1.National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
houlei@dhu.edu.cn (L.H.)
wupeiyi@dhu.edu.cn (P.Y.W.)
Scan for full text
Hui-Xian Li, Lei Hou, Pei-Yi Wu. Transport of Propylene Carbonate-LiTFSI Electrolytes in P(VDF-HFP) Using Time-resolved ATR-FTIR Spectroscopy: Diffusion Coefficients and Molecular Interactions. [J]. Chinese Journal of Polymer Science 39(8):975-983(2021)
Hui-Xian Li, Lei Hou, Pei-Yi Wu. Transport of Propylene Carbonate-LiTFSI Electrolytes in P(VDF-HFP) Using Time-resolved ATR-FTIR Spectroscopy: Diffusion Coefficients and Molecular Interactions. [J]. Chinese Journal of Polymer Science 39(8):975-983(2021) DOI: 10.1007/s10118-021-2571-6.
The time-resolved attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is employed to investigate the transport mechanism of gel electrolytes by monitoring the diffusion behavior of propylene carbonate-lithium bis(trifluoromethylsulfonyl)imide (PC-LiTFSI) solution through poly(vinylidene fluoride-,co,-hexafluoropropylene) (P(VDF-HFP)) films. Fickian behavior has been observed for both TFSI,−, and PC. Higher temperature leads to faster diffusion of TFSI,−, and PC, which could be related to the increased free volume in P(VDF-HFP) matrix and rapid molecular movements upon heating. Various molecular interactions among LiTFSI, PC and P(VDF-HFP) have been recognized. During the diffusion process, PC molecules, in the form of small clusters, can firstly diffuse through the P(VDF-HFP) film and interact with P(VDF-HFP) by dipole-dipole interaction, acting as the plasticizer. Then, Li,+, diffuses into P(VDF-HFP) with the help of ion-dipole interactions between Li,+, and C=O of PC. Meanwhile, TFSI,−, diffuses through the polymer matrix in solvation states. In addition, slight ion-dipole interactions between Li,+, and P(VDF-HFP) have been observed as well. Results in this work contribute to a better understanding of transport process in gel polymer electrolytes for lithium-ion batteries and support the development of improved gel polymer electrolytes by rationally regulating molecular interactions.
ATR-FTIR spectroscopyGel polymer electrolyteTransport mechanismMolecular interactionDiffusion coefficient
Francis, C. F. J.; Kyratzis, I. L.; Best, A. S. . Lithium-ion battery separators for ionic-liquid electrolytes: a review . Adv. Mater. , 2020 . 32 e1904205 DOI:10.1002/adma.201904205http://doi.org/10.1002/adma.201904205 .
Li, M.; Lu, J.; Chen, Z.; Amine, K. . 30 Years of lithium-ion batteries . Adv. Mater. , 2018 . 30 e1800561 DOI:10.1002/adma.201800561http://doi.org/10.1002/adma.201800561 .
Zhang, D. Z.; Ren, Y. Y.; Hu, Y.; Li, L.; Yan, F. . Ionic liquid/poly(ionic liquid)-based semi-solid state electrolytes for lithium-ion batteries . Chinese J. Polym. Sci. , 2020 . 38 506 -513 . DOI:10.1007/s10118-020-2390-1http://doi.org/10.1007/s10118-020-2390-1 .
Jie, J.; Liu, Y. L.; Cong, L. N.; Zhang, B. H.; Lu, W.; Zhang, X. M.; Liu, J.; Xie, H. M.; Sun, L. Q. . High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery . J. Energy Chem. , 2020 . 49 80 -88 . DOI:10.1016/j.jechem.2020.01.019http://doi.org/10.1016/j.jechem.2020.01.019 .
Cheng, X. L.; Pan, J.; Zhao, Y.; Liao, M.; Peng, H. S. . Gel polymer electrolytes for electrochemical energy storage . Adv. Energy Mater. , 2018 . 8 1702184 DOI:10.1002/aenm.201702184http://doi.org/10.1002/aenm.201702184 .
Bredar, A. R. C.; Chown, A. L.; Burton, A. R.; Farnum, B. H. . Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications . ACS Appl. Energy Mater. , 2020 . 3 66 -98 . DOI:10.1021/acsaem.9b01965http://doi.org/10.1021/acsaem.9b01965 .
Pan, K.; Zou, F.; Canova, M.; Zhu, Y.; Kim, J. H. . Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-Ion batteries . J. Power Sources , 2019 . 413 20 -28 . DOI:10.1016/j.jpowsour.2018.12.010http://doi.org/10.1016/j.jpowsour.2018.12.010 .
Deng, C. Y.; Lu, W. . Consistent diffusivity measurement between galvanostatic intermittent titration technique and electrochemical impedance spectroscopy . J. Power Sources , 2020 . 473 228613 DOI:10.1016/j.jpowsour.2020.228613http://doi.org/10.1016/j.jpowsour.2020.228613 .
Allcorn, E.; Kim, S. O.; Manthiram, A. . Lithium diffusivity in antimony-based intermetallic and FeSb-TiC composite anodes as measured by GITT . Phys. Chem. Chem. Phys. , 2015 . 17 28837 -28843 . DOI:10.1039/C5CP04023Jhttp://doi.org/10.1039/C5CP04023J .
Saito, Y.; Takeda, S.; Yamagami, S.; Yagi, T.; Watanabe, K.; Kobayashi, S. . Effect of the morphological features of the poly(vinylidene difluoride)-based gel electrolytes on the ionic mobility for lithium secondary batteries . Macromolecules , 2019 . 52 2112 -2119 . DOI:10.1021/acs.macromol.8b02503http://doi.org/10.1021/acs.macromol.8b02503 .
Saito, Y.; Hirai, K.; Katayama, H.; Abe, T.; Yokoe, M.; Aoi, K.; Okada, M. . Ionic diffusion mechanism of glucitol-containing lithium polymer electrolytes . Macromolecules , 2005 . 38 6485 -6491 . DOI:10.1021/ma050503vhttp://doi.org/10.1021/ma050503v .
Saito, Y.; Kataoka, H.; Stephan, A. M. . Investigation of the conduction mechanisms of lithium gel polymer electrolytes based on electrical conductivity and diffusion coefficient using NMR . Macromolecules , 2001 . 34 6955 -6958 . DOI:10.1021/ma0102823http://doi.org/10.1021/ma0102823 .
Wu, H.; Wick, C. D. . Computational investigation on the role of plasticizers on ion conductivity in poly(ethylene oxide) LiTFSI electrolytes . Macromolecules , 2010 . 43 3502 -3510 . DOI:10.1021/ma902758whttp://doi.org/10.1021/ma902758w .
Borodin, O.; Smith, G. D. . Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations . Macromolecules , 2006 . 39 1620 -1629 . DOI:10.1021/ma052277vhttp://doi.org/10.1021/ma052277v .
Babu, B.; Shaijumon, M. M. . Studies on kinetics and diffusion characteristics of lithium ions in TiNb2O7 . Electrochim. Acta , 2020 . 345 136208 DOI:10.1016/j.electacta.2020.136208http://doi.org/10.1016/j.electacta.2020.136208 .
Ivanishchev, A. V.; Ushakov, A. V.; Ivanishcheva, I. A.; Churikov, A. V.; Mironov, A. V.; Fedotov, S. S.; Khasanova, N. R.; Antipov, E. V. . Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3 based electrode material . Electrochim. Acta , 2017 . 230 479 -491 . DOI:10.1016/j.electacta.2017.02.009http://doi.org/10.1016/j.electacta.2017.02.009 .
Cheng, X.; Zhu, H. J.; Yu, H. X.; Ye, W. Q.; Zheng, R. T.; Liu, T. T.; Peng, N.; Shui, M.; Shu, J. . K2Nb8O21 nanotubes with superior electrochemical performance for ultrastable lithium storage . J. Mater. Chem. A , 2018 . 6 8620 -8632 . DOI:10.1039/C8TA01411Fhttp://doi.org/10.1039/C8TA01411F .
Balwani, A.; Faraone, A.; Davis, E. M. . Impact of Nanoparticles on the segmental and swelling dynamics of ionomer nanocomposite membranes . Macromolecules , 2019 . 52 2120 -2130 . DOI:10.1021/acs.macromol.8b02189http://doi.org/10.1021/acs.macromol.8b02189 .
Jia, L.; Su, G.; Yuan, Q.; Zhang, X.; Zhou, T. . Difference in the micro-dynamics mechanism between aromatic nylon and aliphatic nylon during water absorption: spectroscopic evidence . Phys. Chem. Chem. Phys. , 2018 . 20 26764 -26776 . DOI:10.1039/C8CP05432Khttp://doi.org/10.1039/C8CP05432K .
Oh, K. I.; Rajesh, K.; Stanton, J. F.; Baiz, C. R. . Quantifying hydrogen-bond populations in dimethyl sulfoxide/water mixtures . Angew. Chem. Int. Ed. , 2017 . 56 11375 -11379 . DOI:10.1002/anie.201704162http://doi.org/10.1002/anie.201704162 .
Beckingham, B. S.; Lynd, N. A.; Miller, D. J. . Monitoring multicomponent transport using in situ ATR FTIR spectroscopy . J. Membr. Sci. , 2018 . 550 348 -356 . DOI:10.1016/j.memsci.2017.12.072http://doi.org/10.1016/j.memsci.2017.12.072 .
Baij, L.; Hermans, J. J.; Keune, K.; Iedema, P. . Time-dependent ATR-FTIR spectroscopic studies on fatty acid diffusion and the formation of metal soaps in oil paint model systems . Angew. Chem. Int. Ed. , 2018 . 57 7351 -7354 . DOI:10.1002/anie.201712751http://doi.org/10.1002/anie.201712751 .
Baij, L.; Hermans, J. J.; Keune, K.; Iedema, P. D. . Time-dependent ATR-FTIR spectroscopic studies on solvent diffusion and film swelling in oil paint model systems . Macromolecules , 2018 . 51 7134 -7144 . DOI:10.1021/acs.macromol.8b00890http://doi.org/10.1021/acs.macromol.8b00890 .
Hallinan, D. T.; de Angelis, M. G.; Baschetti, M. G.; Sarti, G. C.; Elabd, Y. A. . Non-Fickian diffusion of water in Nafion . Macromolecules , 2010 . 43 4667 -4678 . DOI:10.1021/ma100047zhttp://doi.org/10.1021/ma100047z .
Hallinan, D. T., Jr.; Elabd, Y. A. . Diffusion of water in Nafion using time-resolved Fourier transform infrared-attenuated total reflectance spectroscopy . J. Phys. Chem. B , 2009 . 113 4257 -4266 . DOI:10.1021/jp811325vhttp://doi.org/10.1021/jp811325v .
Kim, K.; Hallinan, D. T., Jr. . Lithium salt diffusion in diblock copolymer electrolyte using Fourier transform infrared spectroscopy . J. Phys. Chem. B , 2020 . 124 2040 -2047 . DOI:10.1021/acs.jpcb.9b11446http://doi.org/10.1021/acs.jpcb.9b11446 .
Fieldson, G. T.; Barbari, T. A. . The use of FTIR-ATR spectroscopy to characterize penetrant diffusion in polymers . Polymer , 1993 . 34 1146 -1153 . DOI:10.1016/0032-3861(93)90765-3http://doi.org/10.1016/0032-3861(93)90765-3 .
Shalu; Chaurasia, S. K.; Singh, R. K.; Chandra, S. . Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVDF-HFP and ionic liquid, [BMIM][BF4] . J. Phys. Chem. B , 2013 . 117 897 -906 . DOI:10.1021/jp307694qhttp://doi.org/10.1021/jp307694q .
Huo, P.; Zhong, C. T.; Xiong, X. P. . Tailoring morphology of PVDF-HFP membrane via one-step reactive vapor induced phase separation for efficient oil-water separation . Chinese J. Polym. Sci. , 2021 . 39 610 -619. .
Sun, F. Q.; Li, X. S.; Xu, J. K.; Cao, P. T. . Improving hydrophilicity and protein antifouling of electrospun poly(vinylidenefluoride-hexafluoropropylene) nanofiber membranes . Chinese J. Polym. Sci. , 2010 . 28 705 -713 . DOI:10.1007/s10118-010-9110-1http://doi.org/10.1007/s10118-010-9110-1 .
Cao, Y.; Morrissey, T. G.; Acome, E.; Allec, S. I.; Wong, B. M.; Keplinger, C.; Wang, C. . A transparent, self-healing, highly stretchable ionic conductor . Adv. Mater. , 2017 . 29 1605099 DOI:10.1002/adma.201605099http://doi.org/10.1002/adma.201605099 .
Xu, D.; Su, J.; Jin, J.; Sun, C.; Ruan, Y.; Chen, C.; Wen, Z. . In situ generated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12 as initiator and ion-conductive filler . Adv. Energy Mater. , 2019 . 9 1900611 DOI:10.1002/aenm.201900611http://doi.org/10.1002/aenm.201900611 .
Cheng, H.; He, X.; Fan, Z.; Ouyang, J. . Flexible quasi-solid state ionogels with remarkable seebeck coefficient and high thermoelectric properties . Adv. Energy Mater. , 2019 . 9 1901085 DOI:10.1002/aenm.201901085http://doi.org/10.1002/aenm.201901085 .
Lan, J.; Li, Y.; Yan, B.; Yin, C.; Ran, R.; Shi, L. Y. . Transparent stretchable dual-network ionogel with temperature tolerance for high-performance flexible strain sensors . ACS Appl. Mater. Interfaces , 2020 . 12 37597 -37606 . DOI:10.1021/acsami.0c10495http://doi.org/10.1021/acsami.0c10495 .
Bertilsson, S.; Larsson, F.; Furlani, M.; Albinsson, I.; Mellander, B. E. . Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy . J. Power Sources , 2017 . 365 446 -455 . DOI:10.1016/j.jpowsour.2017.08.082http://doi.org/10.1016/j.jpowsour.2017.08.082 .
Schauser, N. S.; Nikolaev, A.; Richardson, P. M.; Xie, S.; Johnson, K.; Susca, E. M.; Wang, H.; Seshadri, R.; Clément, R. J.; Read de Alaniz, J.; Segalman, R. A. . Glass transition temperature and ion binding determine conductivity and lithium-ion transport in polymer electrolytes . ACS Macro Lett. , 2020 . 10 104 -109. .
Porthault, H.; Piana, G.; Duffault, J. M.; Franger, S. . Influence of ionic interactions on lithium diffusion properties in ionic liquid-based gel polymer electrolytes . Electrochim. Acta , 2020 . 354 136632 DOI:10.1016/j.electacta.2020.136632http://doi.org/10.1016/j.electacta.2020.136632 .
Chang, Y. H.; Zhou, W.; Han, G. Y.; Chang, Y. Z.; Xiao, Y. M.; Ma, W. H. . Stabilities of flexible electrochemical capacitors based on polypyrrole/carbon fibers in different gel electrolytes . Chinese J. Polym. Sci. , 2017 . 35 961 -973 . DOI:10.1007/s10118-017-1957-yhttp://doi.org/10.1007/s10118-017-1957-y .
Sun, B.; Mindemark, J.; E, V. M.; Costa, L. T.; Bergman, M.; Johansson, P.; Fang, Y.; Furo, I.; Brandell, D. . Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations . Phys. Chem. Chem. Phys. , 2016 . 18 9504 -9513 . DOI:10.1039/C6CP00757Khttp://doi.org/10.1039/C6CP00757K .
Kimura, K.; Motomatsu, J.; Tominaga, Y. . Correlation between solvation structure and ion-conductive behavior of concentrated poly(ethylene carbonate)-based electrolytes . J. Phys. Chem. C , 2016 . 120 12385 -12391 . DOI:10.1021/acs.jpcc.6b03277http://doi.org/10.1021/acs.jpcc.6b03277 .
Wu, H.; Cao, Y.; Su, H.; Wang, C. . Tough gel electrolyte using double polymer network design for the safe, stable cycling of lithium metal anode . Angew. Chem. Int. Ed. , 2018 . 57 1361 -1365 . DOI:10.1002/anie.201709774http://doi.org/10.1002/anie.201709774 .
Zhao, D.; Martinelli, A.; Willfahrt, A.; Fischer, T.; Bernin, D.; Khan, Z. U.; Shahi, M.; Brill, J.; Jonsson, M. P.; Fabiano, S.; Crispin, X. . Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles . Nat. Commun. , 2019 . 10 1093 DOI:10.1038/s41467-019-08930-7http://doi.org/10.1038/s41467-019-08930-7 .
Chen, N.; Xing, Y.; Wang, L.; Liu, F.; Li, L.; Chen, R.; Wu, F.; Guo, S. . “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery . Nano Energy , 2018 . 47 35 -42 . DOI:10.1016/j.nanoen.2018.02.036http://doi.org/10.1016/j.nanoen.2018.02.036 .
Prabakaran, P.; Manimuthu, R. P.; Gurusamy, S.; Sebasthiyan, E. . Plasticized polymer electrolyte membranes based on PEO/PVdF-HFP for use as an effective electrolyte in lithium-ion batteries . Chinese J. Polym. Sci. , 2017 . 35 407 -421 . DOI:10.1007/s10118-017-1906-9http://doi.org/10.1007/s10118-017-1906-9 .
0
Views
4
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution