1.College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
guangsuhuang@scu.edu.cn (G.S.H.)
yxxu@scu.edu.cn (Y.X.X.)
Scan for full text
Shi-Qi Li, Mao-Zhu Tang, Cheng Huang, et al. The Relationship between Pendant Phosphate Groups and Mechanical Properties of Polyisoprene Rubber. [J]. Chinese Journal of Polymer Science 39(4):465-473(2021)
Shi-Qi Li, Mao-Zhu Tang, Cheng Huang, et al. The Relationship between Pendant Phosphate Groups and Mechanical Properties of Polyisoprene Rubber. [J]. Chinese Journal of Polymer Science 39(4):465-473(2021) DOI: 10.1007/s10118-021-2497-z.
It is still a great challenge to mimic the structure and function of natural rubber by introducing polar components into synthetic polyisoprene. In order to explore the function of phosphate groups on the mechanical properties of polyisoprene rubber, a terminally functionalized compound (PIP-P) containing phosphate groups was synthesized and further vulcanized to prepare the model compound V-PIP-P. Through analyzing the test results, it was found that these phosphate groups formed polar aggregates in non-polar polyisoprene rubber matrix, serving as an additional dynamic cross-linking sites, which increases the cross-linking density and improves mechanical properties. The influence of the phosphate groups on the strain-induced crystallization (SIC) was further investigated ,via, synchrotron wide-angle X-ray diffraction (WAXD) experiment. These phosphate group aggregates not only reduced the onset strain of SIC, but also slowed down the molecular chain mobility, which hinder the crystal lateral growth. The above results help us to gain a deeper understanding for the function of phosphate groups in the formation of “naturally occurring network” and guide the molecular design of next generation polyisoprene rubber.
Phosphate groupsStrain-induced crystallizationNaturally occurring networkNatural rubber
Zhang, H. P.; Niemczura, J.; Dennis, G.; Ravi-Chandar, K.; Marder, M. . Toughening effect of strain-induced crystallites in natural rubber . Phys. Rev. Lett. , 2009 . 102 245503 DOI:10.1103/PhysRevLett.102.245503http://doi.org/10.1103/PhysRevLett.102.245503 .
Amnuaypornsri, S.; Toki, S.; Hsiao, B. S.; Sakdapipanich, J. . The effects of endlinking network and entanglement to stress-strain relation and strain-induced crystallization of un-vulcanized and vulcanized natural rubber . Polymer , 2012 . 53 3325 -3330 . DOI:10.1016/j.polymer.2012.05.020http://doi.org/10.1016/j.polymer.2012.05.020 .
Tosaka, M. . A route for the thermodynamic description of strain-induced crystallization in sulfur-cured natural rubber . Macromolecules , 2009 . 42 6166 -6174 . DOI:10.1021/ma900954chttp://doi.org/10.1021/ma900954c .
Nie, Y.; Huang, G.; Qu, L.; Wang, X.; Weng, G.; Wu, J. . New insights into thermodynamic description of strain-induced crystallization of peroxide cross-linked natural rubber filled with clay by tube model . Polymer , 2011 . 52 3234 -3242 . DOI:10.1016/j.polymer.2011.05.004http://doi.org/10.1016/j.polymer.2011.05.004 .
Hernández, M.; López-Manchado, M. A.; Sanz, A.; Nogales, A.; Ezquerra, T. A. . Effects of strain-induced crystallization on the segmental dynamics of vulcanized natural rubber . Macromolecules , 2011 . 44 6574 -6580 . DOI:10.1021/ma201021qhttp://doi.org/10.1021/ma201021q .
Liu, H.; Huang, G. S.; Wei, L. Y.; Zeng, J.; Fu, X.; Huang, C.; Wu, J. R. . Inhomogeneous natural network promoting strain-induced crystallization: a mesoscale model of natural rubber . Chinese J. Polym. Sci. , 2019 . 37 1142 -1151 . DOI:10.1007/s10118-019-2267-3http://doi.org/10.1007/s10118-019-2267-3 .
Zhang, M. M.; Zha, L. Y.; Gao, H. H.; Nie, Y. J.; Hu, W. B. . How polydispersity of network polymers influences strain-induced crystal nucleation in a rubber . Chinese J. Polym. Sci. , 2014 . 32 1218 -1223 . DOI:10.1007/s10118-014-1495-9http://doi.org/10.1007/s10118-014-1495-9 .
Kawazura, T.; Chaikumpollert, O.; Kawahara, S. . Morphology dependence of crystallization of natural rubber in blends . Chinese J. Polym. Sci. , 2013 . 31 1424 -1431 . DOI:10.1007/s10118-013-1314-8http://doi.org/10.1007/s10118-013-1314-8 .
Trabelsi, S.; Albouy, P. A.; Rault, J. . Effective local deformation in stretched filled rubber . Macromolecules , 2003 . 36 9093 -9099 . DOI:10.1021/ma0303566http://doi.org/10.1021/ma0303566 .
Che, J.; Burger, C.; Toki, S.; Rong, L.; Hsiao, B. S.; Amnuaypornsri, S.; Sakdapipanich, J. . Crystal and crystallites structure of natural rubber and synthetic cis-1,4-polyisoprene by a new two dimensional wide angle X-ray diffraction simulation method. I. Strain-induced crystallization . Macromolecules , 2013 . 46 4520 -4528 . DOI:10.1021/ma400420khttp://doi.org/10.1021/ma400420k .
Acosta, R. H.; Monti, G. A.; Villar, M. A.; Vallés, E. M.; Vega, D. A. . Transiently trapped entanglements in model polymer networks . Macromolecules , 2009 . 42 4674 -4680 . DOI:10.1021/ma8025546http://doi.org/10.1021/ma8025546 .
Huang, C.; Huang, G.; Li, S.; Luo, M.; Liu, H.; Fu, X.; Qu, W.; Xie, Z.; Wu, J. . Research on architecture and composition of natural network in natural rubber . Polymer , 2018 . 154 90 -100 . DOI:10.1016/j.polymer.2018.08.057http://doi.org/10.1016/j.polymer.2018.08.057 .
Tang, M.; Zhang, R.; Li, S.; Zeng, J.; Luo, M.; Xu, Y. X.; Huang, G. . Towards a supertough thermoplastic polyisoprene elastomer based on a biomimic strategy . Angew. Chem. Int. Ed. , 2018 . 57 15836 -15840 . DOI:10.1002/anie.201809339http://doi.org/10.1002/anie.201809339 .
Li, S.; Tang, M.; Huang, C.; Zhang, R.; Wu, J.; Ling, F.; Xu, Y. X.; Huang, G. . Branching function of terminal phosphate groups of polyisoprene chain . Polymer , 2019 . 174 18 -24 . DOI:10.1016/j.polymer.2019.04.046http://doi.org/10.1016/j.polymer.2019.04.046 .
Xie, Z. T.; Fu, X.; Wei, L. Y.; Luo, M. C.; Liu, Y. H.; Ling, F. W.; Huang, C.; Huang, G.; Wu, J. . New evidence disclosed for the engineered strong interfacial interaction of graphene/rubber nanocomposites . Polymer , 2017 . 118 30 -39 . DOI:10.1016/j.polymer.2017.04.056http://doi.org/10.1016/j.polymer.2017.04.056 .
Wu, S.; Qiu, M.; Tang, Z.; Liu, J.; Guo, B. . Carbon nanodots as high-functionality cross-linkers for bioinspired engineering of multiple sacrificial units toward strong yet tough elastomers . Macromolecules , 2017 . 50 3244 -3253 . DOI:10.1021/acs.macromol.7b00483http://doi.org/10.1021/acs.macromol.7b00483 .
Tang, Z.; Liu, Y.; Guo, B.; Zhang, L. . Malleable, mechanically strong, and adaptive elastomers enabled by interfacial exchangeable bonds . Macromolecules , 2017 . 50 7584 -7592 . DOI:10.1021/acs.macromol.7b01261http://doi.org/10.1021/acs.macromol.7b01261 .
Liu, J.; Tang, Z.; Huang, J.; Guo, B.; Huang, G. . Promoted strain-induced-crystallization in synthetic cis-1,4-polyisoprene via constructing sacrificial bonds . Polymer , 2016 . 97 580 -588 . DOI:10.1016/j.polymer.2016.06.001http://doi.org/10.1016/j.polymer.2016.06.001 .
Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X. Z.; Bao, Z. . A highly stretchable autonomous self-healing elastomer . Nat. Chem. , 2016 . 8 618 -24 . DOI:10.1038/nchem.2492http://doi.org/10.1038/nchem.2492 .
Wang, S.; Tang, Z. H.; Huang, J.; Guo, B. C. . Effects of binding energy of bioinspired sacrificial bond on mechanical performance of cis-1,4-polyisoprene with dual-crosslink . Chinese J. Polym. Sci. , 2018 . 36 1055 -1062 . DOI:10.1007/s10118-018-2131-xhttp://doi.org/10.1007/s10118-018-2131-x .
Ozbas, B.; Toki, S.; Hsiao, B. S.; Chu, B.; Register, R. A.; Aksay, I. A.; Prud'homme, R. K.; Adamson, D. H. . Strain-induced crystallization and mechanical properties of functionalized graphene sheet-filled natural rubber . J. Polym. Sci., Part B: Polym. Phys. , 2012 . 50 718 -723 . DOI:10.1002/polb.23060http://doi.org/10.1002/polb.23060 .
Balzano, L.; Kukalyekar, N.; Rastogi, S.; Peters, G. W.; Chadwick, J. C. . Crystallization and dissolution of flow-induced precursors . Phys. Rev. Lett. , 2008 . 100 048302 DOI:10.1103/PhysRevLett.100.048302http://doi.org/10.1103/PhysRevLett.100.048302 .
Zhao, B.; Tian, N.; Liu, Y.; Yan, T.; Zhou, W.; Li, L.; Zhou, Y.; Weng, G.; Huang, G. . Strain-induced crystallization of natural rubber with high strain rates . J. Polym. Sci., Part B: Polym. Phys. , 2012 . 50 1630 -1637 . DOI:10.1002/polb.23172http://doi.org/10.1002/polb.23172 .
Chenal, J. M.; Chazeau, L.; Guy, L.; Bomal, Y.; Gauthier, C. . Molecular weight between physical entanglements in natural rubber: a critical parameter during strain-induced crystallization . Polymer , 2007 . 48 1042 -1046 . DOI:10.1016/j.polymer.2006.12.031http://doi.org/10.1016/j.polymer.2006.12.031 .
Liu, Y.; Tang, Z.; Wu, S.; Guo, B. . Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers . ACS Macro Lett. , 2019 . 8 193 -199 . DOI:10.1021/acsmacrolett.9b00012http://doi.org/10.1021/acsmacrolett.9b00012 .
Mayumi, K.; Marcellan, A.; Ducouret, G.; Creton, C.; Narita, T. . Stress-strain relationship of highly stretchable dual cross-link gels: separability of strain and time effect . ACS Macro Lett. , 2013 . 2 1065 -1068 . DOI:10.1021/mz4005106http://doi.org/10.1021/mz4005106 .
Fu, X.; Huang, G.; Xie, Z.; Xing, W. . New insights into reinforcement mechanism of nanoclay-filled isoprene rubber during uniaxial deformation by in situ synchrotron X-ray diffraction . RSC Adv. , 2015 . 5 25171 -25182 . DOI:10.1039/C5RA02123Ehttp://doi.org/10.1039/C5RA02123E .
Liu, J.; Wang, S.; Tang, Z.; Huang, J.; Guo, B.; Huang, G. . Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer . Macromolecules , 2016 . 49 8593 -8604 . DOI:10.1021/acs.macromol.6b01576http://doi.org/10.1021/acs.macromol.6b01576 .
Tarachiwin, L.; Sakdapipanich, J.; Ute, K.; Kitayama, T.; Tanaka, Y. . Structural characterization of α-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments . Biomacromolecules , 2005 . 6 1858 -1863 . DOI:10.1021/bm058004phttp://doi.org/10.1021/bm058004p .
Mozhdehi, D.; Ayala, S.; Cromwell, O. R.; Guan, Z. . Self-healing multiphase polymers via dynamic metal-ligand interactions . J. Am. Chem. Soc. , 2014 . 136 16128 -16131 . DOI:10.1021/ja5097094http://doi.org/10.1021/ja5097094 .
Gros, A.; Tosaka, M.; Huneau, B.; Verron, E.; Poompradub, S.; Senoo, K. . Dominating factor of strain-induced crystallization in natural rubber . Polymer , 2015 . 76 230 -236 . DOI:10.1016/j.polymer.2015.08.058http://doi.org/10.1016/j.polymer.2015.08.058 .
Dupres, S.; Long, D.; Albouy, P.A.; Sotta, P. . Local deformation in carbon black-filled polyisoprene rubbers studied by NMR and X-ray diffraction . Macromolecules , 2009 . 42 12634 -12644. .
Chenal, J. M.; Gauthier, C.; Chazeau, L.; Guy, L.; Bomal, Y. . Parameters governing strain induced crystallization in filled natural rubber . Polymer , 2007 . 48 6893 -6901 . DOI:10.1016/j.polymer.2007.09.023http://doi.org/10.1016/j.polymer.2007.09.023 .
Toki, S.; Sics, I.; Hsiao, B.; Tosaka, M.; Poompradub, S.; Ikeda, Y.; Kohjiya, S. . Probing the nature of strain-induced crystallization in polyisoprene rubber by combined thermomechanical and in situ X-ray diffraction techniques . Macromolecules , 2005 . 38 7064 -7073 . DOI:10.1021/ma050465fhttp://doi.org/10.1021/ma050465f .
Beurrot-Borgarino, S.; Huneau, B.; Verron, E.; Rublon, P. . Strain-induced crystallization of carbon black-filled natural rubber during fatigue measured by in situ synchrotron X-ray diffraction . Int. J. Fatigue , 2013 . 47 1 -7 . DOI:10.1016/j.ijfatigue.2012.07.001http://doi.org/10.1016/j.ijfatigue.2012.07.001 .
Tosaka, M.; Murakami, S.; Poompradub, S.; Kohjiya, S.; Ikeda, Y.; Toki, S.; Sics, I.; Hsiao, B. S. . Orientation and crystallization of natural rubber network as revealed by WAXD using synchrotron radiation . Macromolecules , 2004 . 37 3299 -3309 . DOI:10.1021/ma0355608http://doi.org/10.1021/ma0355608 .
Toki, S.; Hsiao, B. . Nature of strain-induced structures in natural and synthetic rubbers under stretching . Macromolecules , 2003 . 36 5915 -5917 . DOI:10.1021/ma034729ehttp://doi.org/10.1021/ma034729e .
Che, J.; Toki, S.; Valentin, J. L.; Brasero, J.; Nimpaiboon, A.; Rong, L.; Hsiao, B. S. . Chain dynamics and strain-induced crystallization of pre- and postvulcanized natural rubber latex using proton multiple quantum NMR and uniaxial deformation by in situ synchrotron X-ray diffraction . Macromolecules , 2012 . 45 6491 -6503 . DOI:10.1021/ma3006894http://doi.org/10.1021/ma3006894 .
Liu, H.; Huang, G.; Zeng, J.; Xu, L.; Fu, X.; Wu, S.; Zheng, J.; Wu, J. . Observing nucleation transition in stretched natural rubber through self-seeding . J. Phys. Chem. B , 2015 . 119 11887 -11892 . DOI:10.1021/acs.jpcb.5b05113http://doi.org/10.1021/acs.jpcb.5b05113 .
Ikeda, Y.; Yasuda, Y.; Hijikata, K.; Tosaka, M.; Kohjiya, S. . Comparative study on strain-induced crystallization behavior of peroxide cross-linked and sulfur cross-linked natural rubber . Macromolecules , 2008 . 41 5876 -5884 . DOI:10.1021/ma800144uhttp://doi.org/10.1021/ma800144u .
Suzuki, T.; Osaka, N.; Endo, H.; Shibayama, M.; Ikeda, Y.; Asai, H.; Higashitani, N.; Kokubo, Y.; Kohjiya, S. . Nonuniformity in cross-linked natural rubber as revealed by contrast-variation small-angle neutron scattering . Macromolecules , 2010 . 43 1556 -1563 . DOI:10.1021/ma9019416http://doi.org/10.1021/ma9019416 .
Weng, G.; Huang, G.; Qu, L.; Nie, Y.; Wu, J. . Large-scale orientation in a vulcanized stretched natural rubber network: proved by in situ synchrotron X-ray diffraction characterization . J. Phys. Chem. B , 2010 . 114 7179 -7188 . DOI:10.1021/jp100920ghttp://doi.org/10.1021/jp100920g .
0
Views
3
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution