomes with inhomogeneous membranes, asymmetrical coronas and fused membranes and coronas . Chin. Sci. Bull. , 2020 . 65 2615 -2626 . DOI:10.1360/TB-2020-0472http://doi.org/10.1360/TB-2020-0472 .
Liu, D. Q.; Sun, H.; Xiao, Y. F.; Chen, S.; Cornel, E. J.; Zhu, Y. Q.; Du, J. Z. . Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes . J. Control. Release , 2020 . 326 365 -386 . DOI:10.1016/j.jconrel.2020.07.018http://doi.org/10.1016/j.jconrel.2020.07.018 .
Cornel, E. J.; Jiang, J. H.; Chen, S.; Du, J. Z. . Principles and characteristics of polymerization-induced self-assembly with various polymerization techniques . CCS Chem. , 2020 . 2104 -2125. .
Xiao, J. G.; Hu, Y.; Du, J. Z. . Polymer nanodisks by collapse of nanocapsules . Sci. China Chem. , 2018 . 61 569 -575 . DOI:10.1007/s11426-017-9209-3http://doi.org/10.1007/s11426-017-9209-3 .
Sun, H.; Du, J. Z. . Intramolecular cyclization-induced crystallization-driven self-assembly of an amorphous poly(amic acid) . Macromolecules , 2020 . 53 11033 -11039 . DOI:10.1021/acs.macromol.0c02186http://doi.org/10.1021/acs.macromol.0c02186 .
Chen, Z. J.; Yang, S. C.; Liu, X. L.; Gao, Y. H.; Dong, X.; Lai, X.; Zhu, M. H.; Feng, H. Y.; Zhu, X. D.; Lu, Q.; Zhao, M.; Chen, H. Z.; Lovell, J. F.; Fang, C. . Nanobowl-supported liposomes improve drug loading and delivery . Nano Lett. , 2020 . 20 4177 -4187 . DOI:10.1021/acs.nanolett.0c00495http://doi.org/10.1021/acs.nanolett.0c00495 .
Li, X. M.; Zhou, L.; Wei, Y.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. . Anisotropic encapsulation-induced synthesis of asymmetric single-hole mesoporous nanocages . J. Am. Chem. Soc. , 2015 . 137 5903 -5906 . DOI:10.1021/jacs.5b03207http://doi.org/10.1021/jacs.5b03207 .
Franken, L. E.; Wei, Y.; Chen, J.; Boekema, E. J.; Zhao, D.; Stuart, M. C. A.; Feringa, B. L. . Solvent mixing to induce molecular motor aggregation into bowl shaped particles: underlying mechanism, particle nature, and application to control motor behavior . J. Am. Chem. Soc. , 2018 . 140 7860 -7868 . DOI:10.1021/jacs.8b03045http://doi.org/10.1021/jacs.8b03045 .
Peng, F.; Tu, Y. F.; van Hest, J. C. M.; Wilson, D. A. . Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells . Angew. Chem., Int. Ed. , 2015 . 54 11662 -11665 . DOI:10.1002/anie.201504186http://doi.org/10.1002/anie.201504186 .
Liang, J.; Hu, H.; Park, H.; Xiao, C.; Ding, S.; Paik, U.; Lou, X. W. . Construction of hybrid bowl-like structures by anchoring NIO nanosheets on flat carbon hollow particles with enhanced lithium storage properties . Energy Environ. Sci. , 2015 . 8 1707 -1711 . DOI:10.1039/C5EE01125Fhttp://doi.org/10.1039/C5EE01125F .
Lin, Z. X.; Tian, H.; Xu, F. G.; Yang, X. W.; Mai, Y. Y.; Feng, X. L. . Facile synthesis of bowl-shaped nitrogen-doped carbon hollow particles templated by block copolymer 'kippah vesicles' for high performance supercapacitors . Polym. Chem. , 2016 . 7 2092 -2098 . DOI:10.1039/C6PY00161Khttp://doi.org/10.1039/C6PY00161K .
Cheng, Z. F.; Luo, F. H.; Zhang, Z. X.; Ma, Y. Q. . Syntheses and applications of concave and convex colloids with precisely controlled shapes . Soft Matter , 2013 . 9 11392 -11397 . DOI:10.1039/c3sm52279bhttp://doi.org/10.1039/c3sm52279b .
Tanaka, T.; Komatsu, Y.; Fujibayashi, T.; Minami, H.; Okubo, M. . A novel approach for preparation of micrometer-sized, monodisperse dimple and hemispherical polystyrene particles . Langmuir , 2010 . 26 3848 -3853 . DOI:10.1021/la903309thttp://doi.org/10.1021/la903309t .
Liu, D.; Peng, X.; Wu, B.; Zheng, X.; Chuong, T. T.; Li, J.; Sun, S.; Stuckyt, G. D. . Uniform concave polystyrene-carbon core-shell nanospheres by a swelling induced buckling process . J. Am. Chem. Soc. , 2015 . 137 9772 -9775 . DOI:10.1021/jacs.5b05027http://doi.org/10.1021/jacs.5b05027 .
Mo, A. H.; Landon, P. B.; Emerson, C. D.; Zhang, C.; Anzenberg, P.; Akkiraju, S.; Lal, R. . Synthesis of nano-bowls with a janus template . Nanoscale , 2015 . 7 771 -775 . DOI:10.1039/C4NR05153Jhttp://doi.org/10.1039/C4NR05153J .
Wang, Y. L.; Li, C. N.; He, X. H.; Zhu, J. T. . Preparation and assembly of concave polymer microparticles . RSC Adv. , 2015 . 5 36680 -36686 . DOI:10.1039/C5RA04110Dhttp://doi.org/10.1039/C5RA04110D .
Liu, X.; Liu, J.; Jiang, M. . Spontaneous self-assembly of a mono-component polyimide bearing terminal hydrogen-bonding sites in a single solvent . Macromol. Rapid Commun. , 2009 . 30 892 -896 . DOI:10.1002/marc.200800773http://doi.org/10.1002/marc.200800773 .
Wang, J.; Kuang, M.; Duan, H. W.; Chen, D. Y.; Jiang, M. . pH-dependent multiple morphologies of novel aggregates of carboxyl-terminated polymide in water . Eur. Phys. J. E , 2004 . 15 211 -215 . DOI:10.1140/epje/i2004-10049-5http://doi.org/10.1140/epje/i2004-10049-5 .
Bucknall, D. G.; Anderson, H. L. . Polymers get organized . Science , 2003 . 302 1904 -1905 . DOI:10.1126/science.1091064http://doi.org/10.1126/science.1091064 .
Hsu, C. Y.; Chang, S. C.; Hsu, K. Y.; Liu, Y. L. . Photoluminescent toroids formed by temperature-driven self-assembly of Rhodamine B end-capped poly(N-isopropylacrylamide) . Macromol. Rapid Commun. , 2013 . 34 689 -694 . DOI:10.1002/marc.201300038http://doi.org/10.1002/marc.201300038 .
Zhu, Y. Q.; Fan, L.; Yang, B.; Du, J. Z. . Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation . ACS Nano , 2014 . 8 5022 -5031 . DOI:10.1021/nn5010974http://doi.org/10.1021/nn5010974 .
Zhu, Y. Q.; Liu, L.; Du, J. Z. . Probing into homopolymer self-assembly: how does hydrogen bonding influence morphology? . Macromolecules , 2013 . 46 194 -203 . DOI:10.1021/ma302176ahttp://doi.org/10.1021/ma302176a .
Ramireddy, R. R.; Prasad, P.; Finne, A.; Thayumanavan, S. . Zwitterionic amphiphilic homopolymer assemblies . Polym. Chem. , 2015 . 6 6083 -6087 . DOI:10.1039/C5PY00879Dhttp://doi.org/10.1039/C5PY00879D .
Zhang, J.; Liu, K. L.; Mullen, K.; Yin, M. Z. . Self-assemblies of amphiphilic homopolymers: synthesis, morphology studies and biomedical applications . Chem. Commun. , 2015 . 51 11541 -11555 . DOI:10.1039/C5CC03016Ahttp://doi.org/10.1039/C5CC03016A .
Li, Q. Y.; Lei, T.; Yao, Z. F.; Wang, J. Y.; Pei, J. . Multi-level self-assembly of conjugated polymers . Acta Polymerica Sinica (in Chinese) , 2019 . 50 1 -12. .
Sun, H.; Liu, D. Q.; Du, J. Z. . Nanobowls with controlled openings and interior holes driven by the synergy of hydrogen bonding and π-π interaction . Chem. Sci , 2019 . 10 657 -664 . DOI:10.1039/C8SC03995Jhttp://doi.org/10.1039/C8SC03995J .
Huang, J.; Su, L. L.; Hang, Y. X.; Shi, B. B.; Wang, X. D.; Xu, H. . Water-soluble fluorescent nanobowls constructed by multiple supramolecular assembly . Macromolecules , 2020 . 53 10613 -10622 . DOI:10.1021/acs.macromol.0c01728http://doi.org/10.1021/acs.macromol.0c01728 .
Wang, H.; Feng, Z.; Xu, B. . D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics . Adv. Drug. Deliv. Rev. , 2017 . 110-111 102 -111 . DOI:10.1016/j.addr.2016.04.008http://doi.org/10.1016/j.addr.2016.04.008 .
Adler-Abramovich, L.; Kol, N.; Yanai, I.; Barlam, D.; Shneck, R. Z.; Gazit, E.; Rousso, I. . Self-assembled organic nanostructures with metallic-like stiffness . Angew. Chem. Int. Ed. , 2010 . 49 9939 -9942 . DOI:10.1002/anie.201002037http://doi.org/10.1002/anie.201002037 .
Raeburn, J.; Pont, G.; Chen, L.; Cesbron, Y.; Levy, R.; Adams, D. J. . Fmoc-diphenylalanine hydrogels: understanding the variability in reported mechanical properties . Soft Matter , 2012 . 8 1168 -1174. .
Brown, N.; Lei, J.; Zhan, C.; Shimon, L. J. W.; Adler-Abramovich, L.; Wei, G.; Gazit, E. . Structural polymorphism in a self-assembled tri-aromatic peptide system . ACS Nano , 2018 . 12 3253 -3262 . DOI:10.1021/acsnano.7b07723http://doi.org/10.1021/acsnano.7b07723 .
Fleming, S.; Ulijn, R. V. . Design of nanostructures based on aromatic peptide amphiphiles . Chem. Soc. Rev. , 2014 . 43 8150 -8177 . DOI:10.1039/C4CS00247Dhttp://doi.org/10.1039/C4CS00247D .
Wijerathne, N. K.; Kumar, M.; Ulijn, R. V. . Fmoc-dipeptide/porphyrin molar ratio dictates energy transfer efficiency in nanostructures produced by biocatalytic co-assembly . Chem. Eur. J. , 2019 . 25 11847 -11851 . DOI:10.1002/chem.201902819http://doi.org/10.1002/chem.201902819 .
Smith, A. M.; Williams, R. J.; Tang, C.; Coppo, P.; Collins, R. F.; Turner, M. L.; Saiani, A.; Ulijn, R. V. . Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π-π interlocked β-sheets . Adv. Mater. , 2008 . 20 37 -41 . DOI:10.1002/adma.200701221http://doi.org/10.1002/adma.200701221 .
Tang, C.; Smith, A. M.; Collins, R. F.; Ulijn, R. V.; Saiani, A. . Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts . Langmuir , 2009 . 25 9447 -9453 . DOI:10.1021/la900653qhttp://doi.org/10.1021/la900653q .
Kale, T. S.; Klaikherd, A.; Popere, B.; Thayumanavan, S. . Supramolecular assemblies of amphiphilic homopolymers . Langmuir , 2009 . 25 9660 -9670 . DOI:10.1021/la900734dhttp://doi.org/10.1021/la900734d .
Feng, C.; Lu, G. L.; Li, Y. J.; Huang, X. Y. . Self-assembly of amphiphilic homopolymers bearing ferrocene and carboxyl functionalities: effect of polymer concentration, β-cyclodextrin, and length of alkyl linker . Langmuir , 2013 . 29 10922 -10931 . DOI:10.1021/la402335dhttp://doi.org/10.1021/la402335d .
Roy, B.; Govindaraju, T. . Amino acids and peptides as functional components in arylenediimide-based molecular architectonics . Bull. Chem. Soc. Jpn. , 2019 . 92 1883 -1901 . DOI:10.1246/bcsj.20190215http://doi.org/10.1246/bcsj.20190215 .
Zhao, L.; Zou, Q.; Yan, X. . Self-assembling peptide-based nanoarchitectonics . Bull. Chem. Soc. Jpn. , 2019 . 92 70 -79 . DOI:10.1246/bcsj.20180248http://doi.org/10.1246/bcsj.20180248 .
Han, J.; Li, Y.; Zhan, L.; Xue, J.; Sun, J.; Xiong, C.; Nie, Z. . A novel mass spectrometry method based on competitive non-covalent interaction for the detection of biomarkers . Chem. Commun. , 2018 . 54 10726 -10729 . DOI:10.1039/C8CC06100Ahttp://doi.org/10.1039/C8CC06100A .
Zhang, L. F.; Eisenberg, A. . Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution . Macromolecules , 1999 . 32 2239 -2249 . DOI:10.1021/ma981039fhttp://doi.org/10.1021/ma981039f .
Wolffs, M.; Korevaar, P. A.; Jonkheijm, P.; Henze, O.; Feast, W. J.; Schenning, A. P. H. J.; Meijer, E. W. . The role of heterogeneous nucleation in the self-assembly of oligothiophenes . Chem. Commun. , 2008 . 4613 -4615. .
Riegel, I. C.; Eisenberg, A.; Petzhold, C. L.; Samios, D. . Novel bowl-shaped morphology of crew-cut aggregates from amphiphilic block copolymers of styrene and 5-(N,N-diethylamino)isoprene . Langmuir , 2002 . 18 3358 -3363 . DOI:10.1021/la015592thttp://doi.org/10.1021/la015592t .
Liu, J.; Zhang, X.; Li, W.; Jiang, C.; Wang, Z.; Xiao, X. . Recent progress in periodic patterning fabricated by self-assembly of colloidal spheres for optical applications . Sci. China Mater. , 2020 . 63 1418 -1437 . DOI:10.1007/s40843-020-1284-8http://doi.org/10.1007/s40843-020-1284-8 .
Bera, S.; Mondal, S.; Tang, Y. M.; Jacoby, G.; Arad, E.; Guterman, T.; Jelinek, R.; Beck, R.; Wei, G. H.; Gazit, E. . Deciphering the rules for amino acid co-assembly based on interlayer distances . ACS Nano , 2019 . 13 1703 -1712. .
Pearson, R. T.; Warren, N. J.; Lewis, A. L.; Armes, S. P.; Battaglia, G. . Effect of pH and temperature on PMPC-PDPA copolymer self-assembly . Macromolecules , 2013 . 46 1400 -1407 . DOI:10.1021/ma302228mhttp://doi.org/10.1021/ma302228m .
Yang, B.; Du, J. Z. . Ultrasound-responsive homopolymer nanoparticles . Chinese J. Polym. Sci. , 2020 . 38 349 -356 . DOI:10.1007/s10118-020-2345-6http://doi.org/10.1007/s10118-020-2345-6 .
Burattini, S.; Greenland, B. W.; Merino, D. H.; Weng, W. G.; Seppala, J.; Colquhoun, H. M.; Hayes, W.; Mackay, M. E.; Hamley, I. W.; Rowan, S. J. . A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions . J. Am. Chem. Soc. , 2010 . 132 12051 -12058 . DOI:10.1021/ja104446rhttp://doi.org/10.1021/ja104446r .
Rubino, J. T.; Yalkowsky, S. H. . Cosolvency and cosolvent polarity . Pharm. Res. , 1987 . 4 220 -230 . DOI:10.1023/A:1016456127893http://doi.org/10.1023/A:1016456127893 .
Wei, W. S.; Xia, Y.; Ettinger, S.; Yang, S.; Yodh, A. G. . Molecular heterogeneity drives reconfigurable nematic liquid crystal drops . Nature , 2019 . 576 433 DOI:10.1038/s41586-019-1809-8http://doi.org/10.1038/s41586-019-1809-8 .
Sun, J. C.; Zhang, H.; Guo, K.; Yuan, S. L. . Self-assembly of dipeptide sodium salts derived from alanine: A molecular dynamics study . RSC Adv. , 2015 . 5 102182 -102190 . DOI:10.1039/C5RA19508Jhttp://doi.org/10.1039/C5RA19508J .
0
Views
5
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621