1.Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory of High Performance Polymer Composites, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
cesrmz@sysu.edu.cn (M.Z.R.)
ceszmq@sysu.edu.cn (M.Q.Z.)
Scan for full text
Ming-Xuan Li, Min-Zhi Rong, Ming-Qiu Zhang. Reversible Mechanochemistry Enabled Autonomous Sustaining of Robustness of Polymers—An Example of Next Generation Self-healing Strategy. [J]. Chinese Journal of Polymer Science 39(5):545-553(2021)
Ming-Xuan Li, Min-Zhi Rong, Ming-Qiu Zhang. Reversible Mechanochemistry Enabled Autonomous Sustaining of Robustness of Polymers—An Example of Next Generation Self-healing Strategy. [J]. Chinese Journal of Polymer Science 39(5):545-553(2021) DOI: 10.1007/s10118-021-2532-0.
Even under low external force, a few macromolecules of a polymer have to be much more highly stressed and fractured first due to the inherent heterogeneous microstructure. When the materials keep on working under loading, as is often the case, the minor damages would add up, endangering the safety of use. Here we show an innovative solution based on mechanochemically initiated reversible cascading variation of metal-ligand complexations. Upon loading, crosslinking density of the proof-of-concept metallopolymer networks autonomously increases, and recovers after unloading. Meanwhile, the stress-induced tiny fracture precursors are blocked to grow and then restored. The entire processes reversibly proceed free of manual intervention and catalyst. The proposed molecular-level internal equilibrium prevention mechanisms fundamentally enhance durability of polymers in service.
Metal-ligand complexationsPolyurethaneMechanochemistryMechanical propertiesRobustness
White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. . Autonomic healing of polymer composites . Nature , 2001 . 409 794 -797 . DOI:10.1038/35057232http://doi.org/10.1038/35057232 .
Chen, X. X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. . A thermally re-mendable cross-linked polymeric material . Science , 2002 . 295 1698 -1702 . DOI:10.1126/science.1065879http://doi.org/10.1126/science.1065879 .
Chen, X. X.; Zhong, Q. Y.; Wang, S. J.; Wu, Y. S.; Tan, J. D.; Lei, H. X.; Huang, S. Y.; Zhang, Y. F. . Progress in dynamic covalent polymers . Acta Polymerica Sinica (in Chinese) , 2019 . 50 469 -484. .
Yin, Q. Y.; Dai, C. H.; Chen, H.; Gou, K.; Guan, H. Z.; Wang, P. H.; Jiang, J. T.; Weng, G. S. . Tough double metal-ion cross-linked elastomers with temperature-adaptable self-healing and luminescence properties . Chinese J. Polym. Sci. , 2021 . DOI: 10.1007/s10118-021-2517-z DOI:10.1007/s10118-021-2517-zhttp://doi.org/10.1007/s10118-021-2517-z .
Paulusse, J. M. J.; Sijbesma, R. P. . Reversible mechanochemistry of a Pd(II) coordination polymer . Angew. Chem. Int. Ed. , 2004 . 43 4460 -4462 . DOI:10.1002/anie.200460040http://doi.org/10.1002/anie.200460040 .
Kersey, F. R.; Loveless, D. M.; Craig, S. L. . A hybrid polymer gel with controlled rates of cross-link rupture and self-repair . J. R. Soc. Interface , 2007 . 4 373 -380 . DOI:10.1098/rsif.2006.0187http://doi.org/10.1098/rsif.2006.0187 .
Piermattei, A.; Karthikeyan, S.; Sijbesma, R. P. . Activating catalysts with mechanical force . Nat. Chem. , 2009 . 1 133 -137 . DOI:10.1038/nchem.167http://doi.org/10.1038/nchem.167 .
Balkenende, D. W. R.; Coulibaly, S.; Balog, S.; Simon, Y. C.; Fiore, G. L.; Weder, C. . Mechanochemistry with metallosupramolecular polymers . J. Am. Chem. Soc. , 2014 . 136 10493 -10498 . DOI:10.1021/ja5051633http://doi.org/10.1021/ja5051633 .
Das, M.; Pal, S.; Naskar, K. . Exploring various metal-ligand coordination bond formation in elastomers: mechanical performance and self-healing behavior . Express Polym. Lett. , 2020 . 14 860 -880 . DOI:10.3144/expresspolymlett.2020.71http://doi.org/10.3144/expresspolymlett.2020.71 .
Wilker, J. J. . Marine bioinorganic materials: mussels pumping iron . Curr. Opin. Chem. Biol. , 2010 . 14 276 -283 . DOI:10.1016/j.cbpa.2009.11.009http://doi.org/10.1016/j.cbpa.2009.11.009 .
Harrington, M. J.; Masic, A.; Holten-Andersen, N.; Waite, J. H.; Fratzl, P. . Iron-clad fibers: a metal-based biological strategy for hard flexible coatings . Science , 2010 . 328 216 -220 . DOI:10.1126/science.1181044http://doi.org/10.1126/science.1181044 .
Zeng, H.; Hwang, D. S.; Israelachvili, J. N.; Waite, J. H. . Strong reversible Fe3+-mediated bridging between DOPA-containing protein films in water . Proc. Natl. Acad. Sci. , 2010 . 107 12850 -12853 . DOI:10.1073/pnas.1007416107http://doi.org/10.1073/pnas.1007416107 .
Waite, J. H.; Qin, X. X.; Coyne, K. J. . The peculiar collagens of mussel byssus . J. Matrix Biol. , 1998 . 17 93 -106 . DOI:10.1016/S0945-053X(98)90023-3http://doi.org/10.1016/S0945-053X(98)90023-3 .
Krauss, S.; Metzger, T. H.; Fratzl, P.; Harrington, M. J. . Self-repair of a biological fiber guided by an ordered elastic framework . Biomacromolecules , 2013 . 14 1520 -1528 . DOI:10.1021/bm4001712http://doi.org/10.1021/bm4001712 .
Dzhardimalieva, G. I.; Yadav, B. C.; Singh S.; Uflyand, I. E. . Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives . Dalton Trans. , 2020 . 49 3042 -3087 . DOI:10.1039/C9DT04360Hhttp://doi.org/10.1039/C9DT04360H .
Zechel, S.; Hager, M. D.; Priemel, T.; Harrington, M. J. . Healing through histidine: bioinspired pathways to self-healing polymers via imidazole–metal coordination . Biomimetics , 2019 . 4 20 .
Enke, M.; Bode, S.; Vitz, J.; Schacher, F. H.; Harrington, M. J.; Hager, M. D.; Schubert, U. S. . Self-healing response in supramolecular polymers based on reversible zinc-histidine interactions . Polymer , 2015 . 69 274 -282 . DOI:10.1016/j.polymer.2015.03.068http://doi.org/10.1016/j.polymer.2015.03.068 .
Andersen, A.; Chen, Y.; Birkedal, H. . Bioinspired metal-polyphenol materials: self-healing and beyond . Biomimetics , 2019 . 4 30 DOI:10.3390/biomimetics4020030http://doi.org/10.3390/biomimetics4020030 .
Tunn, I.; Harrington, M. J.; Blank, K. G. . Bioinspired histidine-Zn2+ coordination for tuning the mechanical properties of self-healing coiled coil cross-linked hydrogels . Biomimetics , 2019 . 4 25 .
Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, K.; Valentine, M. T. . Toughening elastomers using mussel-inspired iron-catechol complexes . Science , 2017 . 358 502 -505 . DOI:10.1126/science.aao0350http://doi.org/10.1126/science.aao0350 .
Mozhdehi, D.; Neal, J. A.; Grindy, S. C.; Cordeau, Y.; Ayala, S.; Holten-Andersen, N.; Guan, Z. . Tuning dynamic mechanical response in metallopolymer networks through simultaneous control of structural and temporal properties of the networks . Macromolecules , 2016 . 49 6310 -6321 . DOI:10.1021/acs.macromol.6b01626http://doi.org/10.1021/acs.macromol.6b01626 .
Grindy, S. C.; Learsch, R.; Mozhdehi, D.; Cheng, J.; Barrett, D. G.; Guan, Z.; Messersmith, P. B.; Holten-Andersen, N. . Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics . Nat. Mater. , 2015 . 14 1210 -1216 . DOI:10.1038/nmat4401http://doi.org/10.1038/nmat4401 .
Holten-Andersen, N.; Harrington, M. J.; Irkedal, H. B.; Lee, B. P.; Messersmith, P. B.; Lee, K. Y. C.; Waite, J. H. . pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli . Proc. Natl. Acad. Sci. , 2011 . 108 2651 -2655 . DOI:10.1073/pnas.1015862108http://doi.org/10.1073/pnas.1015862108 .
Wang, J.; Liu, C.; Lu, X.; Yin, M. . Co-polypeptides of 3,4-dihydroxyphenylalanine and L-lysine to mimic marine adhesive protein . Biomaterials , 2007 . 28 3456 -3468 . DOI:10.1016/j.biomaterials.2007.04.009http://doi.org/10.1016/j.biomaterials.2007.04.009 .
Fullenkamp, D. E.; He, L.; Barrett, D. G.; Burghardt, W. R.; Messersmith, P. B. . Mussel-inspired histidine-based transient network metal coordination hydrogels . Macromolecules , 2013 . 46 1167 -1174 . DOI:10.1021/ma301791nhttp://doi.org/10.1021/ma301791n .
Andersson, M.; Hedin, J.; Johansson, P.; Nordström, J.; Nydén, M. . Coordination of imidazoles by Cu(II) and Zn(II) as studied by NMR relaxometry, EPR, far-FTIR vibrational spectroscopy and Ab initio calculations: effect of methyl substitution . J. Phys. Chem. A , 2010 . 114 13146 -13153 . DOI:10.1021/jp1062868http://doi.org/10.1021/jp1062868 .
Schmidt, S.; Reinecke, A.; Wojcik, F.; Pussak, D.; Hartmann, L.; Harrington, M. J. . Metal-mediated molecular self-healing in histidine-rich mussel peptides . Biomacromolecules , 2014 . 15 1644 -1652 . DOI:10.1021/bm500017uhttp://doi.org/10.1021/bm500017u .
Li, Y.; Wen, J.; Qin, M.; Cao, Y.; Ma, H.; Wang, W. . Single-molecule mechanics of catechol-iron coordination bonds . ACS Biomater. Sci. Eng. , 2017 . 3 979 -989 . DOI:10.1021/acsbiomaterials.7b00186http://doi.org/10.1021/acsbiomaterials.7b00186 .
Yang, B.; Lim, C.; Hwang, D. S.; Cha, H. J. . Switch of surface adhesion to cohesion by dopa-Fe3+ complexation in response to microenvironment at the mussel plaque/substrate interface . Chem. Mater. , 2016 . 28 7982 -7989 . DOI:10.1021/acs.chemmater.6b03676http://doi.org/10.1021/acs.chemmater.6b03676 .
Xu, Z. P. . Mechanics of metal-catecholate complexes: the role of coordination state and metal types . Sci. Rep. , 2013 . 3 2914 -2920 . DOI:10.1038/srep02914http://doi.org/10.1038/srep02914 .
Mozhdehi, D.; Ayala, S.; Cromwell, O. R.; Guan, Z. . Self-healing multiphase polymers via dynamic metal-ligand interactions . J. Am. Chem. Soc. , 2014 . 136 16128 -16131 . DOI:10.1021/ja5097094http://doi.org/10.1021/ja5097094 .
Enke, M.; Jehle, F.; Bode, S.; Vitz, J.; Harrington, M. J.; Hager, M. D.; Schubert, U. S. . Histidine-zinc interactions investigated by isothermal titration calorimetry (ITC) and their application in self-healing polymers . Macromol. Chem. Phys. , 2017 . 218 1600458 DOI:10.1002/macp.201600458http://doi.org/10.1002/macp.201600458 .
Enke, M.; Bose, R. K.; Zechel, S.; Vitz, J.; Deubler, R.; Garcia, S. J.; Zwaag, S. V.; Schacher, F. H.; Hager, M. D.; Schubert, U. S. . A translation of the structure of mussel byssal threads into synthetic materials by the utilization of histidine-rich block copolymers . Polym. Chem. , 2018 . 9 3543 -3551 . DOI:10.1039/C8PY00663Fhttp://doi.org/10.1039/C8PY00663F .
Harrington, M. J.; Gupta, H. S.; Fratzl, P.; Waite, J. H. . Collagen insulated from tensile damage by domains that unfold reversibly: in situ X-ray investigation of mechanical yield and damage repair in the mussel byssus . J. Struct. Biol. , 2009 . 167 47 -54 . DOI:10.1016/j.jsb.2009.03.001http://doi.org/10.1016/j.jsb.2009.03.001 .
Tang, J. D.; Li, J. Y.; Vlassak, J. J.; Suo, Z. G. . Fatigue fracture of hydrogels . Extreme Mech. Lett. , 2017 . 10 24 -31 . DOI:10.1016/j.eml.2016.09.010http://doi.org/10.1016/j.eml.2016.09.010 .
Xia, N. N.; Xiong, X. M.; Wang, J.; Rong, M. Z.; Zhang, M. Q. . A seawater triggered dynamic coordinate bond and its application for underwater self-healing and reclaiming of lipophilic polymer . Chem. Sci. , 2016 . 7 2736 -2742 . DOI:10.1039/C5SC03483Chttp://doi.org/10.1039/C5SC03483C .
Zhu, D. Y.; Chen, X. J.; Hong, Z. P.; Zhang, L. Y.; Zhang, L.; Guo, J. W.; Rong, M. Z.; Zhang, M. Q. . Repeatedly intrinsic self-healing of millimeter-scale wounds in polymer through rapid volume expansion aided host−guest interaction . ACS Appl. Mater. Interfaces , 2020 . 12 22534 -22542 . DOI:10.1021/acsami.0c03523http://doi.org/10.1021/acsami.0c03523 .
Xia, N. N.; Rong, M. Z.; Zhang, M. Q.; Kuo, S. W. . Stress intensification—an abnormal phenomenon observed during stress relaxation of dynamic coordination polymer . Express Polym. Lett. , 2016 . 10 742 -749 . DOI:10.3144/expresspolymlett.2016.68http://doi.org/10.3144/expresspolymlett.2016.68 .
Lei, Y. F.; Shan, S. J.; Lin Y. L.; Zhang, A. Q. . Network reconfiguration and unusual stress intensification of a dynamic reversible polyimine elastomer . Polymer , 2020 . 186 122031 DOI:10.1016/j.polymer.2019.122031http://doi.org/10.1016/j.polymer.2019.122031 .
Fortman, D. J.; Brutman, J. P.; Cramer, C. J.; Hillmyer, M. A.; Dichtel, W. R. . Mechanically activated, catalyst-free polyhydroxyurethane vitrimers . J. Am. Chem. Soc. , 2015 . 137 14019 -14022 . DOI:10.1021/jacs.5b08084http://doi.org/10.1021/jacs.5b08084 .
Liu, C.; Lafdi, K.; Chinesta, F. . Durability sensor using low concentration carbon nano additives . Compos. Sci. Technol. , 2020 . 195 108200 DOI:10.1016/j.compscitech.2020.108200http://doi.org/10.1016/j.compscitech.2020.108200 .
0
Views
4
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution