a.State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
b.Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
rliu@ecust.edu.cn
Scan for full text
Gui-Xue Xia, Yue-Ming Wu, Yu-Fang Bi, et al. Antimicrobial Properties and Application of Polysaccharides and Their Derivatives. [J]. Chinese Journal of Polymer Science 39(2):133-146(2021)
Gui-Xue Xia, Yue-Ming Wu, Yu-Fang Bi, et al. Antimicrobial Properties and Application of Polysaccharides and Their Derivatives. [J]. Chinese Journal of Polymer Science 39(2):133-146(2021) DOI: 10.1007/s10118-021-2506-2.
With the quick emergence of antibiotic resistance and multi-drug resistant microbes, more and more attention has been paid to the development of new antimicrobial agents that have potential to take the challenge. Polysaccharides, as one of the major classes of biopolymers, were explored for their antimicrobial properties and applications, owing to their easy accessibility, biocompatibility and easy modification. Polysaccharides and their derivatives have variable demonstrations and applications as antimicrobial agents and antimicrobial biomaterials. A variety of polysaccharides, such as chitosan, dextran, hyaluronic acid, cellulose, other plant/animal-derived polysaccharides and their derivatives have been explored for antimicrobial applications. We expect that this review can summarize the important progress of this field and inspire new concepts, which will contribute to the development of novel antimicrobial agents in combating antibiotic resistance and drug-resistant antimicrobial infections.
AntimicrobialDrug resistancePolysaccharidesPolysaccharide derivativesChitosan
Allegranzi, B.; Nejad, S. B.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. . Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis . The Lancet , 2011 . 377 228 -241 . DOI:10.1016/S0140-6736(10)61458-4http://doi.org/10.1016/S0140-6736(10)61458-4 .
Worthington, R. J.; Melander, C. . Combination approaches to combat multidrug-resistant bacteria . Trends Biotechnol. , 2013 . 31 177 -184 . DOI:10.1016/j.tibtech.2012.12.006http://doi.org/10.1016/j.tibtech.2012.12.006 .
Brown, E. D.; Wright, G. D. . Antibacterial drug discovery in the resistance era . Nature , 2016 . 529 336 -343 . DOI:10.1038/nature17042http://doi.org/10.1038/nature17042 .
Tang, Q.; Song, P.; Li, J.; Kong, F.; Sun, L.; Xu, L. . Control of antibiotic resistance in China must not be delayed: the current state of resistance and policy suggestions for the government, medical facilities, and patients . BioSci. Trends , 2016 . 10 1 -6 . DOI:10.5582/bst.2016.01034http://doi.org/10.5582/bst.2016.01034 .
Imberty, A.; Varrot, A. . Microbial recognition of human cell surface glycoconjugates . Curr. Opin. Struct. Biol. , 2008 . 18 567 -576 . DOI:10.1016/j.sbi.2008.08.001http://doi.org/10.1016/j.sbi.2008.08.001 .
Bishop, J. R.; Gagneux, P. . Evolution of carbohydrate antigens--microbial forces shaping host glycomes? . Glycobiology , 2007 . 17 23R -34R . DOI:10.1093/glycob/cwm005http://doi.org/10.1093/glycob/cwm005 .
Yu, Y.; Shen, M.; Song, Q.; Xie, J. . Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review . Carbohydr. Polym. , 2018 . 183 91 -101 . DOI:10.1016/j.carbpol.2017.12.009http://doi.org/10.1016/j.carbpol.2017.12.009 .
Perinelli, D. R.; Fagioli, L.; Campana, R.; Lam, J. K. W.; Baffone, W.; Palmieri, G. F.; Casettari, L.; Bonacucina, G. . Chitosan-based nanosystems and their exploited antimicrobial activity . Eur. J. Pharm. Sci. , 2018 . 117 8 -20 . DOI:10.1016/j.ejps.2018.01.046http://doi.org/10.1016/j.ejps.2018.01.046 .
Li, Y. T.; Chen, B. J.; Wu, W. D.; Ge, K.; Wei, X. Y.; Kong, L. M.; Xie, Y. Y.; Gu, J. P.; Zhang, J. C.; Zhou, T. . Antioxidant and antimicrobial evaluation of carboxymethylated and hydroxamated degraded polysaccharides from Sargassum fusiforme . Int. J. Biol. Macromol. , 2018 . 118 1550 -1557 . DOI:10.1016/j.ijbiomac.2018.06.196http://doi.org/10.1016/j.ijbiomac.2018.06.196 .
No, H. K.; Park, N. Y.; Lee, S. H.; Meyers, S. P. . Antibacterial activity of chitosans and chitosan oligomers with different molecular weights . Int. J. Food Microbiol. , 2002 . 74 65 -72 . DOI:10.1016/S0168-1605(01)00717-6http://doi.org/10.1016/S0168-1605(01)00717-6 .
Synowiecki, J.; Al-Khateeb, N. A. . Production, properties, and some new applications of chitin and its derivatives . Crit. Rev. Food Sci. Nutr. , 2003 . 43 145 -171 . DOI:10.1080/10408690390826473http://doi.org/10.1080/10408690390826473 .
Muzzarelli, R. A. A. . Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone . Carbohydr. Polym. , 2009 . 76 167 -182 . DOI:10.1016/j.carbpol.2008.11.002http://doi.org/10.1016/j.carbpol.2008.11.002 .
Peng, X. H.; Zhang, L. . Surface fabrication of hollow microspheres from N-methylated chitosan cross-linked with gultaraldehyde . Langmuir , 2005 . 21 1091 -1095 . DOI:10.1021/la047689whttp://doi.org/10.1021/la047689w .
Allan, C. R.; Hadwiger, L. A. . The fungicidal effect of chitosan on fungi of varying cell wall composition . Exp. Mycol. , 1979 . 3 285 -287 . DOI:10.1016/S0147-5975(79)80054-7http://doi.org/10.1016/S0147-5975(79)80054-7 .
Palma-Guerrero, J.; Lopez-Jimenez, J. A.; Pérez-Berná, A. J.; Huang, I. C.; Jansson, H. B.; Salinas, J.; Villalaín, J.; Read, N. D.; Lopez-Llorca, L. V. . Membrane fluidity determines sensitivity of filamentous fungi to chitosan . Mol. Microbiol. , 2010 . 75 1021 -1032 . DOI:10.1111/j.1365-2958.2009.07039.xhttp://doi.org/10.1111/j.1365-2958.2009.07039.x .
Young, D. H.; Kohle, H.; Kauss, H. . Effect of chitosan on membrane permeability of suspension-cultured glycine max and phaseolus vulgaris cells . Plant Physiology , 1982 . 70 1449 -1454 . DOI:10.1104/pp.70.5.1449http://doi.org/10.1104/pp.70.5.1449 .
Helander, I. M.; Nurmiaho-Lassila, E. L.; Ahvenainen, R.; Rhoades, J.; Roller, S . Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria . Int. J. Food Microbiol. , 2001 . 71 235 -244 . DOI:10.1016/S0168-1605(01)00609-2http://doi.org/10.1016/S0168-1605(01)00609-2 .
Muzzarelli, R.; Jeuniaux, C.; Gooday, G. W. Chitin in nature and technology. Springer US, New York, 1986.
Krajewska, B.; Wydro, P.; Jańczyk, A. . Probing the modes of antibacterial activity of chitosan. Effects of pH and molecular weight on chitosan interactions with membrane lipids in langmuir films . Biomacromolecules , 2011 . 12 4144 -4152 . DOI:10.1021/bm2012295http://doi.org/10.1021/bm2012295 .
Rabea, E. I.; Badawy, M. E. T.; Stevens, C. V.; Smagghe, G.; Steurbaut, W. . Chitosan as antimicrobial agent: applications and mode of action . Biomacromolecules , 2003 . 4 1457 -1465 . DOI:10.1021/bm034130mhttp://doi.org/10.1021/bm034130m .
Kong, M.; Chen, X. G.; Xing, K.; Park, H. J. . Antimicrobial properties of chitosan and mode of action: a state of the art review . Int. J. Food Microbiol. , 2010 . 144 51 -63 . DOI:10.1016/j.ijfoodmicro.2010.09.012http://doi.org/10.1016/j.ijfoodmicro.2010.09.012 .
Li, R.; Guo, Z. . Synthesis, characterization and antifungal properties of N,O-(acyl)-N-(trimethyl) chitosan chloride . e-Polymers , 2010 . 10 1273 -1278. .
Mohamed, N. A.; Al-mehbad, N. Y . Novel terephthaloyl thiourea cross-linked chitosan hydrogels as antibacterial and antifungal agents . Int. J. Biol. Macromol , 2013 . 57 111 -117 . DOI:10.1016/j.ijbiomac.2013.03.007http://doi.org/10.1016/j.ijbiomac.2013.03.007 .
Chen, Y.; Li, J.; Li, Q.; Shen, Y.; Ge, Z.; Zhang, W.; Chen, S. . Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan . Carbohydr. Polym. , 2016 . 143 246 -253 . DOI:10.1016/j.carbpol.2016.01.073http://doi.org/10.1016/j.carbpol.2016.01.073 .
Tan, H.; Peng, Z.; Li, Q.; Xu, X.; Guo, S.; Tang, T. . The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant staphylococcus . Biomaterials , 2012 . 33 365 -377 . DOI:10.1016/j.biomaterials.2011.09.084http://doi.org/10.1016/j.biomaterials.2011.09.084 .
Sajomsang, W.; Gonil, P.; Saesoo, S. . Synthesis and antibacterial activity of methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride . Eur. Polym. J. , 2009 . 45 2319 -2328 . DOI:10.1016/j.eurpolymj.2009.05.009http://doi.org/10.1016/j.eurpolymj.2009.05.009 .
Sahariah, P.; Snorradottir, B. S.; Hjalmarsdottir, M. A.; Sigurjonsson, O. E.; Masson, M. . Experimental design for determining quantitative structure activity relationship for antibacterial chitosan derivatives . J. Mater. Chem. B , 2016 . 4 4762 -4770 . DOI:10.1039/C6TB00546Bhttp://doi.org/10.1039/C6TB00546B .
Zhao, X.; Li, P.; Guo, B.; Ma, P. X. . Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering . Acta Biomater. , 2015 . 26 236 -248 . DOI:10.1016/j.actbio.2015.08.006http://doi.org/10.1016/j.actbio.2015.08.006 .
Guo, Z.; Chen, R.; Xing, R.; Liu, S.; Yu, H.; Wang, P.; Li, C.; Li, P . Novel derivatives of chitosan and their antifungal activities in vitro . Carbohydr. Res. , 2006 . 341 351 -354 . DOI:10.1016/j.carres.2005.11.002http://doi.org/10.1016/j.carres.2005.11.002 .
Rabea, E. I.; Badawy, M. E.; Rogge, T. M.; Stevens, C. V.; Hofte, M.; Steurbaut, W.; Smagghe, G. . Insecticidal and fungicidal activity of new synthesized chitosan derivatives . Pest Manage. Sci. , 2005 . 61 951 -960 . DOI:10.1002/ps.1085http://doi.org/10.1002/ps.1085 .
Dragostin, O. M.; Samal, S. K.; Dash, M.; Lupascu, F.; Panzariu, A.; Tuchilus, C.; Ghetu, N.; Danciu, M.; Dubruel, P.; Pieptu, D.; Vasile, C.; Tatia, R.; Profire, L. . New antimicrobial chitosan derivatives for wound dressing applications . Carbohydr. Polym. , 2016 . 141 28 -40 . DOI:10.1016/j.carbpol.2015.12.078http://doi.org/10.1016/j.carbpol.2015.12.078 .
Prichystalova, H.; Almonasy, N.; Abdel-Mohsen, A. M.; Abdel-Rahman, R. M.; Fouda, M. M.; Vojtova, L.; Kobera, L.; Spotz, Z.; Burgert, L.; Jancar, J. . Synthesis, characterization and antibacterial activity of new fluorescent chitosan derivatives . Int. J. Biol. Macromol. , 2014 . 65 234 -240 . DOI:10.1016/j.ijbiomac.2014.01.050http://doi.org/10.1016/j.ijbiomac.2014.01.050 .
Zhang, J.; Tan, W.; Wei, L.; Chen, Y.; Mi, Y.; Sun, X.; Li, Q.; Dong, F.; Guo, Z. . Synthesis of urea-functionalized chitosan derivatives for potential antifungal and antioxidant applications . Carbohydr. Polym. , 2019 . 215 108 -118 . DOI:10.1016/j.carbpol.2019.03.067http://doi.org/10.1016/j.carbpol.2019.03.067 .
Kritchenkov, A. S.; Egorov, A. R.; Kurasova, M. N.; Volkova, O. V.; Meledina, T. V.; Lipkan, N. A.; Tskhovrebov, A. G.; Kurliuk, A. V.; Shakola, T. V.; Dysin, A. P.; Egorov, M. Y.; Savicheva, E. A.; Dos, Santos W. M. . Novel non-toxic high efficient antibacterial azido chitosan derivatives with potential application in food coatings . Food Chem. , 2019 . 301 125247 DOI:10.1016/j.foodchem.2019.125247http://doi.org/10.1016/j.foodchem.2019.125247 .
Pei, L.; Cai, Z.; Shang, S.; Song, Z. . Synthesis and antibacterial activity of alkylated chitosan under basic ionic liquid conditions . J. Appl. Polym. Sci. , 2014 . 131 2540 -2540. .
Sadeghi, A. M. M.; Dorkoosh, F. A.; Avadi, M. R.; Saadat, P.; Rafiee-Tehrani, M.; Junginger, H. E. . Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods . Int. J. Pharm. , 2008 . 355 299 -306 . DOI:10.1016/j.ijpharm.2007.11.052http://doi.org/10.1016/j.ijpharm.2007.11.052 .
Marangon, C. A.; Martins, V. C. A.; Ling, M. H.; Melo, C. C.; Plepis, A. M. G.; Meyer, R. L.; Nitschke, M. . Combination of rhamnolipid and chitosan in nanoparticles boosts their antimicrobial efficacy . ACS Appl. Mater. Interfaces , 2020 . 12 5488 -5499 . DOI:10.1021/acsami.9b19253http://doi.org/10.1021/acsami.9b19253 .
Omidi, S.; Kakanejadifard, A. . Modification of chitosan and chitosan nanoparticle by long chain pyridinium compounds: synthesis, characterization, antibacterial, and antioxidant activities . Carbohydr. Polym. , 2019 . 208 477 -485 . DOI:10.1016/j.carbpol.2018.12.097http://doi.org/10.1016/j.carbpol.2018.12.097 .
Martin, I.; Ruysschaerti, J. M.; Sanders, D.; Giffard, C. J. . Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan . Eur. J. Biochem. , 1996 . 239 156 -164 . DOI:10.1111/j.1432-1033.1996.0156u.xhttp://doi.org/10.1111/j.1432-1033.1996.0156u.x .
Cai, J.; Yang, J.; Wang, C.; Hu, Y.; Lin, J.; Fan, L. . Structural characterization and antimicrobial activity of chitosan (CS-40)/nisin complexes . J. Appl. Polym. Sci. , 2010 . 116 3702 -3707. .
Zhu, C.; Zou, S.; Rao, Z.; Min, L.; Liu, M.; Liu, L.; Fan, L. . Preparation and characterization of hydroxypropyl chitosan modified with nisin . Int. J. Biol. Macromol. , 2017 . 105 1017 -1024 . DOI:10.1016/j.ijbiomac.2017.07.136http://doi.org/10.1016/j.ijbiomac.2017.07.136 .
Min, L.; Liu, M.; Zhu, C.; Liu, L.; Rao, Z.; Fan, L. . Synthesis and in vitro antimicrobial and antioxidant activities of quaternary ammonium chitosan modified with nisin . J. Biomater. Sci. Polym. Ed. , 2017 . 28 2034 -2052 . DOI:10.1080/09205063.2017.1368615http://doi.org/10.1080/09205063.2017.1368615 .
Sahariah, P.; Sorensen, K. K.; Hjalmarsdottir, M. A.; Sigurjonsson, O. E.; Jensen, K. J.; Masson, M.; Thygesen, M. B. . Antimicrobial peptide shows enhanced activity and reduced toxicity upon grafting to chitosan polymers . Chem. Commun. , 2015 . 51 11611 -11614 . DOI:10.1039/C5CC04010Hhttp://doi.org/10.1039/C5CC04010H .
Su, Y.; Tian, L.; Yu, M.; Gao, Q.; Wang, D.; Xi, Y.; Yang, P.; Lei, B.; Ma, P. X.; Li, P. . Cationic peptidopolysaccharides synthesized by 'click' chemistry with enhanced broad-spectrum antimicrobial activities . Polym. Chem. , 2017 . 8 3788 -3800 . DOI:10.1039/C7PY00528Hhttp://doi.org/10.1039/C7PY00528H .
Zhou, C.; Wang, M.; Zou, K.; Chen, J.; Zhu, Y.; Du, J. . Antibacterial polypeptide-grafted chitosan-based nanocapsules as an “armed” carrier of anticancer and antiepileptic drugs . ACS Macro Lett. , 2013 . 2 1021 -1025 . DOI:10.1021/mz400480zhttp://doi.org/10.1021/mz400480z .
Li, P.; Zhou, C.; Rayatpisheh, S.; Ye, K.; Poon, Y. F.; Hammond, P. T.; Duan, H.; Chan-Park, M. B. . Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity . Adv. Mater. , 2012 . 24 4130 -4137 . DOI:10.1002/adma.201104186http://doi.org/10.1002/adma.201104186 .
Hou, Z.; Shankar, Y. V.; Liu, Y.; Ding, F.; Subramanion, J. L.; Ravikumar, V.; Zamudio-Vazquez, R.; Keogh, D.; Lim, H.; Tay, M. Y. F.; Bhattacharjya, S.; Rice, S. A.; Shi, J.; Duan, H.; Liu, X. W.; Mu, Y.; Tan, N. S.; Tam, K. C.; Pethe, K.; Chan-Park, M. B. . Nanoparticles of short cationic peptidopolysaccharide self-assembled by hydrogen bonding with antibacterial effect against multidrug-resistant bacteria . ACS Appl. Mater. Interfaces , 2017 . 9 38288 -38303 . DOI:10.1021/acsami.7b12120http://doi.org/10.1021/acsami.7b12120 .
Tsiligianni, M.; Papavergou, E.; Soultos, N.; Magra, T.; Savvaidis, I. N. . Effect of chitosan treatments on quality parameters of fresh refrigerated swordfish (Xiphias gladius) steaks stored in air and under vacuum conditions . Int. J. Food Microbiol. , 2012 . 159 101 -106 . DOI:10.1016/j.ijfoodmicro.2012.08.010http://doi.org/10.1016/j.ijfoodmicro.2012.08.010 .
Shankar, S.; Rhim, J. W. . Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films . Food Hydrocolloids , 2018 . 82 116 -123 . DOI:10.1016/j.foodhyd.2018.03.054http://doi.org/10.1016/j.foodhyd.2018.03.054 .
Siripatrawan, U.; Kaewklin, P. . Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging . Food Hydrocolloids , 2018 . 84 125 -134 . DOI:10.1016/j.foodhyd.2018.04.049http://doi.org/10.1016/j.foodhyd.2018.04.049 .
Cui, H.; Wu, J.; Li, C.; Lin, L. . Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles . LWT--Food Sci. Technol. , 2017 . 81 233 -242 . DOI:10.1016/j.lwt.2017.04.003http://doi.org/10.1016/j.lwt.2017.04.003 .
Fu, J.; Ji, J.; Yuan, W.; Shen, J. . Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan . Biomaterials , 2005 . 26 6684 -6692 . DOI:10.1016/j.biomaterials.2005.04.034http://doi.org/10.1016/j.biomaterials.2005.04.034 .
Du, X.; Liu, Y.; Yan, H.; Rafique, M.; Li, S.; Shan, X.; Wu, L.; Qiao, M.; Kong, D.; Wang, L. . Anti-infective and pro-coagulant chitosan-based hydrogel tissue adhesive for sutureless wound closure . Biomacromolecules , 2020 . 21 1243 -1253 . DOI:10.1021/acs.biomac.9b01707http://doi.org/10.1021/acs.biomac.9b01707 .
Yu, Q.; Chen, H. . Smart antibacterial surfaces with switchable function to kill and release bacteria . Acta Polymerica Sinica (in Chinese) , 2020 . 51 319 -325. .
Wei, T.; Yu, Q.; Chen, H. . Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way . Adv. Healthcare Mater. , 2019 . 8 e1801381 DOI:10.1002/adhm.201801381http://doi.org/10.1002/adhm.201801381 .
Masood, N.; Ahmed, R.; Tariq, M.; Ahmed, Z.; Masoud, M. S.; Ali, I.; Asghar, R.; Andleeb, A.; Hasan, A. . Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits . Int. J. Pharm. , 2019 . 559 23 -36 . DOI:10.1016/j.ijpharm.2019.01.019http://doi.org/10.1016/j.ijpharm.2019.01.019 .
Qu, J.; Zhao, X.; Liang, Y.; Xu, Y.; Ma, P. X.; Guo, B. . Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing . Chem. Eng. J. , 2019 . 362 548 -560 . DOI:10.1016/j.cej.2019.01.028http://doi.org/10.1016/j.cej.2019.01.028 .
Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P. X. . Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing . Biomaterials , 2017 . 122 34 -47 . DOI:10.1016/j.biomaterials.2017.01.011http://doi.org/10.1016/j.biomaterials.2017.01.011 .
Zhao, X.; Guo, B.; Wu, H.; Liang, Y.; Ma, P. X. . Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing . Nat. Commun. , 2018 . 9 2784 DOI:10.1038/s41467-018-04998-9http://doi.org/10.1038/s41467-018-04998-9 .
Li, P.; Poon, Y. F.; Li, W.; Zhu, H. Y.; Yeap, S. H.; Cao, Y.; Qi, X.; Zhou, C.; Lamrani, M.; Beuerman, R. W. . A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability . Nat. Mater. , 2011 . 10 149 -156 . DOI:10.1038/nmat2915http://doi.org/10.1038/nmat2915 .
Tripodo, G.; Trapani, A.; Rosato, A.; Di Franco, C.; Tamma, R.; Trapani, G.; Ribatti, D.; Mandracchia, D. . Hydrogels for biomedical applications from glycol chitosan and PEG diglycidyl ether exhibit pro-angiogenic and antibacterial activity . Carbohydr. Polym. , 2018 . 198 124 -130 . DOI:10.1016/j.carbpol.2018.06.061http://doi.org/10.1016/j.carbpol.2018.06.061 .
Adeli, H.; Khorasani, M. T.; Parvazinia, M. . Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay . Int. J. Biol. Macromol. , 2019 . 122 238 -254 . DOI:10.1016/j.ijbiomac.2018.10.115http://doi.org/10.1016/j.ijbiomac.2018.10.115 .
Xia, G.; Lang, X.; Kong, M.; Cheng, X.; Liu, Y.; Feng, C.; Chen, X. . Surface fluid-swellable chitosan fiber as the wound dressing material . Carbohydr. Polym. , 2016 . 136 860 -866 . DOI:10.1016/j.carbpol.2015.09.074http://doi.org/10.1016/j.carbpol.2015.09.074 .
Lin, W. C.; Lien, C. C.; Yeh, H. J.; Yu, C. M.; Hsu, S. H. . Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications . Carbohydr. Polym. , 2013 . 94 603 -611 . DOI:10.1016/j.carbpol.2013.01.076http://doi.org/10.1016/j.carbpol.2013.01.076 .
Yin, M.; Wang, Y.; Zhang, Y.; Ren, X.; Qiu, Y.; Huang, T. S. . Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties . Carbohydr. Polym. , 2020 . 232 115823 DOI:10.1016/j.carbpol.2019.115823http://doi.org/10.1016/j.carbpol.2019.115823 .
Gupta, D.; Haile, A. . Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan . Carbohydr. Polym. , 2007 . 69 164 -171 . DOI:10.1016/j.carbpol.2006.09.023http://doi.org/10.1016/j.carbpol.2006.09.023 .
Ye, W.; Leung, M. F.; Xin, J.; Kwong, T. L.; Lee, D. K. L.; Li, P. . Novel core-shell particles with poly(n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles . Polymer , 2005 . 46 10538 -10543 . DOI:10.1016/j.polymer.2005.08.019http://doi.org/10.1016/j.polymer.2005.08.019 .
Arshad, N.; Zia, K. M.; Jabeen, F.; Anjum, M. N.; Akram, N.; Zuber, M. . Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish . Int. J. Biol. Macromol. , 2018 . 111 485 -492 . DOI:10.1016/j.ijbiomac.2018.01.032http://doi.org/10.1016/j.ijbiomac.2018.01.032 .
Huang, G.; Huang, H. . Application of dextran as nanoscale drug carriers . Nanomedicine , 2018 . 13 3149 -3158 . DOI:10.2217/nnm-2018-0331http://doi.org/10.2217/nnm-2018-0331 .
O'Connor, N. A.; Abugharbieh, A.; Yasmeen, F.; Buabeng, E.; Mathew, S.; Samaroo, D.; Cheng, H. P. . The crosslinking of polysaccharides with polyamines and dextran-polyallylamine antibacterial hydrogels . Int. J. Biol. Macromol. , 2015 . 72 88 -93 . DOI:10.1016/j.ijbiomac.2014.08.003http://doi.org/10.1016/j.ijbiomac.2014.08.003 .
Tuchilus, C. G.; Nichifor, M.; Mocanu, G.; Stanciu, M. C. . Antimicrobial activity of chemically modified dextran derivatives . Carbohydr. Polym. , 2017 . 161 181 -186 . DOI:10.1016/j.carbpol.2017.01.006http://doi.org/10.1016/j.carbpol.2017.01.006 .
Amiri, S.; Ramezani, R.; Aminlari, A. M. . Antibacterial activity of dextran-conjugated lysozyme against Escherichia coli and Staphylococcus aureus in cheese curd . J. Food Prot. , 2008 . 71 411 -415 . DOI:10.4315/0362-028X-71.2.411http://doi.org/10.4315/0362-028X-71.2.411 .
Hoque, J.; Haldar, J. . Direct synthesis of dextran-based antibacterial hydrogels for extended release of biocides and eradication of topical biofilms . ACS Appl. Mater. Interfaces , 2017 . 9 15975 -15985 . DOI:10.1021/acsami.7b03208http://doi.org/10.1021/acsami.7b03208 .
Chen, Y.; Yu, L.; Zhang, B.; Feng, W.; Xu, M.; Gao, L.; Liu, N.; Wang, Q.; Huang, X.; Li, P.; Huang, W. . Design and synthesis of biocompatible, hemocompatible, and highly selective antimicrobial cationic peptidopolysaccharides via click chemistry . Biomacromolecules , 2019 . 20 2230 -2240 . DOI:10.1021/acs.biomac.9b00179http://doi.org/10.1021/acs.biomac.9b00179 .
Radaeva, I. F.; Kostina, G. A.; Zmievskii, A. V. . Hyaluronic acid: biological role, structure, synthesis, isolation, purification, and applications . Appl. Biochem. Microbiol. , 1997 . 33 111 -115. .
Drago, L.; Cappelletti, L.; de Vecchi, E.; Pignataro, L.; Torretta, S.; Mattina, R. . Antiadhesive and antibiofilm activity of hyaluronic acid against bacteria responsible for respiratory tract infections . APMIS , 2014 . 122 1013 -1019 . DOI:10.1111/apm.12254http://doi.org/10.1111/apm.12254 .
Lin, Z.; Wu, T.; Wang, W.; Li, B.; Wang, M.; Chen, L.; Xia, H.; Zhang, T. . Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound . Int. J. Biol. Macromol. , 2019 . 140 330 -342 . DOI:10.1016/j.ijbiomac.2019.08.087http://doi.org/10.1016/j.ijbiomac.2019.08.087 .
Lequeux, I.; Ducasse, E.; Jouenne, T.; Thebault, P. . Addition of antimicrobial properties to hyaluronic acid by grafting of antimicrobial peptide . Eur. Polym. J. , 2014 . 51 182 -190 . DOI:10.1016/j.eurpolymj.2013.11.012http://doi.org/10.1016/j.eurpolymj.2013.11.012 .
Yu, Q. H.; Zhang, C. M.; Jiang, Z. W.; Qin, S. Y.; Zhang, A. Q. . Mussel-inspired adhesive polydopamine-functionalized hyaluronic acid hydrogel with potential bacterial inhibition . Glob. Chall. , 2020 . 4 1900068 DOI:10.1002/gch2.201900068http://doi.org/10.1002/gch2.201900068 .
Silvestro, I.; Lopreiato, M.; Scotto d'Abusco, A.; di Lisio, V.; Martinelli, A.; Piozzi, A.; Francolini, I. . Hyaluronic acid reduces bacterial fouling and promotes fibroblasts' adhesion onto chitosan 2D-wound dressings . Int. J. Mol. Sci. , 2020 . 21 2070 DOI:10.3390/ijms21062070http://doi.org/10.3390/ijms21062070 .
Zhang, L.; Yan, P.; Li, Y.; He, X.; Dai, Y.; Tan, Z. . Preparation and antibacterial activity of a cellulose-based schiff base derived from dialdehyde cellulose and L-lysine . Ind. Crops Prod. , 2020 . 145 112126 DOI:10.1016/j.indcrop.2020.112126http://doi.org/10.1016/j.indcrop.2020.112126 .
He, X.; Yang, Y.; Song, H.; Wang, S.; Zhao, H.; Wei, D. . Polyanionic composite membranes based on bacterial cellulose and amino acid for antimicrobial application . ACS Appl. Mater. Interfaces , 2020 . 12 14784 -14796 . DOI:10.1021/acsami.9b20733http://doi.org/10.1021/acsami.9b20733 .
He, W.; Zhang, Z.; Zheng, Y.; Qiao, S.; Xie, Y.; Sun, Y.; Qiao, K.; Feng, Z.; Wang, X.; Wang, J. . Preparation of aminoalkyl-grafted bacterial cellulose membranes with improved antimicrobial properties for biomedical applications . J. Biomed. Mater. Res. A , 2020 . 108 1086 -1098 . DOI:10.1002/jbm.a.36884http://doi.org/10.1002/jbm.a.36884 .
Wu, Y.; Li, Q.; Zhang, X.; Li, Y.; Li, B.; Liu, S. . Cellulose-based peptidopolysaccharides as cationic antimicrobial package films . Int. J. Biol. Macromol. , 2019 . 128 673 -680 . DOI:10.1016/j.ijbiomac.2019.01.172http://doi.org/10.1016/j.ijbiomac.2019.01.172 .
Palanisamy, S.; Vinosha, M.; Marudhupandi, T.; Rajasekar, P.; Prabhu, N. M. . In vitro antioxidant and antibacterial activity of sulfated polysaccharides isolated from Spatoglossum asperum . Carbohydr. Polym. , 2017 . 170 296 -304 . DOI:10.1016/j.carbpol.2017.04.085http://doi.org/10.1016/j.carbpol.2017.04.085 .
Zhu, H.; Sheng, K.; Yan, E.; Qiao, J.; Lv, F. . Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate . Int. J. Biol. Macromol. , 2012 . 50 840 -843 . DOI:10.1016/j.ijbiomac.2011.11.016http://doi.org/10.1016/j.ijbiomac.2011.11.016 .
Meng, Q.; Li, Y.; Xiao, T.; Zhang, L.; Xu, D. . Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma juglandis fructus . Int. J. Biol. Macromol. , 2017 . 105 431 -437 . DOI:10.1016/j.ijbiomac.2017.07.062http://doi.org/10.1016/j.ijbiomac.2017.07.062 .
Ma, Y. L.; Zhu, D. Y.; Thakur, K.; Wang, C. H.; Wang, H.; Ren, Y. F.; Zhang, J. G.; Wei, Z. J. . Antioxidant and antibacterial evaluation of polysaccharides sequentially extracted from onion (Allium cepa L.) . Int. J. Biol. Macromol. , 2018 . 111 92 -101 . DOI:10.1016/j.ijbiomac.2017.12.154http://doi.org/10.1016/j.ijbiomac.2017.12.154 .
Li, X. L.; Thakur, K.; Zhang, Y. Y.; Tu, X. F.; Zhang, Y. S.; Zhu, D. Y.; Zhang, J. G.; Wei, Z. J. . Effects of different chemical modifications on the antibacterial activities of polysaccharides sequentially extracted from peony seed dreg . Int. J. Biol. Macromol. , 2018 . 116 664 -675 . DOI:10.1016/j.ijbiomac.2018.05.082http://doi.org/10.1016/j.ijbiomac.2018.05.082 .
Wang, Z.; Xue, R.; Cui, J.; Wang, J.; Fan, W.; Zhang, H.; Zhan, X. . Antibacterial activity of a polysaccharide produced from Chaetomium globosum CGMCC 6882 . Int. J. Biol. Macromol. , 2019 . 125 376 -382 . DOI:10.1016/j.ijbiomac.2018.11.248http://doi.org/10.1016/j.ijbiomac.2018.11.248 .
Wang, H. B. . Cellulase-assisted extraction and antibacterial activity of polysaccharides from the dandelion Taraxacum officinale . Carbohydr. Polym. , 2014 . 103 140 -142 . DOI:10.1016/j.carbpol.2013.12.029http://doi.org/10.1016/j.carbpol.2013.12.029 .
Lu, H.; Gao, Y.; Shan, H.; Lin, Y. . Preparation and antibacterial activity studies of degraded polysaccharide selenide from Enteromorpha prolifera . Carbohydr. Polym. , 2014 . 107 98 -102 . DOI:10.1016/j.carbpol.2014.02.045http://doi.org/10.1016/j.carbpol.2014.02.045 .
Vishwakarma, J.; Vavilala, S. L. . Evaluating the antibacterial and antibiofilm potential of sulphated polysaccharides extracted from green algae Chlamydomonas reinhardtii . J. Appl. Microbiol. , 2019 . 127 1004 -1017 . DOI:10.1111/jam.14364http://doi.org/10.1111/jam.14364 .
Khlusov, I.; Avdeeva, E.; Shupletsova, V.; Khaziakhmatova, O.; Litvinova, L.; Porokhova, E.; Reshetov, Y.; Zvereva, I.; Mushtovatova, L.; Karpova, M.; Guryev, A.; Sukhodolo, I.; Belousov, M. . Comparative in vitro evaluation of antibacterial and osteogenic activity of polysaccharide and flavonoid fractions isolated from the leaves of Saussurea controversa . Molecules , 2019 . 24 3680 DOI:10.3390/molecules24203680http://doi.org/10.3390/molecules24203680 .
Hajji, M.; Hamdi, M.; Sellimi, S.; Ksouda, G.; Laouer, H.; Li, S.; Nasri, M. . Structural characterization, antioxidant and antibacterial activities of a novel polysaccharide from Periploca laevigata root barks . Carbohydr. Polym. , 2019 . 206 380 -388 . DOI:10.1016/j.carbpol.2018.11.020http://doi.org/10.1016/j.carbpol.2018.11.020 .
Wang, C.; Sun, Z.; Liu, Y.; Zheng, D.; Liu, X.; Li, S. . Earthworm polysaccharide and its antibacterial function on plant-pathogen microbes in vitro . Eur. J. Soil Biol. , 2007 . 43 S135 -S142 . DOI:10.1016/j.ejsobi.2007.08.035http://doi.org/10.1016/j.ejsobi.2007.08.035 .
0
Views
6
Downloads
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution