a.CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.University of Chinese Academy of Sciences, Beijing 100049, China
c.The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
d.College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
xiadong@iccas.ac.cn
Scan for full text
Yue Lai, Xiao Kuang, Wen-Hong Yang, et al. Dynamic Bonds Mediate
Yue Lai, Xiao Kuang, Wen-Hong Yang, et al. Dynamic Bonds Mediate
Stimulus-responsive polymers containing dynamic bonds enable fascinating properties of self-healing, recycling and reprocessing due to enhanced relaxation of polymer chain/network with labile linkages. Here, we study the structure and properties of a new type of thermoplastic polyurethanes (TPUs) with trapped dynamic covalent bonds in the hard-phase domain and report the frustrated relaxation of TPUs containing weak dynamic bond and ,π,-,π, interaction in hard segments. As detected by rheometry, the aromatic TPUs with alkyl disulfide in the hard segments possess the maximum network relaxation time in contrast to those without dynamic bonds and alicyclic TPUs. ,In situ, FTIR and small-angle scattering results reveal that the alkyl disulfide facilitates stronger intermolecular interaction and more stable micro-phase morphology in ,π,-,π, interaction based aromatic TPUs. Molecular dynamics simulation for pure hard segments of model molecules verify that the presence of disulfide bonds leads to stronger ,π,-,π, stacking of aromatic rings due to both enhanced assembling thermodynamics and kinetics. The enhanced ,π,-,π, packing and micro-phase structure in TPUs further kinetically immobilize the dynamic bond. This kinetically interlocking between the weak dynamic bonds and strong molecular interaction in hard segments leads to much slower network relaxation of TPU. This work provides a new insight in tuning the network relaxation and heat resistance as well as molecular self-assembly in stimulus-responsive dynamic polymers by both molecular design and micro-phase control toward the functional applications of advanced materials.
Thermoplastic polyurethaneDisulfide bondStimuli-responsive rearrangementπ-π StackingPhase locked effect
Ghosh, B.; Urban, M. W. . Self-repairing oxetane-substituted chitosan polyurethane networks . Science , 2009 . 323 1458 -1460 . DOI:10.1126/science.1167391http://doi.org/10.1126/science.1167391 .
Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. . Self-healing and thermoreversible rubber from supramolecular assembly . Nature , 2008 . 451 977 -980 . DOI:10.1038/nature06669http://doi.org/10.1038/nature06669 .
Li, Y.; Sun, J . Self-healing and healable polymeric materials based on polymer complexes . Acta Polymerica Sinica (in Chinese) , 2020 . 51 791 -803 . DOI:10.11777/j.issn1000-3304.2020.20062http://doi.org/10.11777/j.issn1000-3304.2020.20062 .
Lendlein, A.; Jiang, H.; Junger, O.; Langer, R. . Light-induced shape-memory polymers . Nature , 2005 . 434 879 -882 . DOI:10.1038/nature03496http://doi.org/10.1038/nature03496 .
Zheng, N.; Fang, Z.; Zou, W.; Zhao, Q.; Xie, T. . Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation . Angew. Chem. Int. Ed. , 2016 . 128 11421 -11425. .
Christensen, P. R.; Scheuermann, A. M.; Loeffler, K. E.; Helms, B. A. . Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds . Nat. Chem. , 2019 . 11 442 -448 . DOI:10.1038/s41557-019-0249-2http://doi.org/10.1038/s41557-019-0249-2 .
Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. . Silica-like malleable materials from permanent organic networks . Science , 2011 . 334 965 -968 . DOI:10.1126/science.1212648http://doi.org/10.1126/science.1212648 .
Yang, Y.; Pei, Z.; Li, Z.; Wei, Y.; Ji, Y. . Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold . J. Am. Chem. Soc. , 2016 . 138 2118 -2121 . DOI:10.1021/jacs.5b12531http://doi.org/10.1021/jacs.5b12531 .
Kuang, X.; Liu, G.; Dong, X.; Wang, D. . Correlation between stress relaxation dynamics and thermochemistry for covalent adaptive networks polymers . Mater. Chem. Front. , 2017 . 1 111 -118 . DOI:10.1039/C6QM00094Khttp://doi.org/10.1039/C6QM00094K .
Adzima, B. J.; Aguirre, H. A.; Kloxin, C. J.; Scott, T. F.; Bowman, C. N. . Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels-Alder polymer network . Macromolecules , 2008 . 41 9112 -9117 . DOI:10.1021/ma801863dhttp://doi.org/10.1021/ma801863d .
Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. . A thermally re-mendable cross-linked polymeric material . Science , 2002 . 295 1698 -1702 . DOI:10.1126/science.1065879http://doi.org/10.1126/science.1065879 .
Kuang, X.; Liu, G.; Dong, X.; Wang, D. . Triple-shape memory epoxy based on Diels-Alder adduct molecular switch . Polymer , 2016 . 84 1 -9 . DOI:10.1016/j.polymer.2015.12.033http://doi.org/10.1016/j.polymer.2015.12.033 .
Kuang, X.; Liu, G.; Zheng, L.; Li, C.; Wang, D. . Functional polyester with widely tunable mechanical properties: the role of reversible cross-linking and crystallization . Polymer , 2015 . 65 202 -209 . DOI:10.1016/j.polymer.2015.03.074http://doi.org/10.1016/j.polymer.2015.03.074 .
Oehlenschlaeger, K. K.; Mueller, J. O.; Brandt, J.; Hilf, S.; Lederer, A.; Wilhelm, M.; Graf, R.; Coote, M. L.; Schmidt, F. G.; Barner-Kowollik, C. . Adaptable hetero Diels-Alder networks for fast self-healing under mild conditions . Adv. Mater. , 2014 . 26 3561 -3566 . DOI:10.1002/adma.201306258http://doi.org/10.1002/adma.201306258 .
Michal, B. T.; Jaye, C. A.; Spencer, E. J.; Rowan, S. J. . Inherently photohealable and thermal shape-memory polydisulfide networks . ACS Macro Lett. , 2013 . 2 694 -699 . DOI:10.1021/mz400318mhttp://doi.org/10.1021/mz400318m .
Barcan, G. A.; Zhang, X.; Waymouth, R. M. . Structurally dynamic hydrogels derived from 1,2-dithiolanes . J. Am. Chem. Soc. , 2015 . 137 5650 -5653 . DOI:10.1021/jacs.5b02161http://doi.org/10.1021/jacs.5b02161 .
Deng, J.; Kuang, X.; Liu, R.; Ding, W.; Wang, A. C.; Lai, Y. C.; Dong, K.; Wen, Z.; Wang, Y.; Wang, L.; Qi, H. J.; Zhang, T.; Wang, Z. L. . Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics . Adv. Mater. , 2018 . 30 1705918 DOI:10.1002/adma.201705918http://doi.org/10.1002/adma.201705918 .
Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W. . Heat- or water-driven malleability in a highly recyclable covalent network polymer . Adv. Mater. , 2014 . 26 3938 -3942 . DOI:10.1002/adma.201400317http://doi.org/10.1002/adma.201400317 .
Lei, X.; Jin, Y.; Sun, H.; Zhang, W. . Rehealable imide-imine hybrid polymers with full recyclability . J. Mater. Chem. A , 2017 . 5 21140 -21145 . DOI:10.1039/C7TA07076Dhttp://doi.org/10.1039/C7TA07076D .
Zhao, S.; Abu-Omar, M. M. . Recyclable and malleable epoxy thermoset bearing aromatic imine bonds . Macromolecules , 2018 . 51 9816 -9824 . DOI:10.1021/acs.macromol.8b01976http://doi.org/10.1021/acs.macromol.8b01976 .
Zou, Z.; Zhu, C.; Li, Y.; Lei, X.; Zhang, W.; Xiao, J. . Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite . Sci. Adv. , 2018 . 4 eaaq0508 DOI:10.1126/sciadv.aaq0508http://doi.org/10.1126/sciadv.aaq0508 .
Lessard, J. J.; Garcia, L. F.; Easterling, C. P.; Sims, M. B.; Bentz, K. C.; Arencibia, S.; Savin, D. A.; Sumerlin, B. S. . Catalyst-free vitrimers from vinyl polymers . Macromolecules , 2019 . 52 2105 -2111 . DOI:10.1021/acs.macromol.8b02477http://doi.org/10.1021/acs.macromol.8b02477 .
Capelot, M.; Unterlass, M. M.; Tournilhac, F.; Leibler, L. . Catalytic control of the vitrimer glass transition . ACS Macro Lett. , 2012 . 1 789 -792 . DOI:10.1021/mz300239fhttp://doi.org/10.1021/mz300239f .
Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. . Metal-catalyzed transesterification for healing and assembling of thermosets . J. Am. Chem. Soc. , 2012 . 134 7664 -7667 . DOI:10.1021/ja302894khttp://doi.org/10.1021/ja302894k .
Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E. M.; Wei, Y.; Ji, Y. . Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds . Nat. Mater. , 2014 . 13 36 -41 . DOI:10.1038/nmat3812http://doi.org/10.1038/nmat3812 .
Yu, K.; Shi, Q.; Dunn, M. L.; Wang, T. J.; Qi, H. J. . Carbon fiber reinforced thermoset composite with near 100% recyclability . Adv. Funct. Mater. , 2016 . 26 6098 -6106 . DOI:10.1002/adfm.201602056http://doi.org/10.1002/adfm.201602056 .
Lei, Z. Q.; Xiang, H. P.; Yuan, Y. J.; Rong, M. Z.; Zhang, M. Q. . Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds . Chem. Mater. , 2014 . 26 2038 -2046 . DOI:10.1021/cm4040616http://doi.org/10.1021/cm4040616 .
Hentschel, J.; Kushner, A. M.; Ziller, J.; Guan, Z. . Self-healing supramolecular block copolymers . Angew. Chem. Int. Ed. , 2012 . 51 10561 -10565 . DOI:10.1002/anie.201204840http://doi.org/10.1002/anie.201204840 .
Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. . Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries . Nat. Chem. , 2013 . 5 1042 -1048 . DOI:10.1038/nchem.1802http://doi.org/10.1038/nchem.1802 .
Wang, C.; Liu, N.; Allen, R.; Tok, J. B. H.; Wu, Y.; Zhang, F.; Chen, Y.; Bao, Z. . A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide . Adv. Mater. , 2013 . 25 5785 -5790 . DOI:10.1002/adma.201302962http://doi.org/10.1002/adma.201302962 .
Tang, X.; Feula, A.; Baker, C. B.; Melia, K.; Merino, H. D.; Hamley, W. I.; Buckley, P. C.; Hayes, W.; Siviour, R. C. . A dynamic supramolecular polyurethane network whose mechanical properties are kinetically controlled . Polymer , 2017 . 133 143 -150 . DOI:10.1016/j.polymer.2017.11.005http://doi.org/10.1016/j.polymer.2017.11.005 .
Mozhdehi, D.; Ayala, S.; Cromwell, O. R.; Guan, Z. . Self-healing multiphase polymers via dynamic metal-ligand interactions . J. Am. Chem. Soc. , 2014 . 136 16128 -16131 . DOI:10.1021/ja5097094http://doi.org/10.1021/ja5097094 .
Berezkin, Y.; Urick, M. In Modern polyurethanes: overview of structure property relationship. ACS Symp. Ser, ACS Publications, 2013, p. 65−81.
Engels, H. W.; Pirkl, H. G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. . Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges . Angew. Chem. Int. Ed. , 2013 . 52 9422 -9441 . DOI:10.1002/anie.201302766http://doi.org/10.1002/anie.201302766 .
Xiang, D.; He, J.; Cui, T.; Liu, L.; Shi, Q. S.; Ma, L. C.; Liang, Y. . Multiphase structure and electromechanical behaviors of aliphatic polyurethane elastomers . Macromolecules , 2018 . 51 6369 -6379 . DOI:10.1021/acs.macromol.8b01171http://doi.org/10.1021/acs.macromol.8b01171 .
Velankar, S.; Cooper, S. L. . Microphase separation and rheological properties of polyurethane melts. 2. Effect of block incompatibility on the microstructure . Macromolecules , 2000 . 33 382 -394 . DOI:10.1021/ma990817ghttp://doi.org/10.1021/ma990817g .
Yu, S.; Zhang, R.; Wu, Q.; Chen, T.; Sun, P. . Bio-inspired high-performance and recyclable cross-linked polymers . Adv. Mater. , 2013 . 25 4912 -4917 . DOI:10.1002/adma.201301513http://doi.org/10.1002/adma.201301513 .
Heo, Y.; Sodano, H. A. . Self-healing polyurethanes with shape recovery . Adv. Funct. Mater. , 2014 . 24 5261 -5268 . DOI:10.1002/adfm.201400299http://doi.org/10.1002/adfm.201400299 .
Liu, W. X.; Zhang, C.; Zhang, H.; Zhao, N.; Yu, Z. X.; Xu, J. . Oxime-based and catalyst-free dynamic covalent polyurethanes . J. Am. Chem. Soc. , 2017 . 139 8678 -8684 . DOI:10.1021/jacs.7b03967http://doi.org/10.1021/jacs.7b03967 .
Ying, H.; Cheng, J. . Hydrolyzable polyureas bearing hindered urea bonds . J. Am. Chem. Soc. , 2014 . 136 16974 -16977 . DOI:10.1021/ja5093437http://doi.org/10.1021/ja5093437 .
Kang, J.; Son, D.; Wang, G.-J. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; Jin, L.; Tok, J. B. H.; Bao, Z. . Tough and water-insensitive self-healing elastomer for robust electronic skin . Adv. Mater. , 2018 . 30 1706846 DOI:10.1002/adma.201706846http://doi.org/10.1002/adma.201706846 .
Zhang, Q.; Niu, S.; Wang, L.; Lopez, J.; Chen, S.; Cai, Y.; Du, R.; Liu, Y.; Lai, J. C.; Liu, L.; Li, C. H.; Yan, X.; Liu, C.; Tok, J. B. H.; Jia, X.; Bao, Z. . An elastic autonomous self-healing capacitive sensor based on a dynamic dual crosslinked chemical system . Adv. Mater. , 2018 . 30 1801435 DOI:10.1002/adma.201801435http://doi.org/10.1002/adma.201801435 .
Jin, B.; Song, H.; Jiang, R.; Song, J.; Zhao, Q.; Xie, T. . Programming a crystalline shape memory polymer network with thermo-and photo-reversible bonds toward a single-component soft robot . Sci. Adv. , 2018 . 4 eaao3865 DOI:10.1126/sciadv.aao3865http://doi.org/10.1126/sciadv.aao3865 .
Zhao, Q.; Zou, W.; Luo, Y.; Xie, T. . Shape memory polymer network with thermally distinct elasticity and plasticity . Sci. Adv. , 2016 . 2 e1501297 DOI:10.1126/sciadv.1501297http://doi.org/10.1126/sciadv.1501297 .
Xu, W. M.; Rong, M. Z.; Zhang, M. Q. . Sunlight driven self-healing, reshaping and recycling of a robust, transparent and yellowing-resistant polymer . J. Mater. Chem. A , 2016 . 4 10683 -10690 . DOI:10.1039/C6TA02662Ahttp://doi.org/10.1039/C6TA02662A .
Rekondo, A.; Martin, R.; de, Luzuriaga A. R.; Cabanero, G.; Grande, H. J.; Odriozola, I. . Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis . Mater. Horiz. , 2014 . 1 237 -240 . DOI:10.1039/C3MH00061Chttp://doi.org/10.1039/C3MH00061C .
Xu, Y.; Chen, D. . A novel self-healing polyurethane based on disulfide bonds . Macromol. Chem. Phys. , 2016 . 217 1191 -1196 . DOI:10.1002/macp.201600011http://doi.org/10.1002/macp.201600011 .
Zhang, L.; Chen, L.; Rowan, S. J. . Trapping dynamic disulfide bonds in the hard segments of thermoplastic polyurethane elastomers . Macromol. Chem. Phys. , 2017 . 218 1600320 DOI:10.1002/macp.201600320http://doi.org/10.1002/macp.201600320 .
Kim, S. M.; Jeon, H.; Shin, S. H.; Park, S. A.; Jegal, J.; Hwang, S. Y.; Oh, D. X.; Park, J. . Superior toughness and fast self-healing at room temperature engineered by transparent elastomers . Adv. Mater. , 2018 . 30 1705145 DOI:10.1002/adma.201705145http://doi.org/10.1002/adma.201705145 .
Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. . Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design . Adv. Mater. , 2018 . 30 1802556 DOI:10.1002/adma.201802556http://doi.org/10.1002/adma.201802556 .
Carlsson, D. J.; Wiles, D. M . The photodegradation of polypropylene films. II. Photolysis of ketonic oxidation products . Macromolecules , 1969 . 2 587 -597 . DOI:10.1021/ma60012a006http://doi.org/10.1021/ma60012a006 .
Tobin, M. C . The infrared spectra of polymers. III. The infrared and Raman spectra of isotactic polypropylene . J. Phys. Chem. , 1960 . 64 216 -219 . DOI:10.1021/j100831a007http://doi.org/10.1021/j100831a007 .
Jorgensen, W. L.; Maxwell, D. S.; Tirada-Rives, J. J. . Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids . Chem. Soc. , 1996 . 118 11225 -11236 . DOI:10.1021/ja9621760http://doi.org/10.1021/ja9621760 .
Berendsen, H. J. C.; van der Spoel, D.; van Drunen, P. . GROMACS: A message-passing parallel molecular dynamics implementation . Comp. Phys. Commun. , 1995 . 91 43 -56 . DOI:10.1016/0010-4655(95)00042-Ehttp://doi.org/10.1016/0010-4655(95)00042-E .
Lindahl, E.; Hess, B.; van der Spoel, D . GROMACS 3.0: a package for molecular simulation and trajectory analysis . Mol. Model. , 2001 . 7 306 -317 . DOI:10.1007/s008940100045http://doi.org/10.1007/s008940100045 .
Kuang, X.; Chen, K.; Dunn, C. K.; Wu, J.; Li, V. C.; Qi, H. J. . 3D printing of highly stretchable, shape-memory and self-healing elastomer toward novel 4D printing . ACS Appl. Mater. Interfaces , 2018 . 10 7381 -7388 . DOI:10.1021/acsami.7b18265http://doi.org/10.1021/acsami.7b18265 .
Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. . Thiyl radicals in organic synthesis . Chem. Rev. , 2014 . 114 2587 -2693 . DOI:10.1021/cr400441mhttp://doi.org/10.1021/cr400441m .
Hunter, C. A.; Sanders, J. K. . The nature of π-π interactions . J. Am. Chem. Soc. , 1990 . 112 5525 -5534 . DOI:10.1021/ja00170a016http://doi.org/10.1021/ja00170a016 .
0
Views
5
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution