a.State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
b.Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
c.Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
zgzhangwhu@iccas.ac.cn (Z.G.Z.)
liyf@iccas.ac.cn (Y.L.)
Scan for full text
Zhi-Guo Zhang, Yang Bai, Yongfang Li. Benzotriazole Based 2D-conjugated Polymer Donors for High Performance Polymer Solar Cells. [J]. Chinese Journal of Polymer Science 39(1):1-13(2021)
Zhi-Guo Zhang, Yang Bai, Yongfang Li. Benzotriazole Based 2D-conjugated Polymer Donors for High Performance Polymer Solar Cells. [J]. Chinese Journal of Polymer Science 39(1):1-13(2021) DOI: 10.1007/s10118-020-2496-5.
To design high efficiency polymer solar cells (PSCs), it is of great importance to develop suitable polymer donors that work well with the low bandgap acceptors, providing complementary absorption, forming interpenetrating networks in the active layers and minimizing energy loss. Recently, we developed a series of two-dimension-conjugated polymers based on bithienylbenzodithiophene-,alt,-benzotriazole backbone bearing different conjugated side chains, generally called ,J,-series polymers. They are medium energy bandgap (,E,g,) polymers (,E,g, of ,ca,. 1.80 eV) with strong absorptions in the range of 400−650 nm, and exhibit ordered crystalline structures, high hole mobilities, and more interestingly, tunable energy levels depending on the structure variations. In this feature article, we highlight our recent efforts on the design and synthesis of those ,J,-series polymer donors, including an introduction on the polymer design strategy and emphasis on the crucial function of differential conjugated side chain. Finally, the future opportunities and challenges of the ,J,-series polymers in PSCs are discussed.
Polymer solar cellsBenzotriazole based 2D-conjugated polymerJ-series polymers
Li, Y. . Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption . Acc. Chem. Res. , 2012 . 45 723 -733 . DOI:10.1021/ar2002446http://doi.org/10.1021/ar2002446 .
Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. . Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions . Science , 1995 . 270 1789 -1791 . DOI:10.1126/science.270.5243.1789http://doi.org/10.1126/science.270.5243.1789 .
Yao, J.; Qiu, B.; Zhang, Z. G.; Xue, L.; Wang, R.; Zhang, C.; Chen, S.; Zhou, Q.; Sun, C.; Yang, C.; Xiao, M.; Meng, L.; Li, Y. . Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells . Nat. Commun. , 2020 . 11 2726 DOI:10.1038/s41467-020-16509-whttp://doi.org/10.1038/s41467-020-16509-w .
Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Tang, Y.; Lin, B.; Xian, K.; Gao, B.; An, C.; Bi, P.; Ma, W.; Hou, J. . 17% Efficiency organic photovoltaic cell with superior processability . Natl. Sci. Rev. , 2020 . 7 1239 -1246 . DOI:10.1093/nsr/nwz200http://doi.org/10.1093/nsr/nwz200 .
Ma, R.; Liu, T.; Luo, Z.; Guo, Q.; Xiao, Y.; Chen, Y.; Li, X.; Luo, S.; Lu, X.; Zhang, M.; Li, Y.; Yan, H. . Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17% . Sci. China Chem. , 2020 . 63 325 -330 . DOI:10.1007/s11426-019-9669-3http://doi.org/10.1007/s11426-019-9669-3 .
Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J. . Single-junction organic photovoltaic cells with approaching 18% efficiency . Adv. Mater. , 2020 . 32 1908205 DOI:10.1002/adma.201908205http://doi.org/10.1002/adma.201908205 .
Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J. . Recent advances, design guidelines, and prospects of all-polymer solar cells . Chem. Rev. , 2019 . 119 8028 -8086 . DOI:10.1021/acs.chemrev.9b00044http://doi.org/10.1021/acs.chemrev.9b00044 .
Zhang, Z. G.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. . Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells . Angew. Chem. Int. Ed. , 2017 . 56 13503 -13507 . DOI:10.1002/anie.201707678http://doi.org/10.1002/anie.201707678 .
Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. . An electron acceptor challenging fullerenes for efficient polymer solar cells . Adv. Mater. , 2015 . 27 1170 -1174 . DOI:10.1002/adma.201404317http://doi.org/10.1002/adma.201404317 .
Jia, B.; Zhan, X. . Fused-ring electron acceptors in China . Sci. China Chem. , 2020 . 63 1179 -1181 . DOI:10.1007/s11426-020-9790-9http://doi.org/10.1007/s11426-020-9790-9 .
Wei, Q.; Liu, W.; Leclerc, M.; Yuan, J.; Chen, H.; Zou, Y. . A-DA'D-A non-fullerene acceptors for high performance organic solar cells . Sci. China Chem. , 2020 . 63 1352 -1366 . DOI:10.1007/s11426-020-9799-4http://doi.org/10.1007/s11426-020-9799-4 .
Wan, X.; Li, C.; Zhang, M.; Chen, Y. . Acceptor-donor-acceptor type molecules for high performance organic photovoltaics—chemistry and mechanism . Chem. Soc. Rev. , 2020 . 49 2828 -2842 . DOI:10.1039/D0CS00084Ahttp://doi.org/10.1039/D0CS00084A .
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. . Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 . 3 1140 -1151 . DOI:10.1016/j.joule.2019.01.004http://doi.org/10.1016/j.joule.2019.01.004 .
Li, S.; Li, C. Z.; Shi, M.; Chen, H. . New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives . ACS Energy Lett. , 2020 . 5 1554 -1567 . DOI:10.1021/acsenergylett.0c00537http://doi.org/10.1021/acsenergylett.0c00537 .
Min, J.; Zhang, Z. G.; Zhang, S.; Li, Y. . Conjugated side-chain-isolated D-A copolymers based on benzo[1,2-b:4,5-b′]dithiophene-alt-dithienylbenzotriazole: synthesis and photovoltaic properties . Chem. Mater. , 2012 . 24 3247 -3254 . DOI:10.1021/cm3017006http://doi.org/10.1021/cm3017006 .
Zhang, Z. G.; Li, Y. . Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials . Sci. China Chem. , 2015 . 58 192 -209 . DOI:10.1007/s11426-014-5260-2http://doi.org/10.1007/s11426-014-5260-2 .
Hu, Z.; Zhang, F.; An, Q.; Zhang, M.; Ma, X.; Wang, J.; Zhang, J.; Wang, J. . Ternary nonfullerene polymer solar cells with a power conversion efficiency of 11.6% by inheriting the advantages of binary cells . ACS Energy Lett. , 2018 . 3 555 -561 . DOI:10.1021/acsenergylett.8b00100http://doi.org/10.1021/acsenergylett.8b00100 .
Li, Y.; Zhong, L.; Gautam, B.; Bin, H. J.; Lin, J. D.; Wu, F. P.; Zhang, Z.; Jiang, Z. Q.; Zhang, Z. G.; Gundogdu, K.; Li, Y.; Liao, L. S. . A near-infrared non-fullerene electron acceptor for high performance polymer solar cells . Energy Environ. Sci. , 2017 . 10 1610 -1620 . DOI:10.1039/C7EE00844Ahttp://doi.org/10.1039/C7EE00844A .
Liu, X.; Li, X.; Zheng, N.; Gu, C.; Wang, L.; Fang, J.; Yang, C. . Insight into the efficiency and stability of all-polymer solar cells based on two 2D-conjugated polymer donors: achieving high fill factor of 78% . ACS Appl. Mater. Interfaces , 2019 . 11 43433 -43440 . DOI:10.1021/acsami.9b15672http://doi.org/10.1021/acsami.9b15672 .
Sun, R.; Guo, J.; Sun, C.; Wang, T.; Luo, Z.; Zhang, Z.; Jiao, X.; Tang, W.; Yang, C.; Li, Y.; Min, J. . A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells . Energy Environ. Sci. , 2019 . 12 384 -395 . DOI:10.1039/C8EE02560Fhttp://doi.org/10.1039/C8EE02560F .
Luo, Z.; Bin, H.; Liu, T.; Zhang, Z. G.; Yang, Y.; Zhong, C.; Qiu, B.; Li, G.; Gao, W.; Xie, D.; Wu, K.; Sun, Y.; Liu, F.; Li, Y.; Yang, C. . Fine-tuning of molecular packing and energy level through methyl substitution enabling excellent small molecule acceptors for nonfullerene polymer solar cells with efficiency up to 12.54% . Adv. Mater. , 2018 . 30 1706124 DOI:10.1002/adma.201706124http://doi.org/10.1002/adma.201706124 .
Liu, W.; Zhang, J.; Zhou, Z.; Zhang, D.; Zhang, Y.; Xu, S.; Zhu, X. . Design of a new fused-ring electron acceptor with excellent compatibility to wide-bandgap polymer donors for high-performance organic photovoltaics . Adv. Mater. , 2018 . 30 1800403 DOI:10.1002/adma.201800403http://doi.org/10.1002/adma.201800403 .
Bin, H.; Gao, L.; Zhang, Z. G.; Yang, Y.; Zhang, Y.; Zhang, C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; Li, Y. . 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor . Nat. Commun. , 2016 . 7 13651 DOI:10.1038/ncomms13651http://doi.org/10.1038/ncomms13651 .
Zhang, Z. G.; Wang, J. . Structures and properties of conjugated donor-acceptor copolymers for solar cell applications . J. Mater. Chem. , 2012 . 22 4178 -4187 . DOI:10.1039/c2jm14951fhttp://doi.org/10.1039/c2jm14951f .
Min, J.; Zhang, Z. G.; Zhang, S.; Zhang, M.; Zhang, J.; Li, Y. . Synthesis and photovoltaic properties of D-A copolymers based on dithienosilole and benzotriazole . Macromolecules , 2011 . 44 7632 -7638 . DOI:10.1021/ma201673mhttp://doi.org/10.1021/ma201673m .
Zhang, L.; He, C.; Chen, J.; Yuan, P.; Huang, L.; Zhang, C.; Cai, W.; Liu, Z.; Cao, Y. . Bulk-heterojunction solar cells with benzotriazole-based copolymers as electron donors: largely improved photovoltaic parameters by using PFN/Al bilayer cathode . Macromolecules , 2010 . 43 9771 -9778 . DOI:10.1021/ma102080chttp://doi.org/10.1021/ma102080c .
Song, J.; Bo, Z. . Planar copolymers for high-efficiency polymer solar cells . Sci. China Chem. , 2019 . 62 9 -13 . DOI:10.1007/s11426-018-9363-8http://doi.org/10.1007/s11426-018-9363-8 .
Li, K.; Li, Z.; Feng, K.; Xu, X.; Wang, L.; Peng, Q. . Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells . J. Am. Chem. Soc. , 2013 . 135 13549 -13557 . DOI:10.1021/ja406220ahttp://doi.org/10.1021/ja406220a .
Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. . Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency . J. Am. Chem. Soc. , 2016 . 138 4657 -4664 . DOI:10.1021/jacs.6b01744http://doi.org/10.1021/jacs.6b01744 .
Price, S. C.; Stuart, A. C.; Yang, L.; Zhou, H.; You, W. . Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells . J. Am. Chem. Soc. , 2011 . 133 4625 -4631 . DOI:10.1021/ja1112595http://doi.org/10.1021/ja1112595 .
Zhang, Z.; Peng, B.; Liu, B.; Pan, C.; Li, Y.; He, Y.; Zhou, K.; Zou, Y. . Copolymers from benzodithiophene and benzotriazole: synthesis and photovoltaic applications . Polym. Chem. , 2010 . 1 1441 -1447 . DOI:10.1039/c0py00136hhttp://doi.org/10.1039/c0py00136h .
Zhang, Q.; Kelly, M. A.; Bauer, N.; You, W. . The curious case of fluorination of conjugated polymers for solar cells . Acc. Chem. Res. , 2017 . 50 2401 -2409 . DOI:10.1021/acs.accounts.7b00326http://doi.org/10.1021/acs.accounts.7b00326 .
Gao, L.; Zhang, Z. G.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. . All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27% . Adv. Mater. , 2016 . 28 1884 -1890 . DOI:10.1002/adma.201504629http://doi.org/10.1002/adma.201504629 .
Gao, L.; Zhang, Z. G.; Bin, H.; Xue, L.; Yang, Y.; Wang, C.; Liu, F.; Russell, T. P.; Li, Y. . High-efficiency nonfullerene polymer solar cells with medium bandgap polymer donor and narrow bandgap organic semiconductor acceptor . Adv. Mater. , 2016 . 28 8288 -8295 . DOI:10.1002/adma.201601595http://doi.org/10.1002/adma.201601595 .
Yang, Y.; Zhang, Z. G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. . Side-chain isomerization on an n-type organic semiconductor itic acceptor makes 11.77% high efficiency polymer solar cells . J. Am. Chem. Soc. , 2016 . 138 15011 -15018 . DOI:10.1021/jacs.6b09110http://doi.org/10.1021/jacs.6b09110 .
Bin, H.; Yang, Y.; Peng, Z.; Ye, L.; Yao, J.; Zhong, L.; Sun, C.; Gao, L.; Huang, H.; Li, X.; Qiu, B.; Xue, L.; Zhang, Z. G.; Ade, H.; Li, Y. . Effect of alkylsilyl side-chain structure on photovoltaic properties of conjugated polymer donors . Adv. Energy Mater. , 2018 . 8 1702324 DOI:10.1002/aenm.201702324http://doi.org/10.1002/aenm.201702324 .
Su, W.; Li, G.; Fan, Q.; Zhu, Q.; Guo, X.; Chen, J.; Wu, J.; Ma, W.; Zhang, M.; Li, Y. . Nonhalogen solvent-processed polymer solar cells based on chlorine and trialkylsilyl substituted conjugated polymers achieve 12.8% efficiency . J. Mater. Chem. A , 2019 . 7 2351 -2359 . DOI:10.1039/C8TA10662Bhttp://doi.org/10.1039/C8TA10662B .
Tang, A.; Song, W.; Xiao, B.; Guo, J.; Min, J.; Ge, Z.; Zhang, J.; Wei, Z.; Zhou, E. . Benzotriazole-based acceptor and donors, coupled with chlorination, achieve a high Voc of 1.24 V and an efficiency of 10.5% in fullerene-free organic solar cells . Chem. Mater. , 2019 . 31 3941 -3947 . DOI:10.1021/acs.chemmater.8b05316http://doi.org/10.1021/acs.chemmater.8b05316 .
Tang, A.; Xiao, B.; Chen, F.; Zhang, J.; Wei, Z.; Zhou, E. . The introduction of fluorine and sulfur atoms into benzotriazole-based p-type polymers to match with a benzotriazole-containing n-type small molecule: “the same-acceptor-strategy” to realize high open-circuit voltage . Adv. Energy Mater. , 2018 . 8 1801582 DOI:10.1002/aenm.201801582http://doi.org/10.1002/aenm.201801582 .
Fan, Q.; Su, W.; Meng, X.; Guo, X.; Li, G.; Ma, W.; Zhang, M.; Li, Y. . High-performance non-fullerene polymer solar cells based on fluorine substituted wide bandgap copolymers without extra treatments . Solar RRL , 2017 . 1700020 DOI:10.1002/solr.201700020http://doi.org/10.1002/solr.201700020 .
Xue, L.; Yang, Y.; Xu, J.; Zhang, C.; Bin, H.; Zhang, Z. G.; Qiu, B.; Li, X.; Sun, C.; Gao, L.; Yao, J.; Chen, X.; Yang, Y.; Xiao, M.; Li, Y. . Side chain engineering on medium bandgap copolymers to suppress triplet formation for high-efficiency polymer solar cells . Adv. Mater. , 2017 . 40 1703344 DOI:10.1002/adma.201703344http://doi.org/10.1002/adma.201703344 .
Chao, P.; Liu, L.; Zhou, J.; Qu, J.; Mo, D.; Meng, H.; Xie, Z.; He, F.; Ma, Y. . Multichloro-substitution strategy: facing low photon energy loss in nonfullerene solar cells . ACS Appl. Energy Mater. , 2018 . 1 6549 -6559 . DOI:10.1021/acsaem.8b01447http://doi.org/10.1021/acsaem.8b01447 .
Yan, T.; Bin, H.; Yang, Y.; Xue, L.; Zhang, Z. G.; Li, Y. . Effect of furan π-bridge on the photovoltaic performance of D-A copolymers based on bi(alkylthio-thienyl)benzodithiophene and fluorobenzotriazole . Sci. China Chem. , 2017 . 60 537 -544 . DOI:10.1007/s11426-017-9030-9http://doi.org/10.1007/s11426-017-9030-9 .
Yan, T.; Bin, H.; Sun, C.; Zhang, Z. G.; Li, Y. . Synthesis and photovoltaic properties of 2D-conjugated polymers with alkylsilyl-substituted thieno[3,2-b]thiophene conjugated side chains . Org. Electron. , 2018 . 57 255 -262 . DOI:10.1016/j.orgel.2018.03.028http://doi.org/10.1016/j.orgel.2018.03.028 .
Chen, Y.; Geng, Y.; Tang, A.; Wang, X.; Sun, Y.; Zhou, E. . Changing the π-bridge from thiophene to thieno[3,2-b]thiophene for the D-π-A type polymer enables high performance fullerene-free organic solar cells . Chem. Commun. , 2019 . 55 6708 -6710 . DOI:10.1039/C9CC02904Dhttp://doi.org/10.1039/C9CC02904D .
Tang, A.; Zhang, Q.; Du, M.; Li, G.; Geng, Y.; Zhang, J.; Wei, Z.; Sun, X.; Zhou, E. . Molecular Engineering of D-π-A copolymers based on 4,8-bis(4-chlorothiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene (BDT-T-CL) for high-performance fullerene-free organic solar cells . Macromolecules , 2019 . 52 6227 -6233 . DOI:10.1021/acs.macromol.9b01233http://doi.org/10.1021/acs.macromol.9b01233 .
Wang, T.; Sun, R.; Xu, S.; Guo, J.; Wang, W.; Guo, J.; Jiao, X.; Wang, J.; Jia, S.; Zhu, X.; Li, Y.; Min, J. . A wide-bandgap D-A copolymer donor based on a chlorine substituted acceptor unit for high performance polymer solar cells . J. Mater. Chem. A , 2019 . 7 14070 -14078 . DOI:10.1039/C9TA03272Jhttp://doi.org/10.1039/C9TA03272J .
Bin, H.; Zhong, L.; Yang, Y.; Gao, L.; Huang, H.; Sun, C.; Li, X.; Xue, L.; Zhang, Z. G.; Zhang, Z.; Li, Y. . Medium bandgap polymer donor based on bi(trialkylsilylthienyl-benzo[1,2-b:4,5-b′]-difuran) for high performance nonfullerene polymer solar cells . Adv. Energy Mater. , 2017 . 7 1700746 DOI:10.1002/aenm.201700746http://doi.org/10.1002/aenm.201700746 .
Zhong, L.; Bin, H.; Angunawela, I.; Jia, Z.; Qiu, B.; Sun, C.; Li, X.; Zhang, Z.; Ade, H.; Li, Y. . Effect of replacing thiophene by selenophene on the photovoltaic performance of wide bandgap copolymer donors . Macromolecules , 2019 . 52 4776 -4784 . DOI:10.1021/acs.macromol.9b00484http://doi.org/10.1021/acs.macromol.9b00484 .
Zhang, Y.; Yao, H.; Zhang, S.; Qin, Y.; Zhang, J.; Yang, L.; Li, W.; Wei, Z.; Gao, F.; Hou, J . Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials . Sci. China Chem. , 2018 . 61 1328 -1337 . DOI:10.1007/s11426-018-9260-2http://doi.org/10.1007/s11426-018-9260-2 .
Chao, P.; Johner, N.; Zhong, X.; Meng, H.; He, F. . Chlorination strategy on polymer donors toward efficient solar conversions . J. Energy Chem. , 2019 . 39 208 -216 . DOI:10.1016/j.jechem.2019.04.002http://doi.org/10.1016/j.jechem.2019.04.002 .
Qiu, B.; Chen, S.; Li, H.; Luo, Z.; Yao, J.; Sun, C.; Li, X.; Xue, L.; Zhang, Z. G.; Yang, C.; Li, Y. . A simple approach to prepare chlorinated polymer donors with low-lying homo level for high performance polymer solar cells . Chem. Mater. , 2019 . 31 6558 -6567 . DOI:10.1021/acs.chemmater.8b05352http://doi.org/10.1021/acs.chemmater.8b05352 .
Wang, X.; Dou, K.; Shahid, B.; Liu, Z.; Li, Y.; Sun, M.; Zheng, N.; Bao, X.; Yang, R. . Terpolymer strategy toward high-efficiency polymer solar cells: integrating symmetric benzodithiophene and asymmetrical thieno[2,3-f]benzofuran segments . Chem. Mater. , 2019 . 31 6163 -6173 . DOI:10.1021/acs.chemmater.9b01957http://doi.org/10.1021/acs.chemmater.9b01957 .
Wang, X.; Han, J.; Jiang, H.; Liu, Z.; Li, Y.; Yang, C.; Yu, D.; Bao, X.; Yang, R. . Regulation of molecular packing and blend morphology by finely tuning molecular conformation for high-performance nonfullerene polymer solar cells . ACS Appl. Mater. Interfaces , 2019 . 11 44501 -44512 . DOI:10.1021/acsami.9b14981http://doi.org/10.1021/acsami.9b14981 .
Liu, D.; Zhang, K.; Zhong, Y.; Gu, C.; Li, Y.; Yang, R. . An effective strategy for controlling the morphology of high-performance non-fullerene polymer solar cells without post-treatment: employing bare rigid aryl rings as lever arms in new asymmetric benzodithiophene . J. Mater. Chem. A , 2018 . 6 18125 -18132 . DOI:10.1039/C8TA07134Ahttp://doi.org/10.1039/C8TA07134A .
Chao, P.; Liu, L.; Qu, J.; He, Q.; Gan, S.; Meng, H.; Chen, W.; He, F. . Overcoming the trade-off between Voc and Jsc: asymmetric chloro-substituted two-dimensional benzo[1,2-b:4,5-b′]dithiophene-based polymer solar cells . Dyes Pigments , 2019 . 162 746 -754 . DOI:10.1016/j.dyepig.2018.10.071http://doi.org/10.1016/j.dyepig.2018.10.071 .
Wen, S.; Chen, W.; Huang, G.; Shen, W.; Liu, H.; Duan, L.; Zhang, J.; Yang, R. . 2D expanded conjugated polymers with non-fullerene acceptors for efficient polymer solar cells . J. Mater. Chem. C , 2018 . 6 1753 -1758 . DOI:10.1039/C7TC04750Ahttp://doi.org/10.1039/C7TC04750A .
Zhang, Y.; Wang, Y.; Ma, R.; Luo, Z.; Liu, T.; Kang, S. H.; Yan, H.; Yuan, Z.; Yang, C.; Chen, Y. . Wide band-gap two-dimension conjugated polymer donors with different amounts of chlorine substitution on alkoxyphenyl conjugated side chains for non-fullerene polymer solar cells . Chinese J. Polym. Sci. , 2020 . 38 797 -805 . DOI:10.1007/s10118-020-2435-5http://doi.org/10.1007/s10118-020-2435-5 .
Liao, Z.; Xie, Y.; Chen, L.; Tan, Y.; Huang, S.; An, Y.; Ryu, H. S.; Meng, X.; Liao, X.; Huang, B.; Xie, Q.; Woo, H. Y.; Sun, Y.; Chen, Y. . Fluorobenzotriazole (FTAZ)-based polymer donor enables organic solar cells exceeding 12% efficiency . Adv. Funct. Mater. , 2019 . 29 1808828 DOI:10.1002/adfm.201808828http://doi.org/10.1002/adfm.201808828 .
Gao, Y.; Shen, Z.; Tan, F.; Yue, G.; Liu, R.; Wang, Z.; Qu, S.; Wang, Z.; Zhang, W. . Novel benzo[1,2-b:4,5-b']difuran-based copolymer enables efficient polymer solar cells with small energy loss and high Voc . Nano Energy , 2020 . 76 104964 DOI:10.1016/j.nanoen.2020.104964http://doi.org/10.1016/j.nanoen.2020.104964 .
Chen, W.; Huang, G.; Li, X.; Wang, H.; Li, Y.; Jiang, H.; Zheng, N.; Yang, R. . Side-chain-promoted benzodithiophene-based conjugated polymers toward striking enhancement of photovoltaic properties for polymer solar cells . ACS Appl. Mater. Interfaces , 2018 . 10 42747 -42755 . DOI:10.1021/acsami.8b16554http://doi.org/10.1021/acsami.8b16554 .
Chen, W.; Huang, G.; Li, X.; Li, Y.; Wang, H.; Jiang, H.; Zhao, Z.; Yu, D.; Wang, E.; Yang, R. . Revealing the position effect of an alkylthio side chain in phenyl-substituted benzodithiophene-based donor polymers on the photovoltaic performance of non-fullerene organic solar cells . ACS Appl. Mater. Interfaces , 2019 . 11 33173 -33178 . DOI:10.1021/acsami.9b07112http://doi.org/10.1021/acsami.9b07112 .
Tang, Z.; Xu, X.; Li, R.; Yu, L.; Meng, L.; Wang, Y.; Li, Y.; Peng, Q. . Asymmetric siloxane functional side chains enable high-performance donor copolymers for photovoltaic applications . ACS Appl. Mater. Interfaces , 2020 . 12 17760 -17768 . DOI:10.1021/acsami.9b20204http://doi.org/10.1021/acsami.9b20204 .
Cui, W.; Li, F.; Zhu, T.; Li, Y.; Yu, L.; Yang, R.; Sun, M. . 1 V high open-circuit voltage fluorinated alkoxybiphenyl side-chained benzodithiophene based photovoltaic polymers . Synth. Met. , 2019 . 257 116182 DOI:10.1016/j.synthmet.2019.116182http://doi.org/10.1016/j.synthmet.2019.116182 .
Li, X.; Huang, G.; Zheng, N.; Li, Y.; Kang, X.; Qiao, S.; Jiang, H.; Chen, W.; Yang, R. . High-efficiency polymer solar cells over 13.9% with a high Voc beyond 1.0 V by synergistic effect of fluorine and sulfur . Solar RRL , 2019 . 3 1900005 DOI:10.1002/solr.201900005http://doi.org/10.1002/solr.201900005 .
Mori, D.; Benten, H.; Okada, I.; Ohkita, H.; Ito, S. . Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7% . Energy Environ. Sci. , 2014 . 7 2939 -2943 . DOI:10.1039/C4EE01326Chttp://doi.org/10.1039/C4EE01326C .
Liu, X.; Rand, B. P.; Forrest, S. R. . Engineering charge-transfer states for efficient, low-energy-loss organic photovoltaics . Trends Chem. , 2019 . 1 815 -829 . DOI:10.1016/j.trechm.2019.08.001http://doi.org/10.1016/j.trechm.2019.08.001 .
Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. . Organic solar cells based on non-fullerene acceptors . Nat. Mater. , 2018 . 17 119 DOI:10.1038/nmat5063http://doi.org/10.1038/nmat5063 .
Wang, T.; Kupgan, G.; Brédas, J. L. . Organic photovoltaics: relating chemical structure, local morphology, and electronic properties . Trends Chem. , 2020 . 2 535 -554 . DOI:10.1016/j.trechm.2020.03.006http://doi.org/10.1016/j.trechm.2020.03.006 .
Yu, L.; Li, Y.; Wang, Y.; Wang, X.; Cui, W.; Wen, S.; Zheng, N.; Sun, M.; Yang, R. . Fuse the π-bridge to acceptor moiety of donor-π-acceptor conjugated polymer: enabling an all-round enhancement in photovoltaic parameters of nonfullerene organic solar cells . ACS Appl. Mater. Interfaces , 2019 . 11 31087 -31095 . DOI:10.1021/acsami.9b09486http://doi.org/10.1021/acsami.9b09486 .
Lan, L.; Chen, Z.; Hu, Q.; Ying, L.; Zhu, R.; Liu, F.; Russell, T. P.; Huang, F.; Cao, Y. . High-performance polymer solar cells based on a wide-bandgap polymer containing pyrrolo[3,4-f]benzotriazole-5,7-dione with a power conversion efficiency of 8.63% . Adv. Sci. , 2016 . 3 1600032 DOI:10.1002/advs.201600032http://doi.org/10.1002/advs.201600032 .
Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y. . Achieving over 16% efficiency for single-junction organic solar cells . Sci. China Chem. , 2019 . 62 746 -752 . DOI:10.1007/s11426-019-9457-5http://doi.org/10.1007/s11426-019-9457-5 .
Fan, B.; Du, X.; Liu, F.; Zhong, W.; Ying, L.; Xie, R.; Tang, X.; An, K.; Xin, J.; Li, N.; Ma, W.; Brabec, C. J.; Huang, F.; Cao, Y. . Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics . Nat. Energy , 2018 . 3 1051 -1058 . DOI:10.1038/s41560-018-0263-4http://doi.org/10.1038/s41560-018-0263-4 .
Li, Z. Y.; Zhong, W. K.; Ying, L.; Li, N.; Liu, F.; Huang, F.; Cao, Y. . Achieving efficient thick film all-polymer solar cells using a green solvent additive . Chinese J. Polym. Sci. , 2020 . 38 323 -331 . DOI:10.1007/s10118-020-2356-3http://doi.org/10.1007/s10118-020-2356-3 .
Zhu, L.; Zhong, W.; Qiu, C.; Lyu, B.; Zhou, Z.; Zhang, M.; Song, J.; Xu, J.; Wang, J.; Ali, J.; Feng, W.; Shi, Z.; Gu, X.; Ying, L.; Zhang, Y.; Liu, F. . Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication . Adv. Mater. , 2019 . 31 1902899 DOI:10.1002/adma.201902899http://doi.org/10.1002/adma.201902899 .
Jiang, X.; Wang, J.; Wang, W.; Yang, Y.; Zhan, X.; Chen, X. . Impact of an electron withdrawing group on the thiophene-fused benzotriazole unit on the photovoltaic performance of the derived polymer solar cells . Dyes Pigments , 2019 . 166 381 -389 . DOI:10.1016/j.dyepig.2019.03.056http://doi.org/10.1016/j.dyepig.2019.03.056 .
Dong, Y.; Hu, X.; Duan, C.; Liu, P.; Liu, S.; Lan, L.; Chen, D.; Ying, L.; Su, S.; Gong, X.; Huang, F.; Cao, Y. . A series of new medium-bandgap conjugated polymers based on naphtho[1,2-c:5,6-c]bis(2-octyl-[1,2,3]triazole) for high-performance polymer solar cells . Adv. Mater. , 2013 . 25 3683 -3688 . DOI:10.1002/adma.201301547http://doi.org/10.1002/adma.201301547 .
Feng, K.; Yuan, J.; Bi, Z.; Ma, W.; Xu, X.; Zhang, G.; Peng, Q. . Low-energy-loss polymer solar cells with 14.52% efficiency enabled by wide-band-gap copolymers . iScience , 2019 . 12 1 -12 . DOI:10.1016/j.isci.2018.12.027http://doi.org/10.1016/j.isci.2018.12.027 .
Fu, H.; Wang, Z.; Sun, Y. . Polymer donors for high-performance non-fullerene organic solar cells . Angew. Chem. Int. Ed. , 2019 . 58 4442 -4453 . DOI:10.1002/anie.201806291http://doi.org/10.1002/anie.201806291 .
Zheng, B.; Huo, L.; Li, Y. . Benzodithiophenedione-based polymers: recent advances in organic photovoltaics . NPG Asia Mater. , 2020 . 12 3 DOI:10.1038/s41427-019-0163-5http://doi.org/10.1038/s41427-019-0163-5 .
An, C.; Zheng, Z.; Hou, J. . Recent progress in wide bandgap conjugated polymer donors for high-performance nonfullerene organic photovoltaics . Chem. Commun. , 2020 . 56 4750 -4760 . DOI:10.1039/D0CC01038Chttp://doi.org/10.1039/D0CC01038C .
Zheng, Z.; Yao, H.; Ye, L.; Xu, Y.; Zhang, S.; Hou, J. . PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics . Mater. Today , 2020 . 35 115 -130 . DOI:10.1016/j.mattod.2019.10.023http://doi.org/10.1016/j.mattod.2019.10.023 .
Cui, C.; Li, Y. . High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap nonfullerene acceptors . Energy Environ. Sci. , 2019 . 12 3225 -3246 . DOI:10.1039/C9EE02531Fhttp://doi.org/10.1039/C9EE02531F .
Sun, C.; Pan, F.; Bin, H.; Zhang, J.; Xue, L.; Qiu, B.; Wei, Z.; Zhang, Z. G.; Li, Y. . A low cost and high performance polymer donor material for polymer solar cells . Nat. Commun. , 2018 . 9 743 DOI:10.1038/s41467-018-03207-xhttp://doi.org/10.1038/s41467-018-03207-x .
Yuan, J.; Guo, W.; Xia, Y.; Ford, M. J.; Jin, F.; Liu, D.; Zhao, H.; Inganäs, O.; Bazan, G. C.; Ma, W. . Comparing the device physics, dynamics and morphology of polymer solar cells employing conventional PCBM and non-fullerene polymer acceptor N2200 . Nano Energy , 2017 . 35 251 -262 . DOI:10.1016/j.nanoen.2017.03.050http://doi.org/10.1016/j.nanoen.2017.03.050 .
Li, B.; Zhang, Q.; Dai, G.; Fan, H.; Yuan, X.; Xu, Y.; Cohen-Kleinstein, B.; Yuan, J.; Ma, W. . Understanding the impact of side-chains on photovoltaic performance in efficient all-polymer solar cells . J. Mater. Chem. C , 2019 . 7 12641 -12649 . DOI:10.1039/C9TC02141Hhttp://doi.org/10.1039/C9TC02141H .
Jiang, K.; Wei, Q.; Lai, J. Y. L.; Peng, Z.; Kim, H. K.; Yuan, J.; Ye, L.; Ade, H.; Zou, Y.; Yan, H. . Alkyl chain tuning of small molecule acceptors for efficient organic solar cells . Joule , 2019 . 3 3020 -3033 . DOI:10.1016/j.joule.2019.09.010http://doi.org/10.1016/j.joule.2019.09.010 .
Jia, T.; Zhang, J.; Zhong, W.; Liang, Y.; Zhang, K.; Dong, S.; Ying, L.; Liu, F.; Wang, X.; Huang, F.; Cao, Y. . 14.4% Efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor . Nano Energy , 2020 . 72 104718 DOI:10.1016/j.nanoen.2020.104718http://doi.org/10.1016/j.nanoen.2020.104718 .
Wu, Q.; Wang, W.; Wang, T.; Sun, R.; Guo, J.; Wu, Y.; Jiao, X.; Brabec, C. J.; Li, Y.; Min, J. . High-performance all-polymer solar cells with only 0.47 eV energy loss . Sci. China Chem. , 2020 . 63 1449 -1460 . DOI:10.1007/s11426-020-9785-7http://doi.org/10.1007/s11426-020-9785-7 .
Du, J.; Hu, K.; Meng, L.; Angunawela, I.; Zhang, J.; Qin, S.; Liebman-Pelaez, A.; Zhu, C.; Zhang, Z.; Ade, H.; Li, Y. . High performance all-polymer solar cells with the polymer acceptor synthesized via a random ternary copolymerization strategy . Angew. Chem. Int. Ed. , 2020 . 59 15181 -15185 . DOI:10.1002/anie.202005357http://doi.org/10.1002/anie.202005357 .
0
Views
5
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution