1.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
panxc@fudan.edu.cn
Scan for full text
Ning Li, Xiang-Cheng Pan. Controlled Radical Polymerization: from Oxygen Inhibition and Tolerance to Oxygen Initiation. [J]. Chinese Journal of Polymer Science 39(9):1084-1092(2021)
Ning Li, Xiang-Cheng Pan. Controlled Radical Polymerization: from Oxygen Inhibition and Tolerance to Oxygen Initiation. [J]. Chinese Journal of Polymer Science 39(9):1084-1092(2021) DOI: 10.1007/s10118-021-2597-9.
Molecular oxygen is a radical scavenger in both conventional and controlled radical polymerization (CRP), resulting in many time-consuming methods for physically removing oxygen before the polymerization. Different approaches have been developed to have oxygen tolerance by chemically consuming or converting molecular oxygen into non-initiating species to address this issue. Recently, we propose another approach called oxygen initiation that directly transforms molecular oxygen into the initiating carbon radical in CRP. This feature article summarizes our recent developments in this direction. Oxygen-initiated reversible addition-fragmentation transfer (RAFT) polymerization has been successfully conducted using oxygen and trialkylborane as co-initiators under the ambient conditions and atmosphere without any prior degassed procedures. This gas-triggered initiation provides the opportunity for spatiotemporal control of the polymerization by molecular oxygen or air. Rationally synthesized alkylborane compounds could derive the predesigned structure of the initiating alkyl radical to minimize the side reactions and free polymer chains, achieving the synthesis of ultra-high molecular weight polymers. The challenges and perspectives are also discussed in the end.
OxygenRadical polymerizationControlledAlkylboraneRAFT
Matyjaszewski, K.; Davis, T. P. Handbook of radical polymerization. Wiley Online Library: 2002.
Yang, G.; Li, X.; He, Y.; Ma, J.; Ni, G.; Zhou, S. . From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications . Prog. Polym. Sci. , 2018 . 81 80 -113 . DOI:10.1016/j.progpolymsci.2017.12.003http://doi.org/10.1016/j.progpolymsci.2017.12.003 .
Matyjaszewski, K. . Macromolecular engineering: from rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties . Prog. Polym. Sci. , 2005 . 30 858 -875 . DOI:10.1016/j.progpolymsci.2005.06.004http://doi.org/10.1016/j.progpolymsci.2005.06.004 .
Flory, P. J. Principles of polymer chemistry. Cornell University Press: New York, 1953.
Gao, H.; Matyjaszewski, K. . Synthesis of functional polymers with controlled architecture by crp of monomers in the presence of cross-linkers: from stars to gels . Prog. Polym. Sci. , 2009 . 34 317 -350 . DOI:10.1016/j.progpolymsci.2009.01.001http://doi.org/10.1016/j.progpolymsci.2009.01.001 .
Chen, C. . Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning . Nat. Rev. Chem. , 2018 . 2 6 -14 . DOI:10.1038/s41570-018-0003-0http://doi.org/10.1038/s41570-018-0003-0 .
Matyjaszewski, K. . Advanced materials by atom transfer radical polymerization . Adv. Mater. , 2018 . 30 1706441 DOI:10.1002/adma.201706441http://doi.org/10.1002/adma.201706441 .
Grubbs, R. B.; Grubbs, R. H. . Living polymerization-emphasizing the molecule in macromolecules . Macromolecules , 2017 . 50 6979 -6997 . DOI:10.1021/acs.macromol.7b01440http://doi.org/10.1021/acs.macromol.7b01440 .
Müller, A. H. E.; Matyjaszewski, K. Controlled and living polymerizations. Wiley-VCH Verlag GmbH & Co. KGaA, 2010.
Wang, J. S.; Matyjaszewsk, K. . Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes . J. Am. Chem. Soc. , 1995 . 117 5614 -5615. .
Pan, X.; Fantin, M.; Yuan, F.; Matyjaszewski, K. . Externally controlled atom transfer radical polymerization . Chem. Soc. Rev. , 2018 . 47 5457 -5490 . DOI:10.1039/C8CS00259Bhttp://doi.org/10.1039/C8CS00259B .
Zhang, W.; He, J.; Lv, C.; Wang, Q.; Pang, X.; Matyjaszewski, K.; Pan, X. . Atom transfer radical polymerization driven by near-infrared light with recyclable upconversion nanoparticles . Macromolecules , 2020 . 53 4678 -4684 . DOI:10.1021/acs.macromol.0c00850http://doi.org/10.1021/acs.macromol.0c00850 .
Boyer, C.; Corrigan, N. A.; Jung, K.; Nguyen, D.; Nguyen, T. K.; Adnan, N.; Oliver, S.; Shanmugam, S.; Yeow, J. . Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): from fundamentals to bioapplications . Chem. Rev. , 2016 . 116 1803 -1949 . DOI:10.1021/acs.chemrev.5b00396http://doi.org/10.1021/acs.chemrev.5b00396 .
Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. . Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process . Macromolecules , 1998 . 31 5559 -5562 . DOI:10.1021/ma9804951http://doi.org/10.1021/ma9804951 .
Keddie, D. J.; Moad, G.; Rizzardo, E.; Thang, S. H. . RAFT agent design and synthesis . Macromolecules , 2012 . 45 5321 -5342 . DOI:10.1021/ma300410vhttp://doi.org/10.1021/ma300410v .
Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. . Narrow molecular weight resins by a free-radical polymerization process . Macromolecules , 1993 . 26 2987 -2988 . DOI:10.1021/ma00063a054http://doi.org/10.1021/ma00063a054 .
Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. . Nitroxide-mediated polymerization . Prog. Polym. Sci. , 2013 . 38 63 -235 . DOI:10.1016/j.progpolymsci.2012.06.002http://doi.org/10.1016/j.progpolymsci.2012.06.002 .
Bhanu, V. A.; Kishore, K. . Role of oxygen in polymerization reactions . Chem. Rev. , 1991 . 91 99 -117 . DOI:10.1021/cr00002a001http://doi.org/10.1021/cr00002a001 .
Lv, C.; He, C.; Pan, X. . Oxygen-initiated and regulated controlled radical polymerization under ambient conditions . Angew. Chem. Int. Ed. , 2018 . 130 9574 -9577 . DOI:10.1002/ange.201805212http://doi.org/10.1002/ange.201805212 .
Lv, C.; Li, N.; Du, Y.; Li, J.; Pan, X. . Activation and deactivation of chain-transfer agent in controlled radical polymerization by oxygen initiation and regulation . Chinese J. Polym. Sci. , 2020 . 38 1178 -1184 . DOI:10.1007/s10118-020-2441-7http://doi.org/10.1007/s10118-020-2441-7 .
Lv, C.; Du, Y.; Pan, X. . Alkylboranes in conventional and controlled radical polymerization . J. Polym. Sci. , 2020 . 58 14 -19 . DOI:10.1002/pola.29477http://doi.org/10.1002/pola.29477 .
Wang, Y. L.; Wang Q. Y.; Pan, X. . Controlled radical polymerization towards ultra-high molecular weight by rationally designed borane radical initiators . Cell Rep. Phys. Sci. , 2020 . 1 10073 .
Pan, X.; Malhotra, N.; Simakova, A.; Wang, Z.; Konkolewicz, D.; Matyjaszewski, K. . Photoinduced atom transfer radical polymerization with ppm Cu catalyst by visible light in aqueous media . J. Am. Chem. Soc. , 2015 . 137 15430 -15433 . DOI:10.1021/jacs.5b11599http://doi.org/10.1021/jacs.5b11599 .
Pan, X.; Malhotra, N.; Zhang, J.; Matyjaszewski, K. . Photoinduced Fe-based atom transfer radical polymerization in the absence of additional ligands, reducing agents, and radical initiators . Macromolecules , 2015 . 48 6948 -6954 . DOI:10.1021/acs.macromol.5b01815http://doi.org/10.1021/acs.macromol.5b01815 .
Jakubowski, W.; Matyjaszewski, K. . Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers . Angew. Chem. Int. Ed. , 2006 . 45 4482 -4486 . DOI:10.1002/anie.200600272http://doi.org/10.1002/anie.200600272 .
Zhang, L. F.; Cheng, Z. P.; Shi, S.; Li, Q.; Zhu, X. L. . AGRET ATRP of methyl methacrylate catalyzed by FeCl3/iminodiacetic acid in the presence of air . Polymer , 2008 . 49 3054 -3059 . DOI:10.1016/j.polymer.2008.04.057http://doi.org/10.1016/j.polymer.2008.04.057 .
Tang, F.; Zhang, L. F.; Zhu, J.; Cheng, Z. P.; Zhu X. L. . Surface functionalization of chitosan nanospheres via surface-initiated AGET ATRP mediated by iron catalyst in the presence of limited amounts of air . Ind. Eng. Chem. Res. , 2009 . 48 6216 -6223 . DOI:10.1021/ie801935phttp://doi.org/10.1021/ie801935p .
Li, Q.; Zhang, L. F.; Zhang, Z.; Zhou, N.; Cheng, Z. P.; Zhu X. L. . Air-tolerantly surface-initiated AGET ATRP mediated by iron catalyst from silica nanoparticles . J. Polym. Sci., Part A: Polym. Chem. , 2010 . 48 2006 -2015 . DOI:10.1002/pola.23968http://doi.org/10.1002/pola.23968 .
Quirós-Montes, L.; Carriedo, G. A.; García-Álvarez, J.; Soto, A. P. . Deep eutectic solvents for Cu-catalysed ARGET ATRP under an air atmosphere: a sustainable and efficient route to poly(methyl methacrylate) using a recyclable Cu(II) metal-organic framework . Green Chem. , 2019 . 21 5865 -5875 . DOI:10.1039/C9GC02624Jhttp://doi.org/10.1039/C9GC02624J .
Matyjaszewski, K.; Coca, S.; Gaynor, S. G.; Wei, M.; Woodworth. B. E. . Zerovalent metals in controlled/“living” radical polymerization . Macromolecules , 1997 . 30 7348 -7350 . DOI:10.1021/ma971258lhttp://doi.org/10.1021/ma971258l .
Pan, X.; Tasdelen, M. A.; Laun, J.; Junkers, T.; Yagci, Y.; Matyjaszewski, K. . Photomediated controlled radical polymerization . Prog. Polym. Sci. , 2016 . 62 73 -125 . DOI:10.1016/j.progpolymsci.2016.06.005http://doi.org/10.1016/j.progpolymsci.2016.06.005 .
Dong, H.; Matyjaszewski, K. . ARGET ATRP of 2-(dimethylamino)ethyl methacrylate as an intrinsic reducing agent . Macromolecules , 2008 . 41 6868 -6870 . DOI:10.1021/ma8017553http://doi.org/10.1021/ma8017553 .
Jakubowski, W.; Min, K.; Matyjaszewski, K. . Activators regenerated by electron transfer for atom transfer radical polymerization of styrene . Macromolecules , 2006 . 39 39 -45 . DOI:10.1021/ma0522716http://doi.org/10.1021/ma0522716 .
Matyjaszewski, K.; Coca, S.; Gaynor, S. G.; Wei, M.; Woodworth, B. E. . Controlled radical polymerization in the presence of oxygen . Macromolecules , 1998 . 31 5967 -5969 . DOI:10.1021/ma9808528http://doi.org/10.1021/ma9808528 .
Pan, X.; Lathwal, S.; Mack, S.; Yan, J.; Das, S. R.; Matyjaszewski, K. . Automated synthesis of well-defined polymers and biohybrids by atom transfer radical polymerization using a DNA synthesizer . Angew. Chem. Int. Ed. , 2017 . 56 2740 -2743 . DOI:10.1002/anie.201611567http://doi.org/10.1002/anie.201611567 .
Lamb, J. R.; Qin, K. P.; John, J. A. . Visible-light-mediated, additive-free, and open-to-air controlled radical polymerization of acrylates and acrylamides . Polym. Chem. , 2019 . 10 1585 -1590 . DOI:10.1039/C9PY00022Dhttp://doi.org/10.1039/C9PY00022D .
Peng, J.; Xu, Q.; Ni, Y.; Zhang, L. F.; Cheng, Z. P.; Zhu X. L. . Visible light controlled aqueous RAFT continuous flow polymerization with oxygen tolerance . Polym. Chem. , 2019 . 10 2064 -2072 . DOI:10.1039/C9PY00069Khttp://doi.org/10.1039/C9PY00069K .
Xu, J. T.; Jung, K.; Atme, A.; Shanmugam, S.; Boyer, C. . A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance . J. Am. Chem. Soc. , 2014 . 136 5508 -5519 . DOI:10.1021/ja501745ghttp://doi.org/10.1021/ja501745g .
Corrigan, N.; Shanmugam, S.; Xu, J. T.; Boyer, C. . Photocatalysis in organic and polymer synthesis . Chem. Soc. Rev. , 2016 . 45 6165 -6212 . DOI:10.1039/C6CS00185Hhttp://doi.org/10.1039/C6CS00185H .
Bagheri, A.; Bainbridge, C. W. A.; Engel, K. E.; Qiao, G.; Xu, J. T.; Boyer, C.; Jin, J. Y. . Oxygen tolerant PET-RAFT facilitated 3D printing of polymeric materials under visible LEDs . ACS Appl. Polym. Mater. , 2020 . 2 782 -790 . DOI:10.1021/acsapm.9b01076http://doi.org/10.1021/acsapm.9b01076 .
Gormley, A. J.; Yeow, J.; Ng, G.; Conway, O.; Boyer, C.; Chapman, R. . An oxygen-tolerant PET-RAFT polymerization for screening structure–activity relationships . Angew. Chem. Int. Ed. , 2018 . 57 1557 -1562 . DOI:10.1002/anie.201711044http://doi.org/10.1002/anie.201711044 .
Chapman, R.; Adam. J.; Herpoldt, K. L.; Stevens, M. M. . Highly controlled open vessel RAFT polymerizations by enzyme degassing . Macromolecules , 2014 . 47 8541 -8547 . DOI:10.1021/ma5021209http://doi.org/10.1021/ma5021209 .
Chapman, R.; Adam, J.; Stenzel, M. H.; Stevens, M. M. . Combinatorial low-volume synthesis of well-defined polymers by enzyme degassing . Angew. Chem. Int. Ed. , 2016 . 55 4500 -4503 . DOI:10.1002/anie.201600112http://doi.org/10.1002/anie.201600112 .
Enciso, A. E.; Fu, L.; Russell, A. J.; Matyjaszewski, K. . A breathing atom-transfer radical polymerization: fully oxygen-tolerant polymerization inspired by aerobic respiration of cells . Angew. Chem. Int. Ed. , 2018 . 57 933 -936 . DOI:10.1002/anie.201711105http://doi.org/10.1002/anie.201711105 .
Enciso, A. E.; Fu, L.; Lathwal, S.; Olszewski, M.; Wang, Z. H.; Das, S. R.; Russell, A. J.; Matyjaszewski, K. . Biocatalytic “oxygen-fueled” atom transfer radical polymerization . Angew. Chem. Int. Ed. , 2018 . 57 1615 -1616. .
Fan, G.; Dundas, C. M.; Graham, A. J.; Lynd, N. A.; Keitz, B. K. . Shewanella oneidensis as a living electrode for controlled radical polymerization . Proc. Natl. Acad. Sci. U. S. A. , 2018 . 115 4559 -4564 . DOI:10.1073/pnas.1800869115http://doi.org/10.1073/pnas.1800869115 .
Fan, G.; Graham, A. J.; Kolli, J.; Lynd, N. A.; Keitz, B. K. . Aerobic radical polymerization mediated by microbial metabolism . Nat. Chem. , 2020 . 12 638 -646 . DOI:10.1038/s41557-020-0460-1http://doi.org/10.1038/s41557-020-0460-1 .
Zhang, B.; Wang, X.; Zhu, A.; Ma, K.; Lv, Y.; Wang, X.; An, Z. . Enzyme-initiated reversible addition-fragmentation chain transfer polymerization . Macromolecules , 2015 . 48 7792 -7802 . DOI:10.1021/acs.macromol.5b01893http://doi.org/10.1021/acs.macromol.5b01893 .
Liu, Z.; Lv, Y.; An, Z. . Enzymatic cascade catalysis for the synthesis of multiblock and ultrahigh-molecular-weight polymers with oxygen tolerance . Angew. Chem. Int. Ed. , 2017 . 56 13852 -13856 . DOI:10.1002/anie.201707993http://doi.org/10.1002/anie.201707993 .
Zhou, F.; Li, R.; Wang, X.; Du, S.; An, Z. . Non-natural photoenzymatic controlled radical polymerization inspired by DNA photolyase . Angew. Chem. Int. Ed. , 2019 . 58 9479 -9484 . DOI:10.1002/anie.201904413http://doi.org/10.1002/anie.201904413 .
Li, R.; An, Z. . Achieving ultrahigh molecular weights with diverse architectures for unconjugated monomers through oxygen-tolerant photoenzymatic RAFT polymerization . Angew. Chem. Int. Ed. , 2020 . 59 22258 -22264 . DOI:10.1002/anie.202010722http://doi.org/10.1002/anie.202010722 .
Ollivier, C.; Renaud, P. . Organoboranes as a source of radicals . Chem. Rev. , 2001 . 101 3415 -3434 . DOI:10.1021/cr010001phttp://doi.org/10.1021/cr010001p .
Zhou, Y.-N.; Li, J.; Wu, Y.; Luo, Z. H. . Role of external field in polymerization: mechanism and kinetics . Chem. Rev. , 2020 . 120 2950 -3048 . DOI:10.1021/acs.chemrev.9b00744http://doi.org/10.1021/acs.chemrev.9b00744 .
He, C.; Pan, X. . MIDA boronate stabilized polymers as a versatile platform for organoboron and functionalized polymers . Macromolecules , 2020 . 53 3700 -3708 . DOI:10.1021/acs.macromol.0c00665http://doi.org/10.1021/acs.macromol.0c00665 .
Howe, D. H.; McDaniel, R. H.; Magenau, A. J. D. . From click chemistry to cross-coupling: designer polymers from one efficient reaction . Macromolecules , 2017 . 50 8010 -8018 . DOI:10.1021/acs.macromol.7b02041http://doi.org/10.1021/acs.macromol.7b02041 .
Wilson, O. R.; Magenau, A. J. D. . Oxygen tolerant and room temperature RAFT through alkylborane initiation . ACS Macro Lett. , 2018 . 7 370 -375 . DOI:10.1021/acsmacrolett.8b00076http://doi.org/10.1021/acsmacrolett.8b00076 .
Timmins, R. L.; Wilson, O. R.; Magenau, A. J. D. . Arm-first star-polymer synthesis in one-pot via alkylborane-initiated RAFT . J. Polym. Sci. , 2020 . 58 1463 DOI:10.1002/pol.20200089http://doi.org/10.1002/pol.20200089 .
Alagi, P.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. . Fast and complete neutralization of thiocarbonylthio compounds using trialkylborane and oxygen: application to their removal from RAFT-synthesized polymers . ACS Macro Lett. , 2019 . 8 664 -669 . DOI:10.1021/acsmacrolett.9b00357http://doi.org/10.1021/acsmacrolett.9b00357 .
Kim, C. S.; Cho, S.; Lee, J. H.; Cho, W. K.; Son, K. . Open-to-air RAFT polymerization on a surface under ambient conditions . Langmuir , 2020 . 36 11538 -11545 . DOI:10.1021/acs.langmuir.0c01947http://doi.org/10.1021/acs.langmuir.0c01947 .
Corrigan, N.; Jung, K.; Boyer, C. . Merging new organoborane chemistry with living radical polymerization . Chem , 2020 . 6 1212 -1214 . DOI:10.1016/j.chempr.2020.05.021http://doi.org/10.1016/j.chempr.2020.05.021 .
0
Views
5
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution