
1.Flexible Electronics Innovation Institute, Jiangxi Science and Technology Normal University, Nanchang 330013, China
xujingkun@tsinghua.org.cn (J.K.X.)
f.x.jiang@live.cn (F.X.J.)
Scan for full text
Wen-Qian Yao, Pei-Pei Liu, Wei-Qiang Zhou, et al. Flexible Electrochromic Poly(thiophene-furan) Film
Wen-Qian Yao, Pei-Pei Liu, Wei-Qiang Zhou, et al. Flexible Electrochromic Poly(thiophene-furan) Film
Flexible electrochromic (EC) materials have an urgent demand in the current electronic equipment market due to their technological interest and applications. However, at present, few flexible EC devices developed by industry exist due to some problems and challenges still to be solved such as flexibility. In this work, we have successfully synthesized a novel thiophene-furan (TFu) monomer ,via, Stille coupling reaction, and facilely electrochemically polymerized in a neutral Bu,4,NPF,6,-CH,2,Cl,2, electrolyte system to afford the corresponding poly(thiophene-furan) (PTFu) polymer film with good flexibility. The electrochemical and photoelectrochemical analyses of the as-prepared PTFu demonstrate that it has achieved the improved EC performance compared with pure polyfuran and polythiophene polymers, and as a result it possesses favorable EC parameters manifested as a reasonable Δ,T, (32.1%), faster response (1.38 s), excellent coloration efficiency (CE, 300.9 cm,2,·C,−1,), and after a continuous redox process up to 2000 s, its optical stability can be maintained at 96%, and even after 3000 s, it can still be maintained at 80%. In addition, the successful assembly of the electrochromic device of PTFu film can easily realize the reversible conversion of the color from orange to gray. All these systematic studies suggest that the as-prepared flexible PTFu film is a promising candidate for EC materials and has great potential interest for versatile EC applications.
Organic conjugated polymersPolyfuran derivativesElectrochromismFlexibilityElectrochromic devices
Arvizu, M. A.; Qu, H. Y.; Cindemir, U.; Qiu, Z.; Rojas-González, E. A.; Primetzhofer, D.; Granqvist, C. G.; Osterlund, L.; Niklasson, G. A. . Electrochromic WO3 thin films attain unprecedented durability by potentiostatic pretreatment . J. Mater. Chem. A , 2019 . 7 2908 -2918 . DOI:10.1039/C8TA09621Jhttp://doi.org/10.1039/C8TA09621J .
Chen, Y.; Wang, Y.; Sun, P.; Yang, P.; Du, L.; Mai, W. . Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications . J. Mater. Chem. A , 2015 . 3 20614 -20618 . DOI:10.1039/C5TA04011Fhttp://doi.org/10.1039/C5TA04011F .
Chen, K. C.; Hsu, C. Y.; Hu, C. W.; Ho, K. C. . A complementary electrochromic device based on Prussian blue and poly(ProDOT-Et2) with high contrast and high coloration efficiency . Sol. Energy Mater. Sol. Cells , 2011 . 95 2238 -2245 . DOI:10.1016/j.solmat.2011.03.029http://doi.org/10.1016/j.solmat.2011.03.029 .
Choi, S. Y.; Mamak, M.; Coombs, N.; Chopra, N.; Ozin, G. A. . Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes . Nano Lett. , 2004 . 4 1231 -1235 . DOI:10.1021/nl049484dhttp://doi.org/10.1021/nl049484d .
Lin, C. L.; Chen, C. Y.; Yu, H. F.; Ho, K. C. . Comparisons of the electrochromic properties of poly(hydroxymethyl 3,4-ethylenedioxythiophene) and poly(3,4-ethylenedioxythiophene) thin films and the photoelectrochromic devices using these thin films . Sol. Energy Mater. Sol. Cells , 2019 . 202 110132 DOI:10.1016/j.solmat.2019.110132http://doi.org/10.1016/j.solmat.2019.110132 .
Zheng, R.; Fan, Y.; Wang, Y.; Wan, Z.; Jia, C.; Weng, X.; Xie, J.; Deng, L. . A bifunctional triphenylamine-based electrochromic polymer with excellent self-healing performance . Electrochim. Acta , 2018 . 286 296 -303 . DOI:10.1016/j.electacta.2018.08.009http://doi.org/10.1016/j.electacta.2018.08.009 .
Yin, Y.; Li, W.; Zeng, X.; Xu, P.; Murtaza, I.; Guo, Y.; Liu, Y.; Li, T.; Cao, J.; He, Y.; Meng, H. . Design strategy for efficient solution-processable red electrochromic polymers based on unconventional 3,6-bis(dodecyloxy)thieno[3,2-b]thiophene building blocks . Macromolecules , 2018 . 51 7853 -7862 . DOI:10.1021/acs.macromol.8b01213http://doi.org/10.1021/acs.macromol.8b01213 .
Sheberla, D.; Patra, S.; Wijsboom, Y. H.; Sharma, S.; Sheynin, Y.; Haj-Yahia, A. E.; Barak, A. H.; Gidron, O.; Bendikov, M. . Conducting polyfurans by electropolymerization of oligofurans . Chem. Sci. , 2015 . 6 360 -371 . DOI:10.1039/C4SC02664Khttp://doi.org/10.1039/C4SC02664K .
Güneş, A.; Cihaner, A.; Önal, A. M . Synthesis and electro-optical properties of new conjugated hybrid polymers based on furan and fluorene units . Electrochim. Acta , 2013 . 89 339 -345 . DOI:10.1016/j.electacta.2012.11.108http://doi.org/10.1016/j.electacta.2012.11.108 .
Zhen, S.; Xu, J.; Lu, B. . Tuning the optoelectronic properties of polyfuran by design of furan-EDOT monomers and free-standing films with enhanced redox stability and electrochromic performances . Electrochim. Acta , 2014 . 146 666 -678 . DOI:10.1016/j.electacta.2014.09.034http://doi.org/10.1016/j.electacta.2014.09.034 .
Kavak, E.; Us, C. N.; Yavuz, E.; Kivrak, A.; İçli Özkut, M . A camouflage material: p- and n-type dopable furan based low band gap electrochromic polymer and its EDOT based copolymer . Electrochim. Acta , 2015 . 182 537 -543 . DOI:10.1016/j.electacta.2015.09.148http://doi.org/10.1016/j.electacta.2015.09.148 .
Wang, W. H.; Chang, J. C.; Wu, T. Y. . 4-(Furan-2-yl)phenyl-containing polydithienylpyrroles as promising electrodes for high contrast and coloration efficiency electrochromic devices . Org. Electron. , 2019 . 74 23 -32 . DOI:10.1016/j.orgel.2019.06.030http://doi.org/10.1016/j.orgel.2019.06.030 .
Yao, W.; Shen, L.; Liu, P.; Liu, C.; Xu, J.; Jiang, Q.; Liu, G.; Nie, G.; Jiang, F. . Electrochemical doping engineering tuning of the thermoelectric performance of a π-conjugated free-standing poly(thiophene-furan) thin-film . Mater. Chem. Front. , 2020 . 4 597 -604 . DOI:10.1039/C9QM00542Khttp://doi.org/10.1039/C9QM00542K .
Barth, M.; Guilerez, S.; Bidan, G.; Bras, G. R. M.; Apkowski, M. A. L . Electrochemical investigation of regioregular alkyl substituted oligothiophenes . Electrochim. Acta , 2000 . 45 4409 -4417 . DOI:10.1016/S0013-4686(00)00509-0http://doi.org/10.1016/S0013-4686(00)00509-0 .
Fu, L.; Qu, Q.; Holze, R.; Kondratiev, V. V.; Wu, Y. . Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds? . J. Mater. Chem. A , 2019 . 7 14937 -14970 . DOI:10.1039/C8TA10587Ahttp://doi.org/10.1039/C8TA10587A .
Sun, N.; Meng, S.; Chao, D.; Zhou, Z.; Du, Y.; Wang, D.; Zhao, X.; Zhou, H.; Chen, C. . Highly stable electrochromic and electrofluorescent dualswitching . Polym. Chem. , 2016 . 7 6055 -6063 . DOI:10.1039/C6PY01345Ghttp://doi.org/10.1039/C6PY01345G .
Shi, G. Q.; Jin, S.; Xue, G.; Li, C . A conducting polymer film stronger than aluminum . Science , 1995 . 267 994 -996 . DOI:10.1126/science.267.5200.994http://doi.org/10.1126/science.267.5200.994 .
Rusch, B.; Vielstich, W . Polythiophenes via thiophene, bithiophene and terthiophene in propylene carbonate: an electrochemical and in-situ FTIR study . J. Electroanal. Chem. , 1994 . 370 109 -117 . DOI:10.1016/0022-0728(93)03158-Lhttp://doi.org/10.1016/0022-0728(93)03158-L .
Wan, X. B.; Yan, F.; Jin, S.; Liu, X. R.; Xue, G . Low potential electrochemical synthesis of polyfuran and characterization of the obtained free-standing film . Chem. Mater. , 1999 . 11 2400 -2407 . DOI:10.1021/cm9900453http://doi.org/10.1021/cm9900453 .
Wang, B.; Zhao, J.; Cui, C.; Liu, R.; Liu, J.; Wang, H.; Liu, H. . Electrochromic properties of a novel low band gap conjugated copolymer based on 1,4-bis(2-thienyl)-naphthalene and 3,4-ethylenedioxythiophene . Electrochim. Acta , 2011 . 56 4819 -4827 . DOI:10.1016/j.electacta.2011.03.020http://doi.org/10.1016/j.electacta.2011.03.020 .
Ming, S.; Lin, K.; Zhang, H.; Jiang, F.; Liu, P.; Xu, J.; Nie, G.; Duan, X. . Electrochromic polymers with multiple redox couples applied to monitor energy storage states of supercapacitors . Chem. Commun. , 2020 . 56 5275 -5278 . DOI:10.1039/D0CC00690Dhttp://doi.org/10.1039/D0CC00690D .
Xu, Z.; Zhang, Y.; Wang, B.; Zhi, L.; Zhao, J.; Xie, Y. . Yellow-to-blue switching of indole[3,2-b]carbazole-based electrochromic polymers and the corresponding electrochromic devices with outstanding photopic contrast, fast switching speed, and satisfactory cycling stability . Electrochim. Acta , 2019 . 302 373 -384 . DOI:10.1016/j.electacta.2019.02.054http://doi.org/10.1016/j.electacta.2019.02.054 .
Son, S.; Gang-Young, Lee; Sangwon Kim; Park W. T.; Park, S. A.; Noh, Y. Y.; Park, T. . Control of crystallite orientation in diketopyrrolopyrrole-based semiconducting polymers via tuning of intermolecular interactions . ACS Appl. Mater. Interfaces , 2019 . 11 10751 -10757 . DOI:10.1021/acsami.8b20297http://doi.org/10.1021/acsami.8b20297 .
Carlé, E. J.; Andreasen, W. J.; Jørgensen, M.; Christian, Krebs, C. F. . Low band gap polymers based on 1,4-dialkoxybenzene, thiophene, bithiophene donors and the benzothiadiazole acceptor . Sol. Energy Mater. Sol. Cells , 2010 . 94 774 -780 . DOI:10.1016/j.solmat.2009.12.023http://doi.org/10.1016/j.solmat.2009.12.023 .
Tao, Y.; Zhang, K.; Zhang, Z.; Cheng, H. . Novel electrochromic copolymers based on thiophene-anthracene derivatives via electrochemical polymerization in boron trifluoride diethyl etherate . J. Electroanal. Chem. , 2016 . 769 80 -88 . DOI:10.1016/j.jelechem.2016.03.022http://doi.org/10.1016/j.jelechem.2016.03.022 .
Crispin, X.; Marciniak, S.; Osikowicz, W.; Zotti, G.; Denier, A. W.; Louwet, F.; Fahlman, M.; Groenendaal, L.; Schryver, F. D.; Salaneck, W. R. . Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): a photoelectron spectroscopy study . J. Polym. Sci., Part B: Polym. Phys. , 2003 . 41 2561 -2583 . DOI:10.1002/polb.10659http://doi.org/10.1002/polb.10659 .
Cai, S.; Wen, H.; Wang, S.; Niu, H.; Wang, C.; Jiang, X.; Bai, X.; Wang, W. . Electrochromic polymers electrochemically polymerized from 2,5-dithienylpyrrole (DTP) with different triarylamine units: synthesis, characterization and optoelectrochemical properties . Electrochim. Acta , 2017 . 228 332 -342 . DOI:10.1016/j.electacta.2017.01.071http://doi.org/10.1016/j.electacta.2017.01.071 .
Christiansen, D. T.; Reynolds, J. R. . A fruitful usage of a dialkylthiophene comonomer for redox stable wide-gap gathodically coloring electrochromic polymers . Macromolecules , 2018 . 51 9250 -9258 . DOI:10.1021/acs.macromol.8b01789http://doi.org/10.1021/acs.macromol.8b01789 .
Liu, X. F.; Hu, Y. J.; Shen, L. L.; Zhang, G.; Cao, T. M.; Xu, J. K.; Zhao, F.; Hou, J.; Liu, H. X.; Jiang, F. X. . Novel copolymers based on PEO bridged thiophenes and 3,4-ethylenedioxythiophene: electrochemical, optical, and electrochromic properties . Electrochim. Acta , 2018 . 288 52 -60 . DOI:10.1016/j.electacta.2018.08.072http://doi.org/10.1016/j.electacta.2018.08.072 .
Wang, Y.; Zheng, R.; Luo, J.; Malik, H. A.; Wan, Z.; Jia, C.; Weng, X.; Xie, J.; Deng, L.; Yao, X. . Self-healing dynamically cross linked versatile polymer electrolyte: a novel approach towards high performance, flexible electrochromic devices . Electrochim. Acta , 2019 . 320 134489 DOI:10.1016/j.electacta.2019.06.182http://doi.org/10.1016/j.electacta.2019.06.182 .
Zhen, S. J.; Lu, B. Y.; Xu, J. K.; Zhang, S. M.; Li, Y. Z. . Poly(mono-, bi- or trifuran): effect of oligomer chain length on the electropolymerization performances and polymer properties . RSC Adv. , 2014 . 4 14001 -14012 . DOI:10.1039/C4RA00437Jhttp://doi.org/10.1039/C4RA00437J .
Dai, Y.; Li, W.; Zhao, R.; Huang, Q.; Xu, N.; Yuan, F.; Zhang, C. . Quadruple thiophene based electrochromic electrodeposited film as high performance hybrid energy storage system . Electrochim. Acta , 2019 . 318 322 -332 . DOI:10.1016/j.electacta.2019.06.094http://doi.org/10.1016/j.electacta.2019.06.094 .
Gu, H.; Ming, S.; Lin, K.; Chen, S.; Liu, X.; Lu, B.; Xu, J. . Isoindigo as an electron-deficient unit for high-performance polymeric electrochromics . Electrochim. Acta , 2018 . 260 772 -782 . DOI:10.1016/j.electacta.2017.12.033http://doi.org/10.1016/j.electacta.2017.12.033 .
Ming, S.; Li, Z.; Zhen, S.; Liu, P.; Jiang, F.; Nie, G.; Xu, J. . High-performance D-A-D type electrochromic polymer with π spacer applied in supercapacitor . Chem. Eng. J. , 2020 . 390 124572 DOI:10.1016/j.cej.2020.124572http://doi.org/10.1016/j.cej.2020.124572 .
Beaujuge, P. M.; Reynolds, J. R. . Color control in π-conjugated organic polymers for use in electrochromic devices . Chem. Rev. , 2010 . 110 268 -320 . DOI:10.1021/cr900129ahttp://doi.org/10.1021/cr900129a .
Glenis, S.; Benz, M.; LeGoff, E.; Schindler, J. L.; Kanatzidis, M. G. . Polyfuran: a new synthetic and electronic approach properties . J. Am. Chem. Soc. , 1993 . 115 12519 -12525 . DOI:10.1021/ja00079a035http://doi.org/10.1021/ja00079a035 .
Guo, Y.; Hao, X.; Tao, Y.; Zhang, C.; Cheng, H. . Preparation, characterizations and electrochromic properties of copolymers containing 5,10,15,20-tetra(thienyl) porphyrin and thiophene derivatives . Synth. Met. , 2019 . 258 116202 DOI:10.1016/j.synthmet.2019.116202http://doi.org/10.1016/j.synthmet.2019.116202 .
Zhang, L.; Luo, F.; Li, W.; Yan, S.; Chen, Z.; Zhao, R.; Ren, N.; Wu, Y.; Chen, Y.; Zhang, C. . Conjugation-broken thiophene-based electropolymerized polymers with well-defined structures: effect of conjugation lengths on electrochromic properties . Phys. Chem. Chem. Phys. , 2019 . 21 24092 -24100 . DOI:10.1039/C9CP04308Jhttp://doi.org/10.1039/C9CP04308J .
Feng, F.; Kong, L.; Du, H.; Zhao, J.; Zhang, J. . Donor-acceptor-type copolymers based on 3,4-propylenedioxy-thiophene and 5,6-difluorobenzotriazole: synthesis and electrochromic properties . Polymers , 2018 . 10 427 .
Atar, A. B.; Jeong, J. Y.; Han, S. H.; Park, J. S. . Efficient blue-to-transmissive electrochromic transitions of alkylated quinoxaline-thiophene based donor-acceptor type conjugated polymers . Polymer , 2018 . 153 95 -102 . DOI:10.1016/j.polymer.2018.08.009http://doi.org/10.1016/j.polymer.2018.08.009 .
Abaci, U.; Ustalar, A.; Yilmaz, M.; Guney, H. Y. . Synthesis of new 2,5-di(thiophen-2-yl)furan-3-carbonitrile derivatives and investigation of the electrochromic properties of homopolymers and co-polymers with EDOT . RSC Adv. , 2016 . 6 27836 -27845 . DOI:10.1039/C6RA00181Ehttp://doi.org/10.1039/C6RA00181E .
Hu, B.; Li, C. Y.; Chu, J. W.; Liu, Z. C.; Zhang, X. L.; Jin, L. . Electrochemical and electrochromic properties of polymers based on 2,5-di(2-thienyl)-1H-pyrrole and different phenothiazine units . J. Electrochem. Soc. , 2019 . 166 H1 -H11 . DOI:10.1149/2.0311902jeshttp://doi.org/10.1149/2.0311902jes .
Zhang, Y.; Chen, S.; Zhang, Y.; Du, H.; Zhao, J. . Design and characterization of new D-A type electrochromic conjugated copolymers based on indolo[3,2-b]carbazole, isoindigo and thiophene units . Polymers , 2019 . 11 1626 DOI:10.3390/polym11101626http://doi.org/10.3390/polym11101626 .
Yue, H.; Kong, L.; Li, X.; Zhang, Y.; Du, H.; Dong, Y.; Zhao, J.; Zhang, J. . Soluble neutral green-colored polymers based on propylenedioxythiophene, benzene and thieno[3,4-b]pyrazine, and their electrochromic properties . Synth. Met. , 2020 . 261 116320 DOI:10.1016/j.synthmet.2020.116320http://doi.org/10.1016/j.synthmet.2020.116320 .
Cai, G.; Darmawan, P.; Cui, M.; Wang, J.; Chen, J.; Magdassi, S.; Lee, P. S. . Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors . Adv. Energy Mater. , 2016 . 6 1501882 DOI:10.1002/aenm.201501882http://doi.org/10.1002/aenm.201501882 .
Díaz-Sánchez, J.; Rosas-Aburto, A.; Vivaldo-Lima, E.; Hernández-Alcántara, J. M.; Gracia-Mora, I.; Vázquez-Torres, H.; Ordóñez, L. C.; Roquero, P.; Gimeno, M. . Development and characterization of a flexible electrochromic device based on polyaniline and enzymatically synthesized poly(gallic acid) . Synth. Met. , 2017 . 223 43 -48 . DOI:10.1016/j.synthmet.2016.11.038http://doi.org/10.1016/j.synthmet.2016.11.038 .
Cansu-Ergun, E. G. . Covering the more visible region by electrochemical copolymerization of carbazole and benzothiadiazole based donor-acceptor type monomers . Chinese J. Polym. Sci. , 2019 . 37 28 -35 . DOI:10.1007/s10118-019-2181-8http://doi.org/10.1007/s10118-019-2181-8 .
0
Views
3
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621