a.The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
b.Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
wyxuan@th.btbu.edu.cn (Y.X.W.)
p.ma@jiangnan.edu.cn (P.M.M.)
Scan for full text
Man-Man Yu, Wei-Jun Yang, De-Yu Niu, et al. Enhancing the Crystallization Performance of Poly(L-lactide) by Intramolecular Hybridizing with Tunable Self-assembly-type Oxalamide Segments. [J]. Chinese Journal of Polymer Science 39(1):122-132(2021)
Man-Man Yu, Wei-Jun Yang, De-Yu Niu, et al. Enhancing the Crystallization Performance of Poly(L-lactide) by Intramolecular Hybridizing with Tunable Self-assembly-type Oxalamide Segments. [J]. Chinese Journal of Polymer Science 39(1):122-132(2021) DOI: 10.1007/s10118-020-2461-3.
In this work, hydroxyl-terminated oxalamide compounds ,N,1,N,2,-bis(2-hydroxyethyl)oxalamide (OXA1) and ,N,1,N,1,′,-(ethane-1,2-diyl)bis(,N,2,-(2-hydroxyethyl)oxalamide (OXA2) were synthesized to initiate the ring-opening polymerization of L-lactide for preparation of oxalamide-hybridized poly(L-lactide) (PLA,OXA,),i.e., PLA,OXA1, and PLA,OXA2,. The crystallization properties of PLA were improved by the self-assembly of the oxalamide segments in PLA,OXA, which served as the initial heterogeneous nuclei. The crystal growth kinetics was studied by Hoffman-Lauritzen theory and it revealed that the nucleation energy barrier of PLA,OXA1, and PLA,OXA2, was lower than that of PLA. Consequently, PLA,OXA, could crystallize much faster than PLA, accompanied with a decrease in spherulite size and half-life crystallization time by 74.8% and 86.5% (,T,=125 °C), respectively. In addition, the final crystallinity of PLA,OXA1, and PLA,OXA2, was 6 and 8 times higher, respectively, in comparison with that of neat PLA under a controlled cooling rate of 10 °C/min. The results demonstrate that the hybridization of oxalamide segments in PLA backbone will serve as the self-heteronucleation for promoting the crystallization rate. The higher the content of oxalamide segments (PLA,OXA2, compared with PLA,OXA1,) is, the stronger the promotion effect will be. Therefore, this study may provide a universal approach by hybridizing macromolecular structure to facilitate the crystallization of semi-crystalline polymer materials.
Poly(L-lactide)Oxalamide compoundsSelf-heteronucleationCrystallization kinetics
Rankin, J. . European parliament votes to ban single-use plastics . The Guardian , 2019 . 27 .
Trache, D.; Hussin, M. H.; Haafiz, M. K. M.; Thakur, V. K. . Recent progress in cellulose nanocrystals: sources and production . Nanoscale , 2017 . 9 1763 -1786 . DOI:10.1039/C6NR09494Ehttp://doi.org/10.1039/C6NR09494E .
Gu, J.; Peng, X.; Peng, C.; Lei, Z.; Wang, H.; Dai, L.; Song, L.; Huang, Y.; Zhang, J.; Tao, C. . Functionalization of biodegradable PLA non-woven fabric as superoleophilic and superhydrophobic material for efficient oil absorption and oil/water separation . ACS Appl. Mater. Interfaces , 2017 . 9 5968 DOI:10.1021/acsami.6b13547http://doi.org/10.1021/acsami.6b13547 .
Tenn, N.; Follain, N.; Soulestin, J.; Crétois, R.; Bourbigot, S.; Marais, S. . Effect of nanoclay hydration on barrier properties of PLA/montmorillonite based nanocomposites . J. Phys. Chem. C , 2013 . 117 12117 -12135 . DOI:10.1021/jp401546thttp://doi.org/10.1021/jp401546t .
Saiwaew, R.; Suppakul, P.; Boonsupthip, W.; Pechyen, C.; Saiwaew, R. . Development and characterization of poly(lactic acid)/fish water soluble protein composite sheets: a potential approach for biodegradable packaging . Energy Procedia , 2014 . 56 280 -298 . DOI:10.1016/j.egypro.2014.07.159http://doi.org/10.1016/j.egypro.2014.07.159 .
Chen, Y.; Wang, W.; Qiu, Y.; Li, L.; Qian, L.; Xin, F. . Terminal group effects of phosphazene-triazine bi-group flame retardant additives in flame retardant polylactic acid composites . Polym. Degrad. Stab. , 2017 . 140 166 -175 . DOI:10.1016/j.polymdegradstab.2017.04.024http://doi.org/10.1016/j.polymdegradstab.2017.04.024 .
Zhang, X.; Meng, L.; Li, G.; Liang, N.; Zhang, J.; Zhu, Z.; Wang, R. . Effect of nucleating agents on the crystallization behavior and heat resistance of poly(L-lactide) . J. Appl. Polym. Sci. , 2016 . 133 42999 .
Zhu, B.; Wang, Y.; Liu, H.; Ying, J.; Liu, C.; Shen, C. . Effects of interface interaction and microphase dispersion on the mechanical properties of PCL/PLA/MMT nanocomposites visualized by nanomechanical mapping . Compos. Sci. Technol. , 2020 . 190 108048 DOI:10.1016/j.compscitech.2020.108048http://doi.org/10.1016/j.compscitech.2020.108048 .
Chen, P.; Lian, H.; Shih, Y.; Chenwei, S.; Jeng, R. . Preparation, characterization and crystallization kinetics of Kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites . Mater. Chem. Phys. , 2017 . 196 249 -255 . DOI:10.1016/j.matchemphys.2017.05.006http://doi.org/10.1016/j.matchemphys.2017.05.006 .
Xu, P.; Cui, Z.; Ruan, G.; Ding, Y. . Enhanced crystallization kinetics of PLLA by ethoxycarbonyl ionic liquid modified graphene . Chinese J. Polym. Sci. , 2019 . 37 243 -252 . DOI:10.1007/s10118-019-2192-5http://doi.org/10.1007/s10118-019-2192-5 .
Bhoje Gowd, E.; Nagendra, B.; Sivaprasad, V. P.; Sijla Rosely, C. . Influence of boron nitride nanosheets on the crystallization and polymorphism of poly(L-lactide) . J. Phys. Chem. B , 2018 . 122 6442 -6451 . DOI:10.1021/acs.jpcb.8b03211http://doi.org/10.1021/acs.jpcb.8b03211 .
Nam, J. Y.; Okamoto, M.; Okamoto, H.; Nakano, M.; Usuki, A.; Matsuda, M. . Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide . Polymer , 2006 . 47 1340 -1347 . DOI:10.1016/j.polymer.2005.12.066http://doi.org/10.1016/j.polymer.2005.12.066 .
Pan, P.; Shan, G.; Bao, Y. . Enhanced nucleation and crystallization of poly(L-lactic acid) by immiscible blending with poly(vinylidene fluoride) . Ind. Eng. Chem. Res. , 2014 . 53 3148 -3156 . DOI:10.1021/ie404085ahttp://doi.org/10.1021/ie404085a .
Yuan, B. C.; Zou, L. G. . Effect of orotic acid on the crystallization kinetics and morphology of biodegradable poly(L-lactide) as an efficient nucleating agent . Thermochim. Acta , 2014 . 577 41 -45 . DOI:10.1016/j.tca.2013.12.011http://doi.org/10.1016/j.tca.2013.12.011 .
Pan, P.; Yang, J.; Shan, G.; Bao, Y.; Weng, Z.; Inoue, Y. . Nucleation effects of nucleobases on the crystallization kinetics of poly(L-lactide) . Macromol. Mater. Eng. , 2012 . 297 670 -679 . DOI:10.1002/mame.201100266http://doi.org/10.1002/mame.201100266 .
Shi, Y.; Shao, L.; Yang, J.; Huang, T.; Wang, Y.; Zhang, N.; Wang, Y. . Highly improved crystallization behavior of poly(L-lactide) induced by a novel nucleating agent: substituted-aryl phosphate salts . Polym. Adv. Technol. , 2013 . 24 42 -50 . DOI:10.1002/pat.3047http://doi.org/10.1002/pat.3047 .
Xie, Q.; Han, L.; Shan, G.; Bao, Y.; Pan, P. . Polymorphic crystalline structure and crystal morphology of eenantiomeric poly(lactic acid) blends tailored by a self-assemblable aryl amide nucleator . ACS Sustain. Chem. Eng. , 2016 . 4 2680 -2688 . DOI:10.1021/acssuschemeng.6b00191http://doi.org/10.1021/acssuschemeng.6b00191 .
Ma, P.; Xu, Y.; Wang, D.; Dong, W.; Chen, M. . Rapid crystallization of poly(lactic acid) by using tailor-made oxalamide derivatives as novel soluble-type nucleating agents . Ind. Eng. Chem. Res. , 2014 . 53 12888 -12892 . DOI:10.1021/ie502211jhttp://doi.org/10.1021/ie502211j .
Ma, P.; Xu, Y.; Shen, T.; Dong, W.; Chen, M.; Lemstra, P. J. . Tailoring the crystallization behavior of poly(L-lactide) with self-assembly-type oxalamide compounds as nucleators: 1. Effect of terminal configuration of the nucleators . Eur. Polym. J. , 2015 . 70 400 -411 . DOI:10.1016/j.eurpolymj.2015.07.040http://doi.org/10.1016/j.eurpolymj.2015.07.040 .
Kamal, M. R.; Khoshkava, V. . Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites . Carbohydr. Polym. , 2015 . 123 105 -114 . DOI:10.1016/j.carbpol.2015.01.012http://doi.org/10.1016/j.carbpol.2015.01.012 .
Bai, H.; Zhang, W.; Deng, H.; Zhang, Q.; Fu, Q. . Control of crystal morphology in poly(L-lactide) by adding nucleating agent . Macromolecules , 2011 . 44 1233 -1237 . DOI:10.1021/ma102439thttp://doi.org/10.1021/ma102439t .
Bai, H.; Huang, C.; Xiu, H.; Zhang, Q.; Fu, Q. . Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent . Polymer , 2014 . 55 6924 -6934 . DOI:10.1016/j.polymer.2014.10.059http://doi.org/10.1016/j.polymer.2014.10.059 .
Shen, T.; Xu, Y.; Cai, X.; Ma, P.; Dong, W.; Chen, M. . Enhanced crystallization kinetics of poly(lactide) with oxalamide compounds as nucleators: effect of spacer length between the oxalamide moieties . RSC Adv. , 2016 . 6 48365 -48374 . DOI:10.1039/C6RA04050Khttp://doi.org/10.1039/C6RA04050K .
Bao, J.; Chang, X.; Xie, Q.; Yu, C.; Shan, G.; Bao, Y.; Pan, P. . Preferential formation of β-form crystals and temperature-dependent polymorphic structure in supramolecular poly(L-lactic acid) bonded by multiple hydrogen bonds . Macromolecules , 2017 . 50 8619 -8630 . DOI:10.1021/acs.macromol.7b01705http://doi.org/10.1021/acs.macromol.7b01705 .
Kodal, M.; Sirin, H.; Ozkoc, G. . Non-isothermal crystallization kinetics of PEG plasticized PLA/G-POSS nanocomposites . Polym. Compos. , 2017 . 38 1378 -1389 . DOI:10.1002/pc.23704http://doi.org/10.1002/pc.23704 .
Dave, V.; Srivastava, P.; Sharma, S.; Bajaj, J.; Tak, K. . PEGylated PLA-Phospholipon 90G complex hybrid nanoparticles loaded with etoricoxib for effective treatment pain relief potential . Int. J. Polym. Mater. Polym. Biomater. , 2019 . 69 640 -652. .
Xia, S.; Liu, X.; Wang, J.; Kan, Z.; Chen, H.; Fu, W.; Li, Z. . Role of poly(ethylene glycol) grafted silica nanoparticle shape in toughened PLA-matrix nanocomposites . Compos. Part B , 2019 . 168 398 -405 . DOI:10.1016/j.compositesb.2019.03.050http://doi.org/10.1016/j.compositesb.2019.03.050 .
Södergård, A.; Stolt, M. . Properties of lactic acid based polymers and their correlation with composition . Prog. Polym. Sci. , 2002 . 27 1123 -1163 . DOI:10.1016/S0079-6700(02)00012-6http://doi.org/10.1016/S0079-6700(02)00012-6 .
Sijbrandi, N. J.; Kimenai, A. J.; Mes, E. P. C.; Broos, R.; Bar, G.; Rosenthal, M.; Odarchenko, Y. I.; Ivanov, D. A.; Feijen, J.; Dijkstra, P. J. . Synthesis, morphology and properties of segmented poly(ether ester amide)s comprising uniform glycine or β-alanine extended bisoxalamide hard segments . Polymer , 2012 . 53 4033 -4044 . DOI:10.1016/j.polymer.2012.07.015http://doi.org/10.1016/j.polymer.2012.07.015 .
Harings, J. A.; van Asselen, O.; Graf, R.; Broos, R.; Rastogi, S. . The role of superheated water on the crystallization of N,N′-1, 2-ethanediyl-bis(6-hydroxy-hexanamide): implications on crystallography and phase transitions . Cryst. Growth Des. , 2008 . 8 2469 -2477 . DOI:10.1021/cg8001064http://doi.org/10.1021/cg8001064 .
Tsuji, H. . In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films . Biomaterials , 2003 . 24 537 -547 . DOI:10.1016/S0142-9612(02)00365-4http://doi.org/10.1016/S0142-9612(02)00365-4 .
Takahiko, K.; Nelly, R.; Go, M.; Koji, N.; Toshiji, K.; Mitsuru, N.; Hirotaka, O.; Jumpei, K.; Arimitsu, U.; Nobutaka, H. . Crystallization and melting behavior of poly(L-lactic acid) . Macromolecules , 2013 . 40 9463 -9469. .
Zhang, R. C.; Sun, D.; Lu, A.; Zhong, M.; Xiong, G.; Wan, Y. . Equilibrium melting temperature of polymorphic poly(L-lactide) and its supercooling dependence on growth kinetics . Polymers , 2017 . 9 625 DOI:10.3390/polym9110625http://doi.org/10.3390/polym9110625 .
Dobreva, A.; Gutzow, I. . Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence . J. Non-Cryst. Solids , 1993 . 162 13 -25 . DOI:10.1016/0022-3093(93)90737-Ihttp://doi.org/10.1016/0022-3093(93)90737-I .
Avrami, M. . Granulation, phase change, and microstructure kinetics of phase change. III . J. Phys. Chem. , 1941 . 9 177 -184 . DOI:10.1063/1.1750872http://doi.org/10.1063/1.1750872 .
Tsuji, H.; Yamashita, Y. . Highly accelerated stereocomplex crystallization by blending star-shaped 4-armed stereo diblock poly(lactide)s with poly(D-lactide) and poly(L-lactide) cores . Polymer , 2014 . 55 6444 -6450 . DOI:10.1016/j.polymer.2014.10.024http://doi.org/10.1016/j.polymer.2014.10.024 .
Shen, T.; Xu, Y.; Wang, L.; Dong, W.; Chen, M.; Ma, P. . High-performance poly(lactide) composites by construction of network-like shish-kebab crystals . RSC Adv. , 2016 . 6 71046 -71051 . DOI:10.1039/C6RA11815Ahttp://doi.org/10.1039/C6RA11815A .
Hoffman, J. D. . Theoretical aspects of polymer crystallization with chain folds: bulk polymers . Polym. Eng. Sci. , 1964 . 4 315 -362 . DOI:10.1002/pen.760040413http://doi.org/10.1002/pen.760040413 .
Shen, T.; Ma, P.; Yu, Q.; Dong, W.; Chen, M. . The effect of thermal history on the fast crystallization of poly(L-lactide) with soluble-type nucleators and shear flow . Polymers , 2016 . 8 431 DOI:10.3390/polym8120431http://doi.org/10.3390/polym8120431 .
Tsuji, H.; Miyase, T.; Tezuka, Y.; Saha, S. K. . Physical properties,crystallization,and spherulite growth of linear and 3-arm poly(L-lactide)s . Biomacromolecules , 2007 . 100 944 -947. .
Zhang, M.; Guo, B. H.; Xu, J. . A review on polymer crystallization theories . Crystals , 2017 . 7 4 .
Tang, X.; Chen, W.; Li, L. . The tough journey of polymer crystallization: battling with chain flexibility and connectivity . Macromolecules , 2019 . 52 3575 -3591 . DOI:10.1021/acs.macromol.8b02725http://doi.org/10.1021/acs.macromol.8b02725 .
Okada, K.; Watanabe, K.; Urushihara, T.; Toda, A.; Hikosaka, M. . Role of epitaxy of nucleating agent (NA) in nucleation mechanism of polymers . Polymer , 2007 . 48 401 -408 . DOI:10.1016/j.polymer.2006.10.048http://doi.org/10.1016/j.polymer.2006.10.048 .
Legras, R.; Mercier, J.; Nield, E. . Polymer crystallization by chemical nucleation . Nature , 1983 . 304 432 DOI:10.1038/304432a0http://doi.org/10.1038/304432a0 .
Xing, Q.; Li, R.; Dong, X.; Luo, F.; Kuang, X.; Wang, D.; Zhang, L. . Enhanced crystallization rate of poly(L-lactide) mediated by a hydrazide compound: nucleating mechanism study . Macromol. Chem. Phys. , 2015 . 216 1134 -1145 . DOI:10.1002/macp.201500002http://doi.org/10.1002/macp.201500002 .
0
Views
7
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution