1.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
chenmao@fudan.edu.cn
Scan for full text
Zhuo-Ran Zhong, Yi-Nan Chen, Yang Zhou, et al. Challenges and Recent Developments of Photoflow-Reversible Deactivation Radical Polymerization (RDRP). [J]. Chinese Journal of Polymer Science 39(9):1069-1083(2021)
Zhuo-Ran Zhong, Yi-Nan Chen, Yang Zhou, et al. Challenges and Recent Developments of Photoflow-Reversible Deactivation Radical Polymerization (RDRP). [J]. Chinese Journal of Polymer Science 39(9):1069-1083(2021) DOI: 10.1007/s10118-021-2529-8.
Photo-controlled reversible-deactivation radical polymerization (photo-RDRP) has been investigated as a “green” and spatiotemporally controlling pathway for polymer synthesis. While the combination of photo-RDRP and flow chemistry has offered opportunities to increase light intensity and enable uniform light irradiation, problems associated with flow approaches still remain for photoflow-RDRP, which has hindered merging flow polymerization with other cutting-edge techniques. Herein, we summarize challenges and recent achievements in photoflow-RDRP including the development of (a) droplet/slug-flow to regulate residence time distribution, (b) mixing techniques to tailor polymer, (c) polymerization induced self-assembly, and (d) computer-aided synthesis. We hope this work will provide informative knowledge to people in related fields and stimulate novel ideas to promote polymer synthesis in both academia and industry.
Controlled radical polymerizationRDRPPhotopolymerizationFlow chemistryFlow polymerization
Steinbacher, J. L.; McQuade, D. T. . Polymer chemistry in flow: new polymers, beads, capsules, and fibers . J. Polym. Sci., Part A: Polym. Chem. , 2006 . 44 6505 -6533 . DOI:10.1002/pola.21630http://doi.org/10.1002/pola.21630 .
DeMello, A. J. . Control and detection of chemical reactions in microfluidic systems . Nature , 2006 . 442 394 -402 . DOI:10.1038/nature05062http://doi.org/10.1038/nature05062 .
Geyer, K.; Codee, J. D.; Seeberger, P. H. . Microreactors as tools for synthetic chemists-the chemists' round-bottomed flask of the 21st century? . Chem. Eur. J. , 2006 . 12 8434 -8442 . DOI:10.1002/chem.200600596http://doi.org/10.1002/chem.200600596 .
Watts, P.; Wiles, C. . Recent advances in synthetic micro reaction technology . Chem. Commun. , 2007 . 443 -467. .
Voicu, D.; Scholl, C.; Li, W.; Jagadeesan, D.; Nasimova, I.; Greener, J.; Kumacheva, E. . Kinetics of multicomponent polymerization reaction studied in a microfluidic format . Macromolecules , 2012 . 45 4469 -4475 . DOI:10.1021/ma300444khttp://doi.org/10.1021/ma300444k .
Knox, S. T.; Parkinson, S.; Stone, R.; Warren, N. J. . Benchtop flow-NMR for rapid online monitoring of RAFT and free radical polymerisation in batch and continuous reactors . Polym. Chem. , 2019 . 10 4774 -4778 . DOI:10.1039/C9PY00982Ehttp://doi.org/10.1039/C9PY00982E .
Wilms, D.; Klos, J.; Frey, H. . Microstructured reactors for polymer synthesis: a renaissance of continuous flow processes for tailor-made macromolecules? . Macromol. Chem. Phys. , 2008 . 209 343 -356 . DOI:10.1002/macp.200700588http://doi.org/10.1002/macp.200700588 .
Geacintov, C.; Smid, J.; Szwarc, M. . Kinetics of anionic polymerization of styrene in tetrahydrofuran . J. Am. Chem. Soc. , 1962 . 84 2508 -2514 . DOI:10.1021/ja00872a012http://doi.org/10.1021/ja00872a012 .
Matyjaszewski, K., Comparison and classification of controlled/living radical polymerizations. In Controlled/living radical polymerization, American Chemical Society, Washington, DC, 2000, Vol. 768, pp 2−26.
Braunecker, W. A.; Matyjaszewski, K. . Controlled/living radical polymerization: features, developments, and perspectives . Prog. Polym. Sci. , 2007 . 32 93 -146 . DOI:10.1016/j.progpolymsci.2006.11.002http://doi.org/10.1016/j.progpolymsci.2006.11.002 .
Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. . Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process . Macromolecules , 1998 . 31 5559 -5562 . DOI:10.1021/ma9804951http://doi.org/10.1021/ma9804951 .
Wang, J. S.; Matyjaszewski, K. . Controlled living radical polymerization—atom-transfer radical polymerization in the presence of transition-metal complexes . J. Am. Chem. Soc. , 1995 . 117 5614 -5615 . DOI:10.1021/ja00125a035http://doi.org/10.1021/ja00125a035 .
Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. . Polymerization of methyl-methacrylate with the carbon-tetrachloride dichlorotris(triphenylphosphine)ruthenium(ii) methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system-possibility of living radical polymerization . Macromolecules , 1995 . 28 1721 -1723 . DOI:10.1021/ma00109a056http://doi.org/10.1021/ma00109a056 .
Hawker, C. J.; Bosman, A. W.; Harth, E. . New polymer synthesis by nitroxide mediated living radical polymerizations . Chem. Rev. , 2001 . 101 3661 -3688 . DOI:10.1021/cr990119uhttp://doi.org/10.1021/cr990119u .
Yagci, Y.; Jockusch, S.; Turro, N. J. . Photoinitiated polymerization: advances, challenges, and opportunities . Macromolecules , 2010 . 43 6245 -6260 . DOI:10.1021/ma1007545http://doi.org/10.1021/ma1007545 .
Tehfe, M. A.; Louradour, F.; Lalevee, J.; Fouassier, J. P. . Photopolymerization reactions: on the way to a green and sustainable chemistry . Appl. Sci. , 2013 . 3 490 -514 . DOI:10.3390/app3020490http://doi.org/10.3390/app3020490 .
Yamago, S.; Nakamura, Y. . Recent progress in the use of photoirradiation in living radical polymerization . Polymer , 2013 . 54 981 -994 . DOI:10.1016/j.polymer.2012.11.046http://doi.org/10.1016/j.polymer.2012.11.046 .
Gong, H.; Ma, M.; Zhou, Y.; Zhao, Y.; Gu, Y.; Chen, M. . Photoredox controlled living polymerization . J. Funct. Polym. , 2019 . 32 271 -291. .
Shen, L. L.; Lu, Q. Z.; Zhu, A. Q.; Lv, X. Q.; An, Z. S. . Photocontrolled RAFT polymerization mediated by a supramolecular catalyst . ACS Macro Lett. , 2017 . 6 625 -631 . DOI:10.1021/acsmacrolett.7b00343http://doi.org/10.1021/acsmacrolett.7b00343 .
Yang, Y. Q.; An, Z. S. . Visible light induced aqueous RAFT polymerization using a supramolecular perylene diimide/cucurbit 7 uril complex . Polym. Chem. , 2019 . 10 2801 -2811 . DOI:10.1039/C9PY00393Bhttp://doi.org/10.1039/C9PY00393B .
Li, S. Z.; Han, G.; Zhang, W. Q. . Photoregulated reversible addition-fragmentation chain transfer (RAFT) polymerization . Polym. Chem. , 2020 . 11 1830 -1844 . DOI:10.1039/D0PY00054Jhttp://doi.org/10.1039/D0PY00054J .
Corrigan, N.; Almasri, A.; Taillades, W.; Xu, J.; Boyer, C. . Controlling molecular weight distributions through photoinduced flow polymerization . Macromolecules , 2017 . 50 8438 -8448 . DOI:10.1021/acs.macromol.7b01890http://doi.org/10.1021/acs.macromol.7b01890 .
Pan, X. C.; Tasdelen, M. A.; Laun, J.; Junkers, T.; Yagci, Y.; Matyjaszewski, K. . Photomediated controlled radical polymerization . Prog. Polym. Sci. , 2016 . 62 73 -125 . DOI:10.1016/j.progpolymsci.2016.06.005http://doi.org/10.1016/j.progpolymsci.2016.06.005 .
Cambie, D.; Bottecchia, C.; Straathof, N. J.; Hessel, V.; Noel, T. . Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment . Chem. Rev. , 2016 . 116 10276 -10341 . DOI:10.1021/acs.chemrev.5b00707http://doi.org/10.1021/acs.chemrev.5b00707 .
Nie, H. J.; Li, S. Z.; Qian, S. J.; Han, Z. Q.; Zhang, W. Q. . Switchable reversible addition-fragmentation chain transfer (RAFT) polymerization with the assistance of azobenzenes . Angew. Chem. Int. Ed. , 2019 . 58 11449 -11453 . DOI:10.1002/anie.201904991http://doi.org/10.1002/anie.201904991 .
Zhang, Y. X.; He, J.; Dai, X. C.; Yu, L. L.; Tan, J. B.; Zhang, L. . Combining the power of heat and light: temperature-programmed photoinitiated RAFT dispersion polymerization to tune polymerization-induced self-assembly . Polym. Chem. , 2019 . 10 3902 -3911 . DOI:10.1039/C9PY00534Jhttp://doi.org/10.1039/C9PY00534J .
Shanmugam, S.; Xu, J. T.; Boyer, C. . A logic gate for external regulation of photopolymerization . Polym. Chem. , 2016 . 7 6437 -6449 . DOI:10.1039/C6PY01361Ahttp://doi.org/10.1039/C6PY01361A .
Chen, M.; Deng, S.; Gu, Y.; Lin, J.; MacLeod, M. J.; Johnson, J. A. . Logic-controlled radical polymerization with heat and light: multiple-stimuli switching of polymer chain growth via a recyclable, thermally responsive gel photoredox catalyst . J. Am. Chem. Soc. , 2017 . 139 2257 -2266 . DOI:10.1021/jacs.6b10345http://doi.org/10.1021/jacs.6b10345 .
Wu, C.; Chen, H.; Corrigan, N.; Jung, K.; Kan, X.; Li, Z.; Liu, W.; Xu, J.; Boyer, C. . Computer-guided discovery of a pH-responsive organic photocatalyst and application for pH and light dual-gated polymerization . J. Am. Chem. Soc. , 2019 . 141 8207 -8220 . DOI:10.1021/jacs.9b01096http://doi.org/10.1021/jacs.9b01096 .
Anastasaki, A.; Nikolaou, V.; Pappas, G. S.; Zhang, Q.; Wan, C.; Wilson, P.; Davis, T. P.; Whittaker, M. R.; Haddleton, D. M. . Photoinduced sequence-control via one pot living radical polymerization of acrylates . Chem. Sci. , 2014 . 5 3536 -3542 . DOI:10.1039/C4SC01374Chttp://doi.org/10.1039/C4SC01374C .
Tanaka, J.; Hakkinen, S.; Boeck, P. T.; Cong, Y.; Perrier, S.; Sheiko, S. S.; You, W. . Orthogonal cationic and radical RAFT polymerizations to prepare bottlebrush polymers . Angew. Chem. Int. Ed. , 2020 . 59 7203 -7208 . DOI:10.1002/anie.202000700http://doi.org/10.1002/anie.202000700 .
Zhao, Y.; Ma, M.; Lin, X.; Chen, M. . Photoorganocatalyzed divergent reversible-deactivation radical polymerization towards linear and branched fluoropolymers . Angew. Chem. Int. Ed. , 2020 . 59 21470 -21474 . DOI:10.1002/anie.202009475http://doi.org/10.1002/anie.202009475 .
Han, S.; Gu, Y.; Ma, M.; Chen, M. . Light-intensity switch enabled nonsynchronous growth of fluorinated raspberry-like nanoparticles . Chem. Sci. , 2020 . 11 10431 -10436 . DOI:10.1039/D0SC04141Fhttp://doi.org/10.1039/D0SC04141F .
Sebra, R. P.; Reddy, S. K.; Masters, K. S.; Bowman, C. N.; Anseth, K. S. . Controlled polymerization chemistry to graft architectures that influence cell-material interactions . Acta Biomater. , 2007 . 3 151 -161 . DOI:10.1016/j.actbio.2006.07.010http://doi.org/10.1016/j.actbio.2006.07.010 .
Jiang, K. M.; Han, S. T.; Ma, M. Y.; Zhang, L.; Zhao, Y. C.; Chen, M. . Photoorganocatalyzed reversible-deactivation alternating copolymerization of chlorotrifluoroethylene and vinyl ethers under ambient conditions: facile access to main-chain fluorinated copolymers . J. Am. Chem. Soc. , 2020 . 142 7108 -7115 . DOI:10.1021/jacs.0c01016http://doi.org/10.1021/jacs.0c01016 .
Bai, H. D.; Huang, Z. H.; Yang, W. T. . Visible light-induced living surface grafting polymerization for the potential biological applications . J. Polym. Sci., Part A: Polym. Chem. , 2009 . 47 6852 -6862 . DOI:10.1002/pola.23724http://doi.org/10.1002/pola.23724 .
Li, A.; Ramakrishna, S. N.; Nalam, P. C.; Benetti, E. M.; Spencer, N. D. . Stratified polymer grafts: synthesis and characterization of layered ‘brush’ and ‘gel’ structures . Adv. Mater. Interfaces , 2014 . 1 1300007 DOI:10.1002/admi.201300007http://doi.org/10.1002/admi.201300007 .
Zhang, Z.; Corrigan, N.; Bagheri, A.; Jin, J.; Boyer, C. . A versatile 3D and 4D printing system through photocontrolled RAFT polymerization . Angew. Chem. Int. Ed. , 2019 . 58 17954 -17963 . DOI:10.1002/anie.201912608http://doi.org/10.1002/anie.201912608 .
Quan, Q.; Wen, H.; Han, S.; Wang, Z.; Shao, Z.; Chen, M. . Fluorous-core nanoparticle-embedded hydrogel synthesized via tandem photo-controlled radical polymerization: facilitating the separation of perfluorinated alkyl substances from water . ACS Appl. Mater. Interfaces , 2020 . 12 24319 -24327 . DOI:10.1021/acsami.0c04646http://doi.org/10.1021/acsami.0c04646 .
Su, Y.; Straathof, N. J.; Hessel, V.; Noel, T. . Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications . Chem. Eur. J. , 2014 . 20 10562 -10589 . DOI:10.1002/chem.201400283http://doi.org/10.1002/chem.201400283 .
Junkers, T.; Wenn, B. . Continuous photoflow synthesis of precision polymers . React. Chem. Eng. , 2016 . 1 60 -64 . DOI:10.1039/C5RE00042Dhttp://doi.org/10.1039/C5RE00042D .
Tonhauser, C.; Nataello, A.; Lowe, H.; Frey, H. . Microflow technology in polymer synthesis . Macromolecules , 2012 . 45 9551 -9570 . DOI:10.1021/ma301671xhttp://doi.org/10.1021/ma301671x .
Diehl, C.; Laurino, P.; Azzouz, N.; Seeberger, P. H. . Accelerated continuous flow RAFT polymerization . Macromolecules , 2010 . 43 10311 -10314 . DOI:10.1021/ma1025253http://doi.org/10.1021/ma1025253 .
Zaquen, N.; Kadir, A. M. N. B. P. H. A.; Iasa, A.; Corrigan, N.; Junkers, T.; Zetterlund, P. B.; Boyer, C. . Rapid oxygen tolerant aqueous RAFT photopolymerization in continuous flow reactors . Macromolecules , 2019 . 52 1609 -1619 . DOI:10.1021/acs.macromol.8b02628http://doi.org/10.1021/acs.macromol.8b02628 .
Rubens, M.; Latsrisaeng, P.; Junkers, T. . Visible light-induced iniferter polymerization of methacrylates enhanced by continuous flow . Polym. Chem. , 2017 . 8 6496 -6505 . DOI:10.1039/C7PY01157Ahttp://doi.org/10.1039/C7PY01157A .
Huang, W.; Zhai, J.; Hu, X.; Duan, J.; Fang, Z.; Zhu, N.; Guo, K. . Continuous flow photoinduced phenothiazine derivatives catalyzed atom transfer radical polymerization . Eur. Polym. J. , 2020 . 126 109565 DOI:10.1016/j.eurpolymj.2020.109565http://doi.org/10.1016/j.eurpolymj.2020.109565 .
Marathianos, A.; Liarou, E.; Anastasaki, A.; Whitfield, R.; Laurel, M.; Wemyss, A. M.; Haddleton, D. M. . Photo-induced copper-RDRP in continuous flow without external deoxygenation . Polym. Chem. , 2019 . 10 4402 -4406 . DOI:10.1039/C9PY00945Khttp://doi.org/10.1039/C9PY00945K .
Buss, B. L.; Miyake, G. M. . Photoinduced controlled radical polymerizations performed in flow: methods, products, and opportunities . Chem. Mater. , 2018 . 30 3931 -3942 . DOI:10.1021/acs.chemmater.8b01359http://doi.org/10.1021/acs.chemmater.8b01359 .
Reis, M. H.; Leibfarth, F. A.; Pitet, L. M. . Polymerizations in continuous flow: recent advances in the synthesis of diverse polymeric materials . ACS Macro Lett. , 2020 . 9 123 -133 . DOI:10.1021/acsmacrolett.9b00933http://doi.org/10.1021/acsmacrolett.9b00933 .
Zhu, N.; Hu, X.; Fang, Z.; Guo, K. . Continuous flow photoinduced reversible deactivation radical polymerization . ChemPhotoChem , 2018 . 2 831 -838 . DOI:10.1002/cptc.201800032http://doi.org/10.1002/cptc.201800032 .
Bally, F.; Serra, C. A.; Hessel, V.; Hadziioannou, G. . Micromixer-assisted polymerization processes . Chem. Eng. Sci. , 2011 . 66 1449 -1462 . DOI:10.1016/j.ces.2010.07.026http://doi.org/10.1016/j.ces.2010.07.026 .
Hornung, C. H.; Guerrero-Sanchez, C.; Brasholz, M.; Saubern, S.; Chiefari, J.; Moad, G.; Rizzardo, E.; Thang, S. H. . Controlled RAFT polymerization in a continuous flow microreactor . Org. Process. Res. Dev. , 2011 . 15 593 -601 . DOI:10.1021/op1003314http://doi.org/10.1021/op1003314 .
Parida, D.; Serra, C.; Gómez, R.; Garg, D.; Hoarau, Y.; Bouquey, M.; Muller, R.; Ibarra-Gómez, R.; Bouquey, M.; Muller, R. . Atom transfer radical polymerization in continuous microflow: effect of process parameters . J. Flow. Chem. , 2014 . 4 92 -96 . DOI:10.1556/JFC-D-14-00003http://doi.org/10.1556/JFC-D-14-00003 .
Muller, M.; Cunningham, M. F.; Hutchinson, R. A. . Continuous atom transfer radical polymerization in a tubular reactor . Macromol. React. Eng. , 2008 . 2 31 -36 . DOI:10.1002/mren.200700029http://doi.org/10.1002/mren.200700029 .
Taylor, G. . Dispersion of soluble matter in solvent flowing slowly through a tube . Proc. Math. Phys. Eng. Sci. , 1997 . 219 186 -203. .
Russum, J. P.; Jones, C. W.; Schork, F. J. . Impact of flow regime on polydispersity in tubular RAFT miniemulsion polymerization . AlChE J. , 2006 . 52 1566 -1576 . DOI:10.1002/aic.10730http://doi.org/10.1002/aic.10730 .
Hu, X.; Zhu, N.; Fang, Z.; Guo, K. . Continuous flow ring-opening polymerizations . React. Chem. Eng. , 2017 . 2 20 -26 . DOI:10.1039/c6re00206dhttp://doi.org/10.1039/c6re00206d .
Danckwerts, P. V. Continuous flow systems. . Continuous flow systems. Distribution of residence times . Chem. Eng. Sci. , 1995 . 50 3855 DOI:10.1016/0009-2509(96)81810-0http://doi.org/10.1016/0009-2509(96)81810-0 .
Reis, M. H.; Varner, T. P.; Leibfarth, F. A. . The influence of residence time distribution on continuous-flow polymerization . Macromolecules , 2019 . 52 3551 -3557 . DOI:10.1021/acs.macromol.9b00454http://doi.org/10.1021/acs.macromol.9b00454 .
Song, Y.; Song, J.; Shang, M.; Xu, W.; Liu, S.; Wang, B.; Lu, Q.; Su, Y. . Hydrodynamics and mass transfer performance during the chemical oxidative polymerization of aniline in microreactors . Chem. Eng. J. , 2018 . 353 769 -780 . DOI:10.1016/j.cej.2018.07.166http://doi.org/10.1016/j.cej.2018.07.166 .
Tumarkin, E.; Kumacheva, E. . Microfluidic generation of microgels from synthetic and natural polymers . Chem. Soc. Rev. , 2009 . 38 2161 -2168 . DOI:10.1039/b809915bhttp://doi.org/10.1039/b809915b .
Xu, S. Q.; Nie, Z. H.; Seo, M.; Lewis, P.; Kumacheva, E.; Stone, H. A.; Garstecki, P.; Weibel, D. B.; Gitlin, I.; Whitesides, G. M. . Generation of monodisperse particles by using microfluidics: control over size, shape, and composition . Angew. Chem. Int. Ed. , 2005 . 44 724 -728 . DOI:10.1002/anie.200462226http://doi.org/10.1002/anie.200462226 .
Daniloska, V.; Tomovska, R.; Asua, J. M. . Designing tubular reactors to avoid clogging in high solids miniemulsion photopolymerization . Chem. Eng. J. , 2013 . 222 136 -141 . DOI:10.1016/j.cej.2013.02.015http://doi.org/10.1016/j.cej.2013.02.015 .
Liu, Z.; Lu, Y.; Yang, B.; Luo, G. . Controllable preparation of poly(butyl acrylate) by suspension polymerization in a coaxial capillary microreactor . Ind. Eng. Chem. Res. , 2011 . 50 11853 -11862 . DOI:10.1021/ie201497bhttp://doi.org/10.1021/ie201497b .
Corrigan, N.; Manahan, R.; Lew, Z. T.; Yeow, J.; Xu, J. T.; Boyer, C. . Copolymers with controlled molecular weight distributions and compositional gradients through flow polymerization . Macromolecules , 2018 . 51 4553 -4563 . DOI:10.1021/acs.macromol.8b00673http://doi.org/10.1021/acs.macromol.8b00673 .
Corrigan, N.; Zhernakov, L.; Hashim, M. H.; Xu, J.; Boyer, C. . Flow mediated metal-free PET-RAFT polymerisation for upscaled and consistent polymer production . React. Chem. Eng. , 2019 . 4 1216 -1228 . DOI:10.1039/C9RE00014Chttp://doi.org/10.1039/C9RE00014C .
Zhou, Y.; Gu, Y.; Jiang, K. M.; Chen, M. . Droplet-flow photopolymerization aided by computer: overcoming the challenges of viscosity and facilitating the generation of copolymer libraries . Macromolecules , 2019 . 52 5611 -5617 . DOI:10.1021/acs.macromol.9b00846http://doi.org/10.1021/acs.macromol.9b00846 .
Kohler, J. M.; Li, S. N.; Knauer, A. . Why is micro segmented flow particularly promising for the synthesis of nanomaterials? . Chem. Eng. Technol. , 2013 . 36 887 -899 . DOI:10.1002/ceat.201200695http://doi.org/10.1002/ceat.201200695 .
Noel, T.; Buchwald, S. L. . Cross-coupling in flow . Chem. Soc. Rev. , 2011 . 40 5010 -5029 . DOI:10.1039/c1cs15075hhttp://doi.org/10.1039/c1cs15075h .
Horie, T.; Sumino, M.; Tanaka, T.; Matsushita, Y.; Ichimura, T.; Yoshida, J. . Photodimerization of maleic anhydride in a microreactor without clogging . Org. Process Res. Dev. , 2010 . 14 405 -410 . DOI:10.1021/op900306zhttp://doi.org/10.1021/op900306z .
DesLauriers, P. J.; McDaniel, M. P.; Rohlfing, D. C.; Krishnaswamy, R. K.; Secora, S. J.; Benham, E. A.; Maeger, P. L.; Wolfe, A. R.; Sukhadia, A. M.; Beaulieu, B. B. . A comparative study of multimodal vs. bimodal polyethylene pipe resins for PE-100 applications . Polym. Eng. Sci. , 2005 . 45 1203 -1213. .
Kukalyekar, N.; Balzano, L.; Peters, G. W. M.; Rastogi, S.; Chadwick, J. C. . Characteristics of bimodal polyethylene prepared via co-immobilization of chromium and iron catalysts on an MgCl2-based support . Macromol. React. Eng. , 2009 . 3 448 -454 . DOI:10.1002/mren.200900021http://doi.org/10.1002/mren.200900021 .
Ramsey, B. L.; Pearson, R. M.; Beck, L. R.; Miyake, G. M. . Photoinduced organocatalyzed atom transfer radical polymerization using continuous flow . Macromolecules , 2017 . 50 2668 -2674 . DOI:10.1021/acs.macromol.6b02791http://doi.org/10.1021/acs.macromol.6b02791 .
Kuroki, A.; Martinez-Botella, I.; Hornung, C. H.; Martin, L.; Williams, E. G. L.; Locock, K. E. S.; Hartlieb, M.; Perrier, S. . Looped flow RAFT polymerization for multiblock copolymer synthesis . Polym. Chem. , 2017 . 8 3249 -3254 . DOI:10.1039/C7PY00630Fhttp://doi.org/10.1039/C7PY00630F .
Gong, H.; Zhao, Y.; Shen, X.; Lin, J.; Chen, M. . Organocatalyzed photocontrolled radical polymerization of semifluorinated (meth)acrylates driven by visible light . Angew. Chem. Int. Ed. , 2018 . 57 333 -337 . DOI:10.1002/anie.201711053http://doi.org/10.1002/anie.201711053 .
Morsbach, J.; Müller, A. H. E.; Berger-Nicoletti, E.; Frey, H. . Living polymer chains with predictable molecular weight and dispersity via carbanionic polymerization in continuous flow: mixing rate as a key parameter . Macromolecules , 2016 . 49 5043 -5050 . DOI:10.1021/acs.macromol.6b00975http://doi.org/10.1021/acs.macromol.6b00975 .
Endo, Y.; Furusawa, M.; Shimazaki, T.; Takahashi, Y.; Nakahara, Y.; Nagaki, A. . Molecular weight distribution of polymers produced by anionic polymerization enables mixability evaluation . Org. Process Res. Dev. , 2019 . 23 635 -640 . DOI:10.1021/acs.oprd.8b00403http://doi.org/10.1021/acs.oprd.8b00403 .
Nagaki, A.; Miyazaki, A.; Yoshida, J. I. . Synthesis of polystyrenes-poly(alkyl methacrylates) block copolymers via anionic polymerization using an integrated flow microreactor system . Macromolecules , 2010 . 43 8424 -8429 . DOI:10.1021/ma101663xhttp://doi.org/10.1021/ma101663x .
Nagaki, A.; Kawamura, K.; Suga, S.; Ando, T.; Sawamoto, M.; Yoshida, J. . Cation pool-initiated controlled/living polymerization using microsystems . J. Am. Chem. Soc. , 2004 . 126 14702 -14703 . DOI:10.1021/ja044879khttp://doi.org/10.1021/ja044879k .
Wang, E.; Chen, M. . Catalyst shuttling enabled by a thermoresponsive polymeric ligand: facilitating efficient cross-couplings with continuously recyclable ppm levels of palladium . Chem. Sci. , 2019 . 10 8331 -8337 . DOI:10.1039/C9SC02171Jhttp://doi.org/10.1039/C9SC02171J .
Zhong, F.; Zhou, Y.; Chen, M. . The influence of mixing on chain extension by photo-controlled/living radical polymerization under continuous-flow conditions . Polym. Chem. , 2019 . 10 4879 -4886 . DOI:10.1039/C9PY01063Ghttp://doi.org/10.1039/C9PY01063G .
Yeow, J.; Boyer, C. . Photoinitiated polymerization-induced self-assembly (photo-PISA): new insights and opportunities . Adv. Sci. , 2017 . 4 1700137 DOI:10.1002/advs.201700137http://doi.org/10.1002/advs.201700137 .
Warren, N. J.; Armes, S. P. . Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization . J. Am. Chem. Soc. , 2014 . 136 10174 -10185 . DOI:10.1021/ja502843fhttp://doi.org/10.1021/ja502843f .
Zeng, R. M.; Chen, Y.; Zhang, L.; Tan, J. B. . R-RAFT or Z-RAFT? Well-defined star block copolymer nano-objects prepared by RAFT-mediated polymerization-induced self-assembly . Macromolecules , 2020 . 53 1557 -1566 . DOI:10.1021/acs.macromol.0c00123http://doi.org/10.1021/acs.macromol.0c00123 .
Li, H. H.; Xu, Q. H.; Xu, X.; Zhang, L. F.; Cheng, Z. P.; Zhu, X. L. . One-step photocontrolled polymerization-induced self-assembly (photo-PISA) by using in situ bromine-iodine transformation reversible-deactivation radical polymerization . Polymers , 2020 . 12 150 DOI:10.3390/polym12010150http://doi.org/10.3390/polym12010150 .
Zaquen, N.; Yeow, J.; Junkers, T.; Boyer, C.; Zetterlund, P. B. . Visible light-mediated polymerization-induced self-assembly using continuous flow reactors . Macromolecules , 2018 . 51 5165 -5172 . DOI:10.1021/acs.macromol.8b00887http://doi.org/10.1021/acs.macromol.8b00887 .
Zaquen, N.; Azizi, W. A. A. W.; Yeow, J.; Kuchel, R. P.; Junkers, T.; Zetterlund, P. B.; Boyer, C. . Alcohol-based PISA in batch and flow: exploring the role of photoinitiators . Polym. Chem. , 2019 . 10 2406 -2414 . DOI:10.1039/C9PY00166Bhttp://doi.org/10.1039/C9PY00166B .
Quan, Q.; Gong, H.; Chen, M. . Preparation of semifluorinated poly(meth)acrylates by improved photo-controlled radical polymerization without the use of a fluorinated RAFT agent: facilitating surface fabrication with fluorinated materials . Polym. Chem. , 2018 . 9 4161 -4171 . DOI:10.1039/C8PY00990Bhttp://doi.org/10.1039/C8PY00990B .
Zaquen, N.; Zu, H.; Kadir, A. M. N. B. P. H. A.; Junkers, T.; Zetterlund, P. B.; Boyer, C. . Scalable aqueous reversible addition-fragmentation chain transfer photopolymerization-induced self-assembly of acrylamides for direct synthesis of polymer nanoparticles for potential drug delivery applications . ACS Appl. Polym. Mater. , 2019 . 1 1251 -1256. .
Liu, D.; Cai, W.; Zhang, L.; Boyer, C.; Tan, J. . Efficient photoinitiated polymerization-induced self-assembly with oxygen tolerance through fual-wavelength type I photoinitiation and photoinduced deoxygenation . Macromolecules , 2020 . 53 1212 -1223 . DOI:10.1021/acs.macromol.9b02710http://doi.org/10.1021/acs.macromol.9b02710 .
Lin, B.; Hedrick, J. L.; Park, N. H.; Waymouth, R. M. . Programmable high-throughput platform for the rapid and scalable synthesis of polyester and polycarbonate libraries . J. Am. Chem. Soc. , 2019 . 141 8921 -8927 . DOI:10.1021/jacs.9b02450http://doi.org/10.1021/jacs.9b02450 .
van de Walle, M.; De Bruycker, K.; Junkers, T.; Blinco, J. P.; Barner-Kowollik, C. . Scalable synthesis of sequence-defined oligomers via photoflow chemistry . ChemPhotoChem , 2019 . 3 225 -228 . DOI:10.1002/cptc.201900031http://doi.org/10.1002/cptc.201900031 .
Walsh, D. J.; Schinski, D. A.; Schneider, R. A.; Guironnet, D. . General route to design polymer molecular weight distributions through flow chemistry . Nat. Commun. , 2020 . 11 3094 DOI:10.1038/s41467-020-16874-6http://doi.org/10.1038/s41467-020-16874-6 .
Harper, K. C.; Moschetta, E. G.; Bordawekar, S. V.; Wittenberger, S. J. . A laser driven flow chemistry platform for scaling photochemical reactions with visible light . ACS Cent. Sci. , 2019 . 5 109 -115 . DOI:10.1021/acscentsci.8b00728http://doi.org/10.1021/acscentsci.8b00728 .
Laudadio, G.; Deng, Y.; van der Wal, K.; Ravelli, D.; Nuño, M.; Fagnoni, M.; Guthrie, D.; Sun, Y.; Noël, T. . C(sp3)-H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow . Science , 2020 . 369 92 -96 . DOI:10.1126/science.abb4688http://doi.org/10.1126/science.abb4688 .
Ge, L.; Yan, J.; Song, X.; Yan, M.; Ge, S.; Yu, J. . Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing . Biomaterials , 2012 . 33 1024 -1031 . DOI:10.1016/j.biomaterials.2011.10.065http://doi.org/10.1016/j.biomaterials.2011.10.065 .
Yeo, L. Y.; Chang, H. C.; Chan, P. P.; Friend, J. R. . Microfluidic devices for bioapplications . Small , 2011 . 7 12 -48 . DOI:10.1002/smll.201000946http://doi.org/10.1002/smll.201000946 .
Rubens, M.; Vrijsen, J. H.; Laun, J.; Junkers, T. . Precise polymer synthesis by autonomous self-optimizing flow reactors . Angew. Chem. Int. Ed. , 2019 . 58 3183 -3187 . DOI:10.1002/anie.201810384http://doi.org/10.1002/anie.201810384 .
Gentekos, D. T.; Sifri, R. J.; Fors, B. P. . Controlling polymer properties through the shape of the molecular-weight distribution . Nat. Rev. Mater. , 2019 . 4 761 -774 . DOI:10.1038/s41578-019-0138-8http://doi.org/10.1038/s41578-019-0138-8 .
Whitfield, R.; Truong, N. P.; Messmer, D.; Parkatzidis, K.; Rolland, M.; Anastasaki, A. . Tailoring polymer dispersity and shape of molecular weight distributions: methods and applications . Chem. Sci. , 2019 . 10 8724 -8734 . DOI:10.1039/C9SC03546Jhttp://doi.org/10.1039/C9SC03546J .
0
Views
9
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution