a.College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
b.Key Laboratory of Advanced Structural Materials of Ministry of Education, College of Material Science and Engineering, Changchun University of Technology, Changchun 130012, China
c.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
yuechi@ccut.edu.cn (Y.C.)
zhangyixin@ciac.ac.cn (Y.X.Z.)
zbjian@ciac.ac.cn (Z.B.J.)
Scan for full text
Yu-Yin Wang, Chao-Qun Wang, Xiao-Qiang Hu, et al. Benzosuberyl Substituents as a "Sandwich-like" Function in Olefin Polymerization Catalysis. [J]. Chinese Journal of Polymer Science 39(8):984-993(2021)
Yu-Yin Wang, Chao-Qun Wang, Xiao-Qiang Hu, et al. Benzosuberyl Substituents as a "Sandwich-like" Function in Olefin Polymerization Catalysis. [J]. Chinese Journal of Polymer Science 39(8):984-993(2021) DOI: 10.1007/s10118-021-2562-7.
For the rational design of metal catalyst in olefin polymerization catalysis, various strategies were applied to suppress the chain transfer by bulking up the axial positions of the metal center, among which the ”sandwich” type turned out to be an efficient category in achieving high molecular weight polyolefin. In the ,α,-diimine system, the “sandwich” type catalysts were built using the typical 8-aryl-naphthyl framework. In this contribution, by introducing the rotationally restrained benzosuberyl substituent into the ,ortho,-position of ,N,-aryl rings, a new class of “sandwich-like” ,α,-diimine nickel catalysts was constructed and fully identified. The rotationally restrained benzosuberyl substituents played a “sandwich-like” function by capping the nickel center from two axial sites. Compared to the nickel catalyst ,Ni1, bearing freely rotated benzhydryl substituent,Ni2, featuring benzosuberyl substituent enabled the increase (8 times) of polymer molecular weights from 8 kDa to 65 kDa in the polymerization of ethylene. By further increasing the steric bulk of another ,ortho,-site of the ,N,-aryl ring, the polymer molecular weight even reached an ultrahigh level of 833 kDa (,M,w,=1857 kDa) using the optimized ,Ni3,. Notably, these nickel catalysts could also mediate the copolymerization of ethylene with methyl 10-undecenoate, with ,Ni3, giving the highest copolymer molecular weight (88 kDa) and the highest incorporation of comonmer (2.0 mol%), along with high activity of up to 10,5, g·mol,−1,·h,−1,.
Olefin polymerizationBenzosuberyl substituentSandwichNickel catalystPolar monomer
Wang, F.; Chen, C. . A Continuing legend: the Brookhart-type α-diimine nickel and palladium catalysts . Polym. Chem. , 2019 . 10 2354 -2369 . DOI:10.1039/C9PY00226Jhttp://doi.org/10.1039/C9PY00226J .
Chen, Z.; Brookhart, M. . Exploring ethylene/polar vinyl monomer copolymerizations using Ni and Pd α-diimine catalysts . Acc. Chem. Res. , 2018 . 51 1831 -1839 . DOI:10.1021/acs.accounts.8b00225http://doi.org/10.1021/acs.accounts.8b00225 .
Guo, L.; Dai, S.; Sui, X.; Chen, C. . Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization . ACS Catal. , 2016 . 6 428 -441 . DOI:10.1021/acscatal.5b02426http://doi.org/10.1021/acscatal.5b02426 .
Camacho, D. H.; Guan, Z. . Designing late-transition metal catalysts for olefin insertion polymerization and copolymerization . Chem. Commun. , 2010 . 46 7879 -7893 . DOI:10.1039/c0cc01535khttp://doi.org/10.1039/c0cc01535k .
Ittel, S. D.; Johnson, L. K; Brookhart, M. . Late-metal catalysts for ethylene homo- and copolymerization . Chem. Rev. , 2000 . 100 1169 -1203 . DOI:10.1021/cr9804644http://doi.org/10.1021/cr9804644 .
Dai, S.; Li, S.; Xu, G.; Wu, C.; Liao, Y.; Guo, L. . Flexible cycloalkyl substituents in insertion polymerization with α-diimine nickel and palladium species . Polym. Chem. , 2020 . 11 1393 -1400 . DOI:10.1039/C9PY01901Dhttp://doi.org/10.1039/C9PY01901D .
Xia, J.; Zhang, Y.; Kou, S.; Jian, Z. . A Concerted double-layer steric strategy enables an ultra-highly active nickel catalyst to access ultrahigh molecular weight polyethylenes . J. Catal. , 2020 . 390 30 -36 . DOI:10.1016/j.jcat.2020.07.017http://doi.org/10.1016/j.jcat.2020.07.017 .
Hu, X.; Wang C.; Jian, Z. . Comprehensive studies of the ligand electronic effect on unsymmetrical α-diimine nickel(II) promoted ethylene (co)polymerizations . Polym. Chem. , 2020 . 11 4005 -4012 . DOI:10.1039/D0PY00536Chttp://doi.org/10.1039/D0PY00536C .
Popeney, C. S.; Rheningold, A. L.; Guan, Z. . Nickel(II) and palladium(II) polymerization catalysts bearing a fluorinated cyclophane ligand stabilization of the reactive intermediate . Organometallics , 2009 . 28 4452 -4463 . DOI:10.1021/om900302rhttp://doi.org/10.1021/om900302r .
Camacho, D. H.; Salo, E. V.; Ziller, J. W.; Guan, Z. . Cyclophane-based highly active late-transition-metal catalysts for ethylene polymerization . Angew. Chem. Int. Ed. , 2004 . 43 1821 -1825 . DOI:10.1002/anie.200353226http://doi.org/10.1002/anie.200353226 .
Hu, X.; Zhang, Y.; Zhang, Y.; Jian, Z. . Unsymmetrical strategy makes significant differences in α-diimine nickel and palladium catalyzed ethylene (co)polymerizations . ChemCatChem , 2020 . 12 2497 -2505 . DOI:10.1002/cctc.202000141http://doi.org/10.1002/cctc.202000141 .
Li, S.; Dai, S. . 8-Arylnaphthyl substituent retarding chain transfer in insertion polymerization with unsymmetrical α-diimine systems . Polym. Chem. , 2020 . 11 7199 -7206 . DOI:10.1039/D0PY01231Ahttp://doi.org/10.1039/D0PY01231A .
Zhong, L.; Zheng, H.; Du, C.; Du, W.; Liao, G.; Cheung, C. S.; Gao, H. . Thermally robust α-diimine nickel and palladium catalysts with constrained space for ethylene (co)polymerizations . J. Catal. , 2020 . 384 208 -217 . DOI:10.1016/j.jcat.2020.02.022http://doi.org/10.1016/j.jcat.2020.02.022 .
Guo, L.; Sun, W.; Li, S.; Xu, G.; Dai, S. . Bulky yet flexible substituents in insertion polymerization with α-diimine nickel and palladium systems . Polym. Chem. , 2019 . 10 4866 -4871 . DOI:10.1039/C9PY00857Hhttp://doi.org/10.1039/C9PY00857H .
Zhong, L.; Du, C.; Liao, G.; Liao, H.; Zheng, H.; Wu, Q.; Gao, H. . Effects of backbone substituent and intra-ligand hydrogen bonding interaction on ethylene polymerizations with α-diimine nickel catalysts . J. Catal. , 2019 . 375 113 -123 . DOI:10.1016/j.jcat.2019.05.026http://doi.org/10.1016/j.jcat.2019.05.026 .
Fang, J.; Sui, S.; Li, Y.; Chen, C. . Synthesis of polyolefin elastomers from unsymmetrical α-diimine nickel catalyzed olefin polymerization . Polym. Chem. , 2018 . 9 4143 -4149 . DOI:10.1039/C8PY00725Jhttp://doi.org/10.1039/C8PY00725J .
Li, M.; Wang, X.; Luo, Y.; Chen, C. . A second-coordination-sphere strategy to modulate nickel- and palladium-catalyzed olefin polymerization and copolymerization . Angew. Chem. Int. Ed. , 2017 . 56 11604 -11609 . DOI:10.1002/anie.201706249http://doi.org/10.1002/anie.201706249 .
Zhong, L.; Li, G.; Liang, G.; Gao, H.; Wu, Q. . Enhancing thermal stability and living fashion in α-diimine−nickel-catalyzed (co)polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone . Macromolecules , 2017 . 50 2675 -2682 . DOI:10.1021/acs.macromol.7b00121http://doi.org/10.1021/acs.macromol.7b00121 .
Mahmood, Q.; Zeng, Y.; Yue, E.; Solan, G. A.; Liang, T.; Sun, W. H. . Ultra-high molecular weight elastomeric polyethylene using an electronically and sterically enhanced nickel catalyst . Polym. Chem. , 2017 . 8 6416 -6430 . DOI:10.1039/C7PY01606Ahttp://doi.org/10.1039/C7PY01606A .
Long, B. K.; Eagan, J. M.; Mulzer, M.; Coates, G. W. . Semi-crystalline polar polyethylene: ester-functionalized linear polyolefins enabled by a functional-group-tolerant, cationic nickel catalyst . Angew. Chem. Int. Ed. , 2016 . 55 7106 -7110 . DOI:10.1002/anie.201601703http://doi.org/10.1002/anie.201601703 .
Muhammad, Q.; Tan, C.; Chen, C. . Concerted steric and electronic effects on α-diimine nickel- and palladium-catalyzed ethylene polymerization and copolymerization . Sci. Bull. , 2020 . 65 300 -307 . DOI:10.1016/j.scib.2019.11.019http://doi.org/10.1016/j.scib.2019.11.019 .
Guo, L.; Dai, S.; Chen, C. . Investigations of the ligand electronic effects on α-diimine nickel(II) catalyzed ethylene polymerization . Polymers , 2016 . 8 37 DOI:10.3390/polym8020037http://doi.org/10.3390/polym8020037 .
Rhinehart, J. L.; Mitchell, N. E.; Long, B. K. . Enhancing α-diimine catalysts for high-temperature ethylene polymerization . ACS Catal. , 2014 . 4 2501 -2504 . DOI:10.1021/cs500694mhttp://doi.org/10.1021/cs500694m .
Rhinehart, J. L.; Brown, L. A.; Long, B. K. . A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization . J. Am. Chem. Soc. , 2013 . 135 16316 -16319 . DOI:10.1021/ja408905thttp://doi.org/10.1021/ja408905t .
Guo, L.; Lian, K.; Kong, W.; Xu, S.; Jiang, G. Dai, S. . Synthesis of various branched ultra-high-molecular-weight polyethylenes using sterically hindered acenaphthene-base α-diimine Ni(II) catalysts . Organometallics , 2018 . 37 2442 -2449 . DOI:10.1021/acs.organomet.8b00275http://doi.org/10.1021/acs.organomet.8b00275 .
Liu, F. S.; Hu, H. B.; Xu, Y.; Guo, L. H.; Zai, S. B.; Song, K. M.; Gao, H. Y.; Zhang, L.; Zhu, F. M.; Wu, Q. . Thermostable α-diimine nickel(II) catalyst for ethylene polymerization: effects of the substituted backbone structure on catalytic properties and branching structure of polyethylene . Macromolecules , 2009 . 42 7789 -7796 . DOI:10.1021/ma9013466http://doi.org/10.1021/ma9013466 .
Meinhard, D.; Wegner, M.; Kipiani, G.; Hearley, A.; Reuter, P.; Fischer, S.; Marti, O.; Rieger, B. . New nickel(II) diimine complexes and the control of polyethylene microstructure by catalyst design . J. Am. Chem. Soc. , 2007 . 129 9182 -9191 . DOI:10.1021/ja070224ihttp://doi.org/10.1021/ja070224i .
Ionkin, A. S.; Marshall, W, J. . Ortho-5-methylfuran- and benzofuran-substituted η3-allyl(α-diimine)nickel(II) complexes: syntheses, structural characterization, and the first polymerization results . Organometallics , 2004 . 23 3276 -3283 . DOI:10.1021/om0497902http://doi.org/10.1021/om0497902 .
Schmid, M.; Eberhardt, R.; Klinga, M.; Leskelӓ, M.; Rieger, B. . New C2v- and chiral C2-symmetric olefin polymerization catalysts based on nickel(II) and palladium(II) diimine complexes bearing 2,6-diphenyl aniline moieties: synthesis, structural characterization, and first insight into polymerization properties . Organometallics , 2001 . 20 2321 -2330 . DOI:10.1021/om010001fhttp://doi.org/10.1021/om010001f .
Zheng, H.; Zhong, L.; Du, C.; Du, W.; Cheung, C. S.; Ruan, J.; Gao, H. . Combining hydrogen bonding interactions with steric and electronic modifications for thermally robust α-diimine palladium catalysts toward ethylene (co)polymerization . Catal. Sci. Technol. , 2021 . 11 124 -135 . DOI:10.1039/d0cy01617ahttp://doi.org/10.1039/d0cy01617a .
Dall’Anese, A.; Rosar, V.; Cusin, L.; Montini, T.; Balducci, G.; D’Auria, I.; Pellecchia, C.; Fornasiero, P.; Felluga, F.; Milani, B. . Palladium-catalyzed ethylene/methyl acrylate copolymerization: moving from the acenaphthene to the phenanthrene skeleton of α-diimine ligands . Organometallics , 2019 . 38 3498 -3511 . DOI:10.1021/acs.organomet.9b00308http://doi.org/10.1021/acs.organomet.9b00308 .
Rosar, V.; Montini, T.; Balducci, G.; Zangrando, E.; Fornasiero, P.; Milani, B. . Palladium-catalyzed ethylene/methyl acrylate co-oligomerization: the effect of a new nonsymmetrical α-diimine with the 1,4-diazabutadiene skeleton . ChemCatChem , 2017 . 9 3402 -3411 . DOI:10.1002/cctc.201700504http://doi.org/10.1002/cctc.201700504 .
Takano, S.; Takeuchi, D.; Osakada, K.; Akamatsu, N.; Shishido, A. . Dipalladium catalyst for olefin polymerization: introduction of acrylate units into the main chain of branched polyethylene . Angew. Chem. Int. Ed. , 2014 . 53 9246 -9250 . DOI:10.1002/anie.201404339http://doi.org/10.1002/anie.201404339 .
Johnson, L. K.; Mecking, S.; Brookhart, M. . Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts . J. Am. Chem. Soc. , 1996 . 118 267 -268 . DOI:10.1021/ja953247ihttp://doi.org/10.1021/ja953247i .
Johnson, L. K.; Killian, C. M.; Brookhart, M. . New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α-olefins . J. Am. Chem. Soc. , 1995 . 117 6414 -6415 . DOI:10.1021/ja00128a054http://doi.org/10.1021/ja00128a054 .
Mu, H. L.; Ye, J. H.; Zhou, G. L.; Li, K. K.; Jian, Z. B. . Ethylene polymerization and copolymerization with polar monomers by benzothiophene-bridged BPMO-Pd catalysts . Chinese J. Polym. Sci. , 2020 . 38 579 -586 . DOI:10.1007/s10118-020-2359-0http://doi.org/10.1007/s10118-020-2359-0 .
Tan, C.; Pang, W. M.; Chen, C. L. . A phenol-containing α-diimine ligand for nickel- and palladium-catalyzed ethylene polymerization . Chinese J. Polym. Sci. , 2019 . 37 974 -980 . DOI:10.1007/s10118-019-2232-1http://doi.org/10.1007/s10118-019-2232-1 .
Wang, F.; Tian, S.; Li, R.; Li, W.; Chen. C. . Ligand steric effects on naphthyl-α-diimine nickel catalyzed α-olefin polymerization . Chinese J. Polym. Sci. , 2018 . 36 157 -162 . DOI:10.1007/s10118-018-2038-6http://doi.org/10.1007/s10118-018-2038-6 .
Liao, H.; Gao, J.; Zhong, L.; Gao, H. Y.; Wu, Q. . Regioselective polymerizations of α-olefins with an α-diamine nickel catalyst . Chinese J. Polym. Sci. , 2019 . 37 959 -965 . DOI:10.1007/s10118-019-2227-yhttp://doi.org/10.1007/s10118-019-2227-y .
Gao, H.; Liu, F.; Hu, H.; Zhu, F.; Wu, Q. . Synthesis of bimodal polyethylene with unsymmetrical-diimine nickel complexes: influence of ligand backbone and unsym-substituted aniline moiety . Chinese J. Polym. Sci , 2013 . 31 563 -573 . DOI:10.1007/s10118-013-1251-6http://doi.org/10.1007/s10118-013-1251-6 .
Zeng, Y. N.; Xing, Q. F.; Ma, Y. P.; Sun, W. H. . Dinuclear nickel(II) chlorides bearing N,N'-bis(5,6,7-trihydroquinolin-8-ylidene)-[1,1'-biphenyl]-4,4'-diamines: synthesis and ethylene polymerization . Chinese J. Polym. Sci. , 2018 . 36 207 -213 . DOI:10.1007/s10118-018-2054-6http://doi.org/10.1007/s10118-018-2054-6 .
Zhang, Y.; Wang, C.; Mecking, S.; Jian, Z. . Ultrahigh branching of main-chain-functionalized polyethylenes by inverted insertion selectivity . Angew. Chem. Int. Ed. , 2020 . 59 14296 -14302 . DOI:10.1002/anie.202004763http://doi.org/10.1002/anie.202004763 .
Kanai, Y.; Foro, S.; Plenio, H. . Bispentiptycenyl-diimine-nickel complexes for ethene polymerization and copolymerization with polar monomers . Organometallics , 2019 . 38 544 -551 . DOI:10.1021/acs.organomet.8b00836http://doi.org/10.1021/acs.organomet.8b00836 .
Liao, Y.; Zhang, Y.; Cui, L.; Mu, H.; Jian, Z. . Pentiptycenyl substituents in insertion polymerization with α-diimine nickel and palladium species . Organometallics , 2019 . 38 2075 -2083 . DOI:10.1021/acs.organomet.9b00106http://doi.org/10.1021/acs.organomet.9b00106 .
Zhang, Y.; Wang, C.; Jian, Z. . A comprehensive study on highly active pentiptycenyl-substituted bis(imino)pyridyl iron(II) mediated ethylene polymerization . Eur. Polym. J. , 2020 . 128 109605 DOI:10.1016/j.eurpolymj.2020.109605http://doi.org/10.1016/j.eurpolymj.2020.109605 .
Wang, C.; Zhang, Y.; Mu, H.; Jian, Z. . Systematic studies on dibenzhydryl and pentiptycenyl substituted pyridine-imine nickel(II) mediated ethylene polymerization . Dalton Trans. , 2020 . 49 4824 -4833 . DOI:10.1039/D0DT00505Chttp://doi.org/10.1039/D0DT00505C .
Padilla-Vélez, O.; O’Connor, K. S.; LaPointe, A. M.; MacMillan, S. N.; Coates, G. W. . Switchable living nickel(II) α-diimine catalyst for ethylene polymerisation . Chem. Commun. , 2019 . 55 7607 -7610 . DOI:10.1039/C9CC03154Ehttp://doi.org/10.1039/C9CC03154E .
Chen, Z.; Liu, W.; Daugulis, O.; Brookhart, M. . Mechanistic Studies of Pd(II)-catalyzed copolymerization of ethylene and vinylalkoxysilanes: evidence for a β-silyl elimination chain transfer mechanism . J. Am. Chem. Soc. , 2016 . 138 16120 -16129 . DOI:10.1021/jacs.6b10462http://doi.org/10.1021/jacs.6b10462 .
O’Connor, K. S.; Watts, A.; Vaidya, T.; LaPointe, A. M.; Hillmyer, M. A.; Coates, G. W. . Controlled chain walking for the synthesis of thermoplastic polyolefin elastomers: synthesis, structure, and properties . Macromolecules , 2016 . 49 6743 -6751 . DOI:10.1021/acs.macromol.6b01567http://doi.org/10.1021/acs.macromol.6b01567 .
Allen, K. E.; Campos, J.; Daugulis, O.; Brookhart, M. . Living polymerization of ethylene and copolymerization of ethylene/methyl acrylate using “sandwich” diimine palladium catalysts . ACS Catal. , 2015 . 5 456 -464 . DOI:10.1021/cs5016029http://doi.org/10.1021/cs5016029 .
Zhang, D.; Nadres, E. T.; Brookhart, M.; Daugulis, O. . Synthesis of highly branched polyethylene using “sandwich” (8-p-tolyl naphthyl α-diimine)nickel(II) catalysts . Organometallics , 2013 . 32 5136 -5143 . DOI:10.1021/om400704hhttp://doi.org/10.1021/om400704h .
Tran, Q. H.; Brookhart, M.; Daugulis, O. . New neutral nickel and palladium sandwich catalysts: synthesis of ultra-high molecular weight polyethylene (UHMWPE) via highly controlled polymerization and mechanistic studies of chain propagation . J. Am. Chem. Soc. , 2020 . 142 7198 -7206 . DOI:10.1021/jacs.0c02045http://doi.org/10.1021/jacs.0c02045 .
Kenyon, P.; Wӧrner, M.; Mecking, S. . Controlled polymerization in polar solvents to ultrahigh molecular weight polyethylene . J. Am. Chem. Soc. , 2018 . 140 6685 -6689 . DOI:10.1021/jacs.8b03223http://doi.org/10.1021/jacs.8b03223 .
Chen, Z.; Mesgar, M.; White, P. S.; Daugulis, O.; Brookhart, M. . Synthesis of branched ultrahigh-molecular-weight polyethylene using highly active neutral, single-component Ni(II) catalysts . ACS Catal. , 2015 . 5 631 -636 . DOI:10.1021/cs501948dhttp://doi.org/10.1021/cs501948d .
Schnitte, M.; Scholliers, J. S.; Riedmiller, K.; Mecking, S. . Remote perfluoroalkyl substituents are key to living aqueous ethylene polymerization . Angew. Chem. Int. Ed. , 2020 . 59 3258 -3263 . DOI:10.1002/anie.201913117http://doi.org/10.1002/anie.201913117 .
Schnitte, M.; Staiger, A.; Casper, L. A.; Mecking, S. . Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization . Nat. Commun. , 2019 . 10 2592 DOI:10.1038/s41467-019-10692-1http://doi.org/10.1038/s41467-019-10692-1 .
Wang, C.; Kang, X.; Dai, S.; Cui, F.; Li, Y.; Mu, H.; Mecking, S.; Jian, Z. . Efficient suppression of chain transfer and branching via Cs-type shielding in a neutral nickel(II) catalyst . Angew. Chem. Int. Ed. , 2021 . 60 4018 -4022 . DOI:10.1002/anie.202013069http://doi.org/10.1002/anie.202013069 .
Li, S.; Dai, S. . Highly efficient incorporation of polar comonomers in copolymerizations with ethylene using iminopyridyl palladium system . J. Catal. , 2021 . 393 51 -59 . DOI:10.1016/j.jcat.2020.11.015http://doi.org/10.1016/j.jcat.2020.11.015 .
Peng, H.; Li, S.; Li, G.; Dai, S.; Ji, M.; Liu, Z.; Guo, L. . Rotation-restricted strategy to synthesize high molecular weight polyethylene using iminopyridyl nickel and palladium catalyst . Appl. Organometal. Chem. , 2021 . 35 e6140 DOI:10.1002/aoc.6140http://doi.org/10.1002/aoc.6140 .
SMART, version 5.054, Bruker AXS Inc., Madison, WI, 2000.
SAINT and SADABS, version 6.22, Bruker AXS Inc., Madison, WI, 2000.
Sheldrick, G. M. . Crystal structure refinement with SHELXL . Acta Cryst. , 2015 . C71 3 -8. .
Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. . OLEX2: a complete structure solution, refinement and analysis program . J. Appl. Cryst. , 2009 . 42 339 -341 . DOI:10.1107/S0021889808042726http://doi.org/10.1107/S0021889808042726 .
Spek, A. L. . PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors . Acta Cryst. , 2015 . C71 9 -18. .
Batsanov, S. S. . van der Waals radii of elements . Inorg. Mater. , 2001 . 37 871 -885 . DOI:10.1023/A:1011625728803http://doi.org/10.1023/A:1011625728803 .
Zou, H.; Hu, S.; Huang, H.; Zhu, F.; Wu, Q. . Synthesis of bimodal molecular weight distribution polyethylene with α-diimine nickel(II) complexes containing unsym-substituted aryl groups in the presence of methylaluminoxane . Eur. Polym. J. , 2007 . 43 3882 -3891 . DOI:10.1016/j.eurpolymj.2007.06.028http://doi.org/10.1016/j.eurpolymj.2007.06.028 .
Sui, X.; Hong, C.; Pang, W.; Chen, C. . Unsymmetrical α-diimine palladium catalysts and their properties in olefin (co)polymerization . Mater. Chem. Front. , 2017 . 1 967 -972 . DOI:10.1039/C6QM00235Hhttp://doi.org/10.1039/C6QM00235H .
Zhai, F; Jordan, R. F. . (α-Diimine)nickel Complexes that contain menthyl substituents: synthesis, conformational behavior, and olefin polymerization catalysis . Organometallics , 2017 . 36 2784 -2799 . DOI:10.1021/acs.organomet.7b00283http://doi.org/10.1021/acs.organomet.7b00283 .
Ma, X.; Hu, X.; Zhang, Y.; Mu, H.; Cui, L.; Jian, Z. . Preparation and in situ chain-end-functionalization of branched ethylene oligomers by monosubstituted α-diimine nickel catalysts . Polym. Chem. , 2019 . 10 2596 -2607 . DOI:10.1039/C9PY00433Ehttp://doi.org/10.1039/C9PY00433E .
Wiedemann, T.; Voit, G.; Tchernook, A.; Roesle, P.; Gottker-Schnetmann, I.; Mecking, S. . Monofunctional hyperbranched ethylene oligomers . J. Am. Chem. Soc. , 2014 . 136 2078 -2085 . DOI:10.1021/ja411945nhttp://doi.org/10.1021/ja411945n .
D'Auria, I.; Milione, S.; Caruso, T.; Balducci, G.; Pellecchia, C. . Synthesis of hyperbranched low molecular weight polyethylene oils by an iminopyridine nickel(II) catalyst . Polym. Chem. , 2017 . 8 6443 -6454 . DOI:10.1039/C7PY01215Bhttp://doi.org/10.1039/C7PY01215B .
Li, S.; Xu, G.; Dai, S. . A remote nonconjugated electron effect in insertion polymerization with α-diimine nickel and palladium species . Polym. Chem. , 2020 . 11 2692 -2699 . DOI:10.1039/D0PY00218Fhttp://doi.org/10.1039/D0PY00218F .
Lebarbé, T.; Maisonneuve, L.; Nga Nguyen, T. H.; Gadenne, B.; Alfos, C.; Cramail, H. . Methyl 10-undecenoate as a raw material for the synthesis of renewable semi-crystalline polyesters and poly(ester-amide)s . Polym. Chem. , 2012 . 3 2842 -2851 . DOI:10.1039/c2py20394dhttp://doi.org/10.1039/c2py20394d .
0
Views
6
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution