a.Ningbo Key Laboratory of Specialty Polymers, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
b.Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
c.NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
d.SCG Chemicals Co., Ltd., Siam Cement Group (SCG). 1 Siam Cement Rd., Bangsue, Bangkok 10800, Thailand
e.USA Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
wangzongbao@nbu.edu.cn (Z.B.W.)
wonchalr@scg.co.th (W.R.)
benjamin.hsiao@stonybrook.edu (B.S.H.)
Scan for full text
Zong-Bao Wang, Yi-Min Mao, Xu-Ke Li, et al. The Influence of Ethyl Branch on Formation of Shish-Kebab Crystals in Bimodal Polyethylene under Shear at Low Temperature. [J]. Chinese Journal of Polymer Science 39(8):1050-1058(2021)
Zong-Bao Wang, Yi-Min Mao, Xu-Ke Li, et al. The Influence of Ethyl Branch on Formation of Shish-Kebab Crystals in Bimodal Polyethylene under Shear at Low Temperature. [J]. Chinese Journal of Polymer Science 39(8):1050-1058(2021) DOI: 10.1007/s10118-021-2568-1.
Formation of shish-kebab crystals using a bimodal polyethylene system containing high molecular weight (HMW) component with different ethyl branch contents was investigated. ,In situ, small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques were used to monitor the formation and evolution of shish-kebab structure sheared at low temperature in simple shear mode and low rate. Only the bimodal PE with no branch formed shish-kebab crystals at the shear temperature of 129 °C, and the shish length increased with the crystallization time, while bimodal PE with branch has no observable shish under the same conditions. The degree of crystallization for bimodal PE with no branch increased with time up to above 7%, while those with ethyl branch increased continually up to above 23%. Furthermore, bimodal PE's Hermans orientation factor with no branch increased to 0.60, while those with ethyl branch only increased to a value below 0.15. This study indicated that the shish-kebab crystal formed at the low temperature of 129 °C is due to the stretch of entangled chains under shear for the bimodal PE with no branch. Only partly oriented lamellar crystals were formed for the bimodal PE with ethyl branch. All the results at the shear temperatures higher, closed to, and lower than the melting point, the modulation of shish crystals formation owing to different mechanisms of the coil-stretch transition and the stretched network by changing shear temperature was achieved in the bimodal PE samples.
Bimodal polyethyleneShish-kebabEthyl branchShear
Balzano, L.; Rastogi, S.; Peters, G. W. M . Flow induced crystallization in isotactic polypropylene-1,3:2,4-bis(3,4-dimethylbenzylidene)sorbitol blends: implications on morphology of shear and phase separation . Macromolecules , 2008 . 41 399 -408 . DOI:10.1021/ma071460ghttp://doi.org/10.1021/ma071460g .
Li, L.; de Jeu, W. H. Flow-induced mesophases in crystallizable polymers. In Interphases and mesophases in polymer crystallization II, Allegra, G., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; pp. 75−120.
Azzurri, F.; Alfonso, G. C . Lifetime of shear-induced crystal nucleation precursors . Macromolecules , 2005 . 38 1723 -1728 . DOI:10.1021/ma0485989http://doi.org/10.1021/ma0485989 .
Somani, R. H.; Hsiao, B. S.; Nogales, A.; Srinivas, S.; Tsou, A. H.; Sics, I.; Balta-Calleja, F. J.; Ezquerra, T. A . Structure development during shear flow-induced crystallization of iPP: in-situ small-angle X-ray scattering study . Macromolecules , 2000 . 33 9385 -9394 . DOI:10.1021/ma001124zhttp://doi.org/10.1021/ma001124z .
Kume, T.; Hattori, T.; Hashimoto, T . Time evolution of shear-induced structures in semidilute polystyrene solutions . Macromolecules , 1997 . 30 427 -434 . DOI:10.1021/ma9611679http://doi.org/10.1021/ma9611679 .
Bashir, Z.; Odell, J. A.; Keller, A . Stiff and strong polyethylene with shish kebab morphology by continuous melt extrusion . J. Mater. Sci. , 1986 . 21 3993 -4002 . DOI:10.1007/PL00020271http://doi.org/10.1007/PL00020271 .
Binsbergen, F. L . Orientation-induced nucleation in polymer crystallization . Nature , 1966 . 211 516 -517 . DOI:10.1038/211516a0http://doi.org/10.1038/211516a0 .
Pennings, A. J.; Kiel, A. M . Fractionation of polymers by crystallization from solution, III. On the morphology of fibrillar polyethylene crystals grown in solution . Colloid Polym. Sci. , 1965 . 205 160 -162. .
Kanaya, T.; Matsuba, G.; Ogino, Y.; Nishida, K.; Shimizu, H. M.; Shinohara, T.; Oku, T.; Suzuki, J.; Otomo, T . Hierarchic structure of shish-kebab by neutron scattering in a wide Q range . Macromolecules , 2007 . 40 3650 -3654 . DOI:10.1021/ma062606zhttp://doi.org/10.1021/ma062606z .
Somani, R. H.; Yang, L.; Zhu, L.; Hsiao, B. S . Flow-induced shish-kebab precursor structures in entangled polymer melts . Polymer , 2005 . 46 8587 -8623 . DOI:10.1016/j.polymer.2005.06.034http://doi.org/10.1016/j.polymer.2005.06.034 .
Deng, L. F.; Zhang, X. X.; Zhou, D.; Tang, J. H.; Lei, J.; Li, J. F.; Li, Z. M . Better choice: linear long chains rather than branched ones to improve mechanical performance of polyethylene through generating shish-kebabs . Chinese J. Polym. Sci. , 2020 . 38 715 -729 . DOI:10.1007/s10118-020-2397-7http://doi.org/10.1007/s10118-020-2397-7 .
Kornfield, J. A.; Kumaraswamy, G.; Issaian, A. M . Recent advances in understanding flow effects on polymer crystallization . Ind. Eng. Chem. Res. , 2002 . 41 6383 -6392 . DOI:10.1021/ie020237zhttp://doi.org/10.1021/ie020237z .
Janeschitz-Kriegl, H.; Ratajski, E . Some fundamental aspects of the kinetics of flow-induced crystallization of polymers . Colloid Polym. Sci. , 2010 . 288 1525 -1537 . DOI:10.1007/s00396-010-2266-yhttp://doi.org/10.1007/s00396-010-2266-y .
Janeschitz-Kriegl, H.; Ratajski, E.; Stadlbauer, M . Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation . Rheol. Acta , 2003 . 42 355 -364 . DOI:10.1007/s00397-002-0247-xhttp://doi.org/10.1007/s00397-002-0247-x .
Murase, H.; Ohta, Y.; Hashimoto, T . A new scenario of shish-kebab formation from homogeneous solutions of entangled polymers: visualization of structure evolution along the fiber spinning line . Macromolecules , 2011 . 44 7335 -7350 . DOI:10.1021/ma2008817http://doi.org/10.1021/ma2008817 .
Balzano, L.; Kukalyekar, N.; Rastogi, S.; Peters, G. W. M.; Chadwick, J. C . Crystallization and dissolution of flow-induced precursors . Phys. Rev. Lett. , 2008 . 100 048302 DOI:10.1103/PhysRevLett.100.048302http://doi.org/10.1103/PhysRevLett.100.048302 .
Coppola, S.; Grizzuti, N.; Maffettone, P. L . Microrheological modeling of flow-induced crystallization . Macromolecules , 2001 . 34 5030 -5036 . DOI:10.1021/ma010275ehttp://doi.org/10.1021/ma010275e .
Zuidema, H.; Peters, G. W. M.; Meijer, H. E. H . Development and validation of a recoverable strain-based model for flow-induced crystallization of polymers . Macromol. Theor. Simul. , 2001 . 10 447 -460 . DOI:10.1002/1521-3919(20010601)10:5<447::AID-MATS447>3.0.CO;2-Chttp://doi.org/10.1002/1521-3919(20010601)10:5<447::AID-MATS447>3.0.CO;2-C .
Zheng, R.; Kennedy, P. K . A model for post-flow induced crystallization: general equations and predictions . J. Rheol. , 2004 . 48 823 -842 . DOI:10.1122/1.1763944http://doi.org/10.1122/1.1763944 .
Steenbakkers, R. J. A.; Peters, G. W. M . A stretch-based model for flow-enhanced nucleation of polymer melts . J. Rheol. , 2011 . 55 401 -433 . DOI:10.1122/1.3545844http://doi.org/10.1122/1.3545844 .
Dukovski, I.; Muthukumar, M . Langevin dynamics simulations of early stage shish-kebab crystallization of polymers in extensional flow . J. Chem. Phys. , 2003 . 118 6648 -6655 . DOI:10.1063/1.1557473http://doi.org/10.1063/1.1557473 .
Nafar Sefiddashti, M. H.; Edwards, B. J.; Khomami, B . Flow-induced crystallization of a polyethylene liquid above the melting temperature and its nonequilibrium phase diagram . Phys. Rev. Res. , 2020 . 2 013035 DOI:10.1103/PhysRevResearch.2.013035http://doi.org/10.1103/PhysRevResearch.2.013035 .
Graham, R. S.; Olmsted, P. D . Coarse-grained simulations of flow-induced nucleation in semicrystalline polymers . Phys. Rev. Lett. , 2009 . 103 115702 DOI:10.1103/PhysRevLett.103.115702http://doi.org/10.1103/PhysRevLett.103.115702 .
Jabbarzadeh, A.; Tanner, R. I . Flow-induced crystallization: unravelling the effects of shear rate and strain . Macromolecules , 2010 . 43 8136 -8142 . DOI:10.1021/ma100985xhttp://doi.org/10.1021/ma100985x .
De Gennes, P. G. . Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients . J. Chem. Phys. , 1974 . 60 5030 -5042 . DOI:10.1063/1.1681018http://doi.org/10.1063/1.1681018 .
Hill, M. J.; Keller, A . ‘Hairdressing’ Shish-kebabs by melting . Colloid Polym. Sci. , 1981 . 259 335 -341 . DOI:10.1007/BF01524712http://doi.org/10.1007/BF01524712 .
Hill, M. J.; Barham, P. J.; Keller, A . On the hairdressing of shish-kebabs . Colloid Polym. Sci. , 1980 . 258 1023 -1037 . DOI:10.1007/BF01382398http://doi.org/10.1007/BF01382398 .
Mackley, M. R.; Keller, A . Flow induced polymer chain extension and its relation to fibrous crystallization . Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences , 1975 . 278 29 -66. .
Mackley, M. R.; Frank, F. C.; Keller, A . Flow-induced crystallization of polyethylene melts . J. Mater. Sci. , 1975 . 10 1501 -1509 . DOI:10.1007/BF01031850http://doi.org/10.1007/BF01031850 .
Mackley, M. R.; Keller, A . Flow induced crystallization of polyethylene melts . Polymer , 1973 . 14 16 -20 . DOI:10.1016/0032-3861(73)90073-6http://doi.org/10.1016/0032-3861(73)90073-6 .
Fang, H.; Zhang, Y.; Bai, J.; Wang, Z . Shear-induced nucleation and morphological evolution for bimodal long chain branched polylactide . Macromolecules , 2013 . 46 6555 -6565 . DOI:10.1021/ma4012126http://doi.org/10.1021/ma4012126 .
Wang, J.; Bai, J.; Zhang, Y.; Fang, H.; Wang, Z . Shear-induced enhancements of crystallization kinetics and morphological transformation for long chain branched polylactides with different branching degrees . Sci. Rep. , 2016 . 6 26560 DOI:10.1038/srep26560http://doi.org/10.1038/srep26560 .
Hsiao, B. S.; Yang, L.; Somani, R. H.; Avila-Orta, C. A.; Zhu, L . Unexpected shish-kebab structure in a sheared polyethylene melt . Phys. Rev. Lett. , 2005 . 94 117802 DOI:10.1103/PhysRevLett.94.117802http://doi.org/10.1103/PhysRevLett.94.117802 .
Zuo, F.; Keum, J. K.; Yang, L.; Somani, R. H.; Hsiao, B. S . Thermal stability of shear-induced shish-kebab precursor structure from high molecular weight polyethylene chains . Macromolecules , 2006 . 39 2209 -2218 . DOI:10.1021/ma052340ghttp://doi.org/10.1021/ma052340g .
Somani, R. H.; Hsiao, B. S.; Nogales, A.; Fruitwala, H.; Srinivas, S.; Tsou, A. H . Structure development during shear flow induced crystallization of iPP: in situ wide-angle X-ray diffraction study . Macromolecules , 2001 . 34 5902 -5909 . DOI:10.1021/ma0106191http://doi.org/10.1021/ma0106191 .
Kimata, S.; Sakurai, T.; Nozue, Y.; Kasahara, T.; Yamaguchi, N.; Karino, T.; Shibayama, M.; Kornfield, J. A . Molecular basis of the shish-kebab morphology in polymer crystallization . Science , 2007 . 316 1014 -1017 . DOI:10.1126/science.1140132http://doi.org/10.1126/science.1140132 .
Zhang, C.; Hu, H.; Wang, X.; Yao, Y.; Dong, X.; Wang, D.; Wang, Z.; Han, C. C . Formation of cylindrite structures in shear-induced crystallization of isotactic polypropylene at low shear rate . Polymer , 2007 . 48 1105 -1115 . DOI:10.1016/j.polymer.2006.12.025http://doi.org/10.1016/j.polymer.2006.12.025 .
Zhang, C.; Hu, H.; Wang, D.; Yan, S.; Han, C. C . In situ optical microscope study of the shear-induced crystallization of isotactic polypropylene . Polymer , 2005 . 46 8157 -8161 . DOI:10.1016/j.polymer.2005.06.074http://doi.org/10.1016/j.polymer.2005.06.074 .
Shen, B.; Liang, Y.; Kornfield, J. A.; Han, C. C . Mechanism for shish formation under shear flow: an interpretation from an in situ morphological study . Macromolecules , 2013 . 46 1528 -1542 . DOI:10.1021/ma3023958http://doi.org/10.1021/ma3023958 .
Yan, T.; Zhao, B.; Cong, Y.; Fang, Y.; Cheng, S.; Li, L.; Pan, G.; Wang, Z.; Li, X.; Bian, F . Critical strain for shish-kebab formation . Macromolecules , 2010 . 43 602 -605 . DOI:10.1021/ma9020642http://doi.org/10.1021/ma9020642 .
Liu, D.; Tian, N.; Cui, K.; Zhou, W.; Li, X.; Li, L . Correlation between flow-induced nucleation morphologies and strain in polyethylene: from uncorrelated oriented point-nuclei, scaffold-network, and microshish to shish . Macromolecules , 2013 . 46 3435 -3443 . DOI:10.1021/ma400024mhttp://doi.org/10.1021/ma400024m .
Liu, D.; Tian, N.; Huang, N.; Cui, K.; Wang, Z.; Hu, T.; Yang, H.; Li, X.; Li, L . Extension-induced nucleation under near-equilibrium conditions: the mechanism on the transition from point nucleus to shish . Macromolecules , 2014 . 47 6813 -6823 . DOI:10.1021/ma501482whttp://doi.org/10.1021/ma501482w .
Cui, K.; Ma, Z.; Wang, Z.; Ji, Y.; Liu, D.; Huang, N.; Chen, L.; Zhang, W.; Li, L . Kinetic process of shish formation: from stretched network to stabilized nuclei . Macromolecules , 2015 . 48 5276 -5285 . DOI:10.1021/acs.macromol.5b00819http://doi.org/10.1021/acs.macromol.5b00819 .
Mykhaylyk, O. O.; Fernyhough, C. M.; Okura, M.; Fairclough, J. P. A.; Ryan, A. J.; Graham, R . Monodisperse macromolecules—a stepping stone to understanding industrial polymers . Eur. Polym. J. , 2011 . 47 447 -464 . DOI:10.1016/j.eurpolymj.2010.09.021http://doi.org/10.1016/j.eurpolymj.2010.09.021 .
Wang, Z.; Mao, Y.; Jarumaneeroj, C.; Thitisak, B.; Tiyapiboonchaiya, P.; Rungswang, W.; Hsiao, B. S . The influence of short chain branch on formation of shish-kebab crystals in bimodal polyethylene under shear at high temperatures . J. Polym. Sci., Part B: Polym. Phys. , 2018 . 56 786 -794 . DOI:10.1002/polb.24592http://doi.org/10.1002/polb.24592 .
Jiang, L.; An, M.; Wu, F.; Miao, W.; Wang, Z.; Zhang, Y.; Hsiao, B. S . The influence of short chain branch on formation of shear induced crystals in bimodal polyethylene at high shear temperatures . Eur. Polym. J. , 2018 . 105 359 -369 . DOI:10.1016/j.eurpolymj.2018.03.036http://doi.org/10.1016/j.eurpolymj.2018.03.036 .
Jiang, L.; Zhu, M.; An, M.; Li, Y.; Miao, W.; Wang, Z.; Hsiao, B. S . The influence of short chain branch on formation of shear-induced crystals in bimodal polyethylene at low shear temperatures . Polymer , 2019 . 179 121625 DOI:10.1016/j.polymer.2019.121625http://doi.org/10.1016/j.polymer.2019.121625 .
Ruland, W . Small-angle scattering studies on carbonized cellulose fibers . J. Polym. Sci., Part C: Polym. Sym. , 1969 . 28 143 -151 . DOI:10.1002/polc.5070280113http://doi.org/10.1002/polc.5070280113 .
Perret, R.; Ruland, W . Single and multiple X-ray small-angle scattering of carbon fibres . J. Appl. Crystallogr. , 1969 . 2 209 -218 . DOI:10.1107/S0021889869006996http://doi.org/10.1107/S0021889869006996 .
Perret, R.; Ruland, W . The microstructure of PAN-base carbon fibres . J. Appl. Crystallogr. , 1970 . 3 525 -532 . DOI:10.1107/S0021889870006805http://doi.org/10.1107/S0021889870006805 .
Alexander, L . X-ray diffraction methods in polymer science . J. Mater. Sci. , 1971 . 6 93 -93 . DOI:10.1007/BF00550300http://doi.org/10.1007/BF00550300 .
Rhoades, A. M.; Gohn, A. M.; Seo, J.; Androsch, R.; Colby, R. H . Sensitivity of polymer crystallization to shear at low and high supercooling of the melt . Macromolecules , 2018 . 51 2785 -2795 . DOI:10.1021/acs.macromol.8b00195http://doi.org/10.1021/acs.macromol.8b00195 .
Romo-Uribe, A.; Windle, A. H . “Log-rolling” alignment in main-chain thermotropic liquid crystalline polymer melts under shear: an in-situ WAXS study . Macromolecules , 1996 . 29 6246 -6255 . DOI:10.1021/ma960211hhttp://doi.org/10.1021/ma960211h .
Ma, Z.; Balzano, L.; Peters, G. W. M . Dissolution and re-emergence of flow-induced shish in polyethylene with a broad molecular weight distribution . Macromolecules , 2016 . 49 2724 -2730 . DOI:10.1021/acs.macromol.6b00333http://doi.org/10.1021/acs.macromol.6b00333 .
Avila-Orta, C. A.; Burger, C.; Somani, R.; Yang, L.; Marom, G.; Medellin-Rodriguez, F. J.; Hsiao, B. S . Shear-induced crystallization of isotactic polypropylene within the oriented scaffold of noncrystalline ultrahigh molecular weight polyethylene . Polymer , 2005 . 46 8859 -8871 . DOI:10.1016/j.polymer.2005.05.136http://doi.org/10.1016/j.polymer.2005.05.136 .
Liu, D. L.; Zhou, F.; Fang, K . A Theoretical study on transitional shear flow behavior of the compressible and isothermal thermoplastic polymer . Chinese J. Polym. Sci. , 2019 . 37 518 -526 . DOI:10.1007/s10118-019-2214-3http://doi.org/10.1007/s10118-019-2214-3 .
Housmans, J. W.; Peters, G. W. M.; Meijer, H. E. H . Flow-induced crystallization of propylene/ethylene random copolymers . J. Therm. Anal. Calorim. , 2009 . 98 693 DOI:10.1007/s10973-009-0532-3http://doi.org/10.1007/s10973-009-0532-3 .
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution