a.Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
b.Sichuan Research Center of New Materials, Chengdu 610200, China
binwang@caep.cn (B.W.)
Jianlicheng@caep.cn (J.L.C.)
Scan for full text
Jie Yang, Xue-Lian Li, Jing-Wen Zhou, et al. Fiber-shaped Supercapacitors: Advanced Strategies toward High-performances and Multi-functions. [J]. Chinese Journal of Polymer Science 38(5):403-422(2020)
Jie Yang, Xue-Lian Li, Jing-Wen Zhou, et al. Fiber-shaped Supercapacitors: Advanced Strategies toward High-performances and Multi-functions. [J]. Chinese Journal of Polymer Science 38(5):403-422(2020) DOI: 10.1007/s10118-020-2389-7.
Fiber-shaped supercapacitors (FSSCs) show great potential in portable and wearable electronics due to their unique advantages of high safety, environmental friendliness, high performances, outstanding flexibility and integrability. They can directly act as the power sources or be easily integrated with other flexible devices to constitute self-powered and sustainable energy suppliers, providing excellent adaptability to irregular surfaces. This review mainly summarizes the recently reported works of FSSCs including preparation methods of various fiber electrodes, construction strategies of FSSCs and multi-functional device integrations, exploration of reaction mechanisms and strategies to improve the electrochemical performance and provision of suggestions on further designing and optimization of FSSCs. Meanwhile, it shares our perspectives on challenges and opportunities in this field, shedding light on the development of high-performance fiber-shaped supercapacitors with multi-functions.
Fiber-shaped supercapacitorPerformance improvementMulti-function deviceIntegrated electronics
Wang, X.; Liu, Z.; Zhang, T. . Wearable electronics: flexible sensing electronics for wearable/attachable health monitoring . Small , 2017 . 13 1602790 DOI:10.1002/smll.201602790http://doi.org/10.1002/smll.201602790 .
Chow, P. C. Y.; Someya, T. . Organic photodetectors for next-generation wearable electronics . Adv. Mater. , 2019 . 92 1902045 .
Li, L.; Lou, Z.; Chen, D.; Jiang, K.; Han, W.; Shen, G. . Recent advances in flexible/stretchable supercapacitors for wearable electronics . Small , 2018 . 14 1702829 DOI:10.1002/smll.201702829http://doi.org/10.1002/smll.201702829 .
Oldham, C. K.; Myland, J. C.; Bond, A. M. in Electrochemical science and technology: fundamentals and applications. Vol. 77, ed. by Grégoire H., Springer, Berlin Herdelberg New York, 2014, p. 199
Arbizzani, C.; Mastragostino, M.; Soavi, F. . New trends in electrochemical supercapacitor . J. Power Sources , 2001 . 100 164 -170 . DOI:10.1016/S0378-7753(01)00892-8http://doi.org/10.1016/S0378-7753(01)00892-8 .
Ma, T.; Yang, H.; Lu, L. . Development of hybrid battery-supercapacitor energy storage for remote area renewable energy systems . Appl. Energy , 2015 . 153 56 -62 . DOI:10.1016/j.apenergy.2014.12.008http://doi.org/10.1016/j.apenergy.2014.12.008 .
Kiran, S. K.; Shukla, S.; Struck, A.; Saxena, S. . Surface enhanced 3D rGO hybrids and porous rGO nano-networks as high performance supercapacitor electrodes for integrated energy storage devices . Carbon , 2020 . 158 527 -535 . DOI:10.1016/j.carbon.2019.11.021http://doi.org/10.1016/j.carbon.2019.11.021 .
Hou, C.; Liu, A. . An integrated device of enzymatic biofuel cells and supercapacitor for both efficient electric energy conversion and storage . Electrochim. Acta , 2017 . 245 303 -308 . DOI:10.1016/j.electacta.2017.05.136http://doi.org/10.1016/j.electacta.2017.05.136 .
Cericola, D.; Kötz, R. . Hybridization of rechargeable batteries and electrochemical capacitors: principles and limits . Electrochim. Acta , 2012 . 72 1 -17 . DOI:10.1016/j.electacta.2012.03.151http://doi.org/10.1016/j.electacta.2012.03.151 .
Kouchachvili, L.; Yaïci, W.; Entchev, E. . Hybrid battery/supercapacitor energy storage system for the electric vehicles . J. Power Sources , 2018 . 374 237 -248 . DOI:10.1016/j.jpowsour.2017.11.040http://doi.org/10.1016/j.jpowsour.2017.11.040 .
Yu, D.; Qian, Q.; Wei, L.; Jiang, W.; Goh, K.; Wei, J.; Zhang, J.; Chen, Y. . Emergence of fiber supercapacitors . Chem. Soc. Rev. , 2015 . 44 647 -662 . DOI:10.1039/C4CS00286Ehttp://doi.org/10.1039/C4CS00286E .
Dalton, A. B.; Collins, S.; Muñoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. . Super-tough carbon-nanotube fibres . Nature , 2003 . 423 703 DOI:10.1038/423703ahttp://doi.org/10.1038/423703a .
Li, P.; Jin, Z.; Peng, L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. . Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels . Adv. Mater. , 2018 . 30 1800124 DOI:10.1002/adma.201800124http://doi.org/10.1002/adma.201800124 .
Yun, T. G.; Park, M.; Kim, D. H.; Kim, D.; Cheong, J. Y.; Bae, J. G.; Han, S. M.; Kim, I. D. . All-transparent stretchable electrochromic supercapacitor wearable patch device . ACS Nano , 2019 . 13 3141 -3150 . DOI:10.1021/acsnano.8b08560http://doi.org/10.1021/acsnano.8b08560 .
Wang, H.; Zhu, B.; Jiang, W.; Yang, Y.; Leow, W. R.; Wang, H.; Chen, X. . A mechanically and electrically self-healing supercapacitor . Adv. Mater. , 2014 . 26 3638 -3643 . DOI:10.1002/adma.201305682http://doi.org/10.1002/adma.201305682 .
Deng, J.; Zhang, Y.; Zhao, Y.; Chen, P.; Cheng, X.; Peng, H. . A shape-memory supercapacitor fiber . Angew. Chem. Int. Ed. , 2015 . 54 15419 -15423 . DOI:10.1002/anie.201508293http://doi.org/10.1002/anie.201508293 .
Zong, L.; Li, X.; Zhu, L.; You, J.; Li, Z.; Gao, H.; Li, M.; Li, C. . Photo-responsive heterojunction nanosheets of reduced graphene oxide for photo-detective flexible energy devices . J. Mater. Chem. A , 2019 . 7 7736 -7744 . DOI:10.1039/C8TA11442Khttp://doi.org/10.1039/C8TA11442K .
Yun, T. G.; Kim, D.; Kim, Y. H.; Park, M.; Hyun, S.; Han, S. M. . Photoresponsive smart coloration electrochromic supercapacitor . Adv. Mater. , 2017 . 29 1606728 DOI:10.1002/adma.201606728http://doi.org/10.1002/adma.201606728 .
Wang, J.; Li, X.; Zi, Y.; Wang, S.; Li, Z.; Zheng, L.; Yi, F.; Li, S.; Wang, Z. L. . A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics . Adv. Mater. , 2015 . 27 4830 -4836 . DOI:10.1002/adma.201501934http://doi.org/10.1002/adma.201501934 .
J. Varma, S.; Sambath Kumar, K.; Seal, S.; Rajaraman, S.; Thomas, J. . Fiber-type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications . Adv. Sci. , 2018 . 5 1800340 DOI:10.1002/advs.201800340http://doi.org/10.1002/advs.201800340 .
Jost, K.; Dion, G.; Gogotsi, Y. . Textile energy storage in perspective . J. Mater. Chem. A , 2014 . 2 10776 -10787 . DOI:10.1039/c4ta00203bhttp://doi.org/10.1039/c4ta00203b .
Yao, B.; Zhang, J.; Kou, T.; Song, Y.; Liu, T.; Li, Y. . Paper-based electrodes for flexible energy storage devices . Adv. Sci. , 2017 . 4 1700107 DOI:10.1002/advs.201700107http://doi.org/10.1002/advs.201700107 .
Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. . Latest advances in supercapacitors: from new electrode materials to novel device designs . Chem. Soc. Rev. , 2017 . 46 6816 -6854 . DOI:10.1039/C7CS00205Jhttp://doi.org/10.1039/C7CS00205J .
Pan, S.; Ren, J.; Fang, X.; Peng, H. . Integration: an effective strategy to develop multifunctional energy storage devices . Adv. Energy Mater. , 2016 . 6 1501867 DOI:10.1002/aenm.201501867http://doi.org/10.1002/aenm.201501867 .
Simon, P.; Gogotsi, Y. . Materials for electrochemical capacitors . Nat. Mater. , 2008 . 7 845 -854 . DOI:10.1038/nmat2297http://doi.org/10.1038/nmat2297 .
Wang, Y.; Song, Y.; Xia, Y. . Electrochemical capacitors: mechanism, materials, systems, characterization and applications . Chem. Soc. Rev. , 2016 . 45 5925 DOI:10.1039/C5CS00580Ahttp://doi.org/10.1039/C5CS00580A .
Costentin, C.; Porter, T. R.; Savéant, J. M. . How do pseudo-capacitors store energy? Theoretical analysis and experimental illustration. . ACS Appl. Mater. Interfaces , 2017 . 9 8649 -8658 . DOI:10.1021/acsami.6b14100http://doi.org/10.1021/acsami.6b14100 .
Khalid, S.; Cao, C.; Wang, L.; Zhu, Y. . Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance . Sci. Rep. , 2016 . 6 22699 DOI:10.1038/srep22699http://doi.org/10.1038/srep22699 .
Cheng, X.; Zhang, J.; Ren, J.; Liu, N.; Chen, P.; Zhang, Y.; Deng, J.; Wang, Y.; Peng, H. . Design of a hierarchical ternary hybrid for a fiber-shaped asymmetric supercapacitor with high volumetric energy density . J. Phys. Chem. C , 2016 . 120 9685 -9691 . DOI:10.1021/acs.jpcc.6b02794http://doi.org/10.1021/acs.jpcc.6b02794 .
Peng, H. in Fiber-shaped energy harvesting and storage devices. Springer, Berlin Herdelberg New York, 2015, p. 117
Yang, Z.; Deng, J.; Chen, X.; Ren, J.; Peng, H. . A highly stretchable, fiber-shaped supercapacitor . Angew. Chem. Int. Ed. , 2013 . 52 13453 -13457 . DOI:10.1002/anie.201307619http://doi.org/10.1002/anie.201307619 .
Zhang, Z.; Chen, X.; Chen, P.; Guan, G.; Qiu, L.; Lin, H.; Yang, Z.; Bai, W.; Luo, Y.; Peng, H. . Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format . Adv. Mater. , 2014 . 26 466 -470 . DOI:10.1002/adma.201302951http://doi.org/10.1002/adma.201302951 .
Xu, Z.; Gao, C. . Graphene fiber: a new trend in carbon fibers . Mater. Today , 2015 . 18 480 -492 . DOI:10.1016/j.mattod.2015.06.009http://doi.org/10.1016/j.mattod.2015.06.009 .
L’vov, P. E.; Svetukhin, V. V. . Influence of grain boundaries on the distribution of components in binary alloys . Phys. Solid State , 2017 . 59 2453 -2463 . DOI:10.1134/S1063783417120253http://doi.org/10.1134/S1063783417120253 .
Yang, D.; Ni, W.; Cheng, J.; Wang, Z.; Li, C.; Zhang, Y.; Wang, B. . Omnidirectional porous fiber scrolls of polyaniline nanopillars array-N-doped carbon nanofibers for fiber-shaped supercapacitors . Mater. Today Energy , 2017 . 5 196 -204 . DOI:10.1016/j.mtener.2017.06.011http://doi.org/10.1016/j.mtener.2017.06.011 .
Iijima, S. . Helical microtubules of graphitic carbon . Nature , 1991 . 354 56 -58 . DOI:10.1038/354056a0http://doi.org/10.1038/354056a0 .
Cai, S. Y.; Huang, T. Q.; Chen, H.; Salman, M.; Gopalsamy, K.; Gao, C. . Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors . J. Mater. Chem. A , 2017 . 5 22489 -22494 . DOI:10.1039/C7TA07937Khttp://doi.org/10.1039/C7TA07937K .
Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. . Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics . J. Phys. Chem. B , 2004 . 108 19912 -19916 . DOI:10.1021/jp040650fhttp://doi.org/10.1021/jp040650f .
Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. . Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics . Nat. Commun. , 2014 . 5 3754 DOI:10.1038/ncomms4754http://doi.org/10.1038/ncomms4754 .
Yang, Q. Y.; Xu, Z.; Fang, B.; Huang, T. Q.; Cai, S. Y.; Chen, H.; Liu, Y. Y.; Gopalsamy, K.; Gao, W. W.; Gao, C. . MXene/graphene hybrid fibers for high performance flexible supercapacitors . J. Mater. Chem. A , 2017 . 5 22113 -22119 . DOI:10.1039/C7TA07999Khttp://doi.org/10.1039/C7TA07999K .
Zhu, C.; Cheng, C.; He, Y. H.; Wang, L.; Wong, T. L.; Fung, K. K.; Wang, N. . A self-entanglement mechanism for continuous pulling of carbon nanotube yarns . Carbon , 2011 . 49 4996 -5001 . DOI:10.1016/j.carbon.2011.07.014http://doi.org/10.1016/j.carbon.2011.07.014 .
Kuznetsov, A. A.; Fonseca, A. F.; Baughman, R. H.; Zakhidov, A. A. . Structural model for dry-drawing of sheets and yarns from carbon nanotube forests . ACS Nano , 2011 . 5 985 -993 . DOI:10.1021/nn102405uhttp://doi.org/10.1021/nn102405u .
Sim, H. J.; Choi, C.; Lee, D. Y.; Kim, H.; Yun, J. H.; Kim, J. M.; Kang, T. M.; Ovalle, R.; Baughman, R. H.; Kee, C. W. . Biomolecule based fiber supercapacitor for implantable device . Nano Energy , 2018 . 47 385 -392 . DOI:10.1016/j.nanoen.2018.03.011http://doi.org/10.1016/j.nanoen.2018.03.011 .
Xu, Z.; Gao, C. . Graphene chiral liquid crystals and macroscopic assembled fibres . Nat. Commun. , 2011 . 2 571 DOI:10.1038/ncomms1583http://doi.org/10.1038/ncomms1583 .
Bo, F.; Li, P.; Zhen, X.; Chao, G. . Wet-spinning of continuous montmorillonite-graphene fibers for fire-resistant lightweight conductors . ACS Nano , 2015 . 9 5214 -5222 . DOI:10.1021/acsnano.5b00616http://doi.org/10.1021/acsnano.5b00616 .
Qu, G.; Cheng, J.; Li, X.; Yuan, D.; Chen, P.; Chen, X.; Wang, B.; Peng, H. . A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode . Adv. Mater. , 2016 . 28 3646 -3652 . DOI:10.1002/adma.201600689http://doi.org/10.1002/adma.201600689 .
Liu, Q.; Zhou, J.; Song, C.; Li, X.; Wang, Z.; Yang, J.; Cheng, J.; Li, H.; Wang, B. . 2.2 V high performance symmetrical fiber-shaped aqueous supercapacitors enabled by “water-in-salt” gel electrolyte and N-doped graphene fiber . Energy Stor. Mater. , 2020 . 24 495 -503 . DOI:10.1016/j.ensm.2019.07.008http://doi.org/10.1016/j.ensm.2019.07.008 .
Oksuz, M.; Erbil, H. Y. . Wet-spun graphene filaments: effect of temperature of coagulation bath and type of reducing agents on mechanical & electrical properties . RSC Adv. , 2018 . 8 17443 -17452 . DOI:10.1039/C8RA02325Ehttp://doi.org/10.1039/C8RA02325E .
Yuan, D.; Li, B.; Cheng, J.; Guan, Q.; Wang, Z.; Ni, W.; Li, C.; Liu, H.; Wang, B. . Twisted yarns for fiber-shaped supercapacitors based on wetspun PEDOT:PSS fibers from aqueous coagulation . J. Mater. Chem. A , 2016 . 4 11616 -11624 . DOI:10.1039/C6TA04081Khttp://doi.org/10.1039/C6TA04081K .
Wang, Z.; Cheng, J.; Guan, Q.; Huang, H.; Li, Y.; Zhou, J.; Ni, W.; Wang, B.; He, S.; Peng, H. . All-in-one fiber for stretchable fiber-shaped tandem supercapacitors . Nano Energy , 2018 . 45 210 -219 . DOI:10.1016/j.nanoen.2017.12.054http://doi.org/10.1016/j.nanoen.2017.12.054 .
Li, B.; Cheng, J.; Wang, Z.; Li, Y.; Ni, W.; Wang, B. . Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigital-designed supercapacitors . J. Power Sources , 2018 . 376 117 -124 . DOI:10.1016/j.jpowsour.2017.11.076http://doi.org/10.1016/j.jpowsour.2017.11.076 .
Zhang, J.; Seyedin, S.; Qin, S.; Wang, Z.; Moradi, S.; Yang, F.; Lynch, P. A.; Yang, W.; Liu, J.; Wang, X.; Razal, J. M. . MXene hybrid fibers: highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors . Small , 2019 . 15 1970041 DOI:10.1002/smll.201970041http://doi.org/10.1002/smll.201970041 .
Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. . All pseudocapacitive MXene-RuO2 asymmetric supercapacitors . Adv. Energy Mater. , 2018 . 8 1703043 DOI:10.1002/aenm.201703043http://doi.org/10.1002/aenm.201703043 .
Su, F.; Lv, X.; Miao, M. . High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles . Small , 2015 . 11 854 -861 . DOI:10.1002/smll.201401862http://doi.org/10.1002/smll.201401862 .
Zhang, Q.; Xu, W.; Sun, J.; Pan, Z.; Zhao, J.; Wang, X.; Zhang, J.; Man, P.; Guo, J.; Zhou, Z. . Constructing ultrahigh-capacity zinc-nickel-cobalt oxide@Ni(OH)2 core-shell nanowire arrays for high-performance coaxial fiber-shaped asymmetric supercapacitors . Nano Lett. , 2017 . 17 7552 -7560 . DOI:10.1021/acs.nanolett.7b03507http://doi.org/10.1021/acs.nanolett.7b03507 .
Luo, Y.; Jiang, J.; Zhou, W.; Yang, H.; Luo, J.; Qi, X.; Zhang, H.; Denis, Y.; Li, C. M.; Yu, T. . Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors . J. Mater. Chem. A , 2012 . 22 8634 -8640 . DOI:10.1039/c2jm16419ahttp://doi.org/10.1039/c2jm16419a .
Xu, H.; Hu, X.; Sun, Y.; Yang, H.; Liu, X.; Huang, Y. . Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes . Nano Res. , 2015 . 8 1148 -1158 . DOI:10.1007/s12274-014-0595-8http://doi.org/10.1007/s12274-014-0595-8 .
Yang, W.; Gao, Z.; Ma, J.; Zhang, X.; Wang, J.; Liu, J. . Hierarchical NiCo2O4@NiO core-shell hetero-structured nanowire arrays on carbon cloth for a high-performance flexible all-solid-state electrochemical capacitor . J. Mater. Chem. A , 2014 . 2 1448 -1457 . DOI:10.1039/C3TA14488Ghttp://doi.org/10.1039/C3TA14488G .
Huang, K. J.; Wang, L.; Liu, Y. J.; Liu, Y. M.; Wang, H. B.; Gan, T.; Wang, L. L. . Layered MoS2-graphene composites for supercapacitor applications with enhanced capacitive performance . Int. J. Hydrogen. Energ. , 2013 . 38 14027 -14034 . DOI:10.1016/j.ijhydene.2013.08.112http://doi.org/10.1016/j.ijhydene.2013.08.112 .
Lyu, X.; Su, F.; Miao, M. . Two-ply yarn supercapacitor based on carbon nanotube/stainless steel core-sheath yarn electrodes and ionic liquid electrolyte . J. Power Sources , 2016 . 307 489 -495 . DOI:10.1016/j.jpowsour.2015.12.114http://doi.org/10.1016/j.jpowsour.2015.12.114 .
Li, X.; Li, X.; Cheng, J.; Yuan, D.; Ni, W.; Guan, Q.; Gao, L.; Wang, B. . Fiber-shaped solid-state supercapacitors based on molybdenum disulfide nanosheets for a self-powered photodetecting system . Nano Energy , 2016 . 21 228 -237 . DOI:10.1016/j.nanoen.2016.01.011http://doi.org/10.1016/j.nanoen.2016.01.011 .
Wu, H.; Lou, Z.; Yang, H.; Shen, G. . A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes . Nanoscale , 2015 . 7 1921 -1926 . DOI:10.1039/C4NR06336Hhttp://doi.org/10.1039/C4NR06336H .
Yang, H.; Xu, H.; Li, M.; Zhang, L.; Huang, Y.; Hu, X. . Assembly of NiO/Ni(OH)2/PEDOT nanocomposites on contra wires for fiber-shaped flexible asymmetric supercapacitors . ACS Appl. Mater. Interfaces , 2015 . 8 1774 -1779. .
Lamberti, A.; Gigot, A.; Bianco, S.; Fontana, M.; Castellino, M.; Tresso, E.; Pirri, C. F. . Self-assembly of graphene aerogel on copper wire for wearable fiber-shaped supercapacitors . Carbon , 2016 . 105 649 -654 . DOI:10.1016/j.carbon.2016.05.003http://doi.org/10.1016/j.carbon.2016.05.003 .
Ji, Y.; Xie, J.; Wu, J.; Yang, Y.; Fu, X. Z.; Sun, R.; Wong, C. P. . Hierarchical nanothorns MnCo2O4 grown on porous/dense Ni bi-layers coated Cu wire current collectors for high performance flexible solid-state fiber supercapacitors . J. Power Sources , 2018 . 393 54 -61 . DOI:10.1016/j.jpowsour.2018.04.109http://doi.org/10.1016/j.jpowsour.2018.04.109 .
Li, C.; Wang, Z.; Li, S.; Cheng, J.; Zhang, Y.; Zhou, J.; Yang, D.; Tong, D. G.; Wang, B. . Interfacial engineered polyaniline/sulfur-doped TiO2 nanotube arrays for ultralong cycle lifetime fiber-shaped, solid-state supercapacitors . ACS Appl. Mater. Interfaces , 2018 . 10 18390 -18399 . DOI:10.1021/acsami.8b01160http://doi.org/10.1021/acsami.8b01160 .
Liu, B.; Liu, B.; Wang, X.; Chen, D.; Fan, Z.; Shen, G. . Constructing optimized wire electrodes for fiber supercapacitors . Nano Energy , 2014 . 10 99 -107 . DOI:10.1016/j.nanoen.2014.08.021http://doi.org/10.1016/j.nanoen.2014.08.021 .
Shang, Y.; Wang, C.; He, X.; Li, J.; Peng, Q.; Shi, E.; Wang, R.; Du, S.; Cao, A.; Li, Y. . Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions . Nano Energy , 2015 . 12 401 -409 . DOI:10.1016/j.nanoen.2014.11.048http://doi.org/10.1016/j.nanoen.2014.11.048 .
Yan, J.; Wang, Q.; Wei, T.; Fan, Z. . Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities . Adv. Energy Mater. , 2014 . 4 1300816 DOI:10.1002/aenm.201300816http://doi.org/10.1002/aenm.201300816 .
Chen, L.; Liu, Y.; Zhao, Y.; Chen, N.; Qu, L. . Graphene-based fibers for supercapacitor applications . Nanotechnology , 2016 . 27 032001 DOI:10.1088/0957-4484/27/3/032001http://doi.org/10.1088/0957-4484/27/3/032001 .
Hu, Y.; Cheng, H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z.; Qu, L. . All-in-one graphene fiber supercapacitor . Nanoscale , 2014 . 6 6448 -6451 . DOI:10.1039/c4nr01220hhttp://doi.org/10.1039/c4nr01220h .
Chen, S.; Wang, L.; Huang, M.; Kang, L.; Lei, Z.; Xu, H.; Shi, F.; Liu, Z. H. . Reduced graphene oxide/Mn3O4 nanocrystals hybrid fiber for flexible all-solid-state supercapacitor with excellent volumetric energy density . Electrochim. Acta , 2017 . 242 10 -18 . DOI:10.1016/j.electacta.2017.05.013http://doi.org/10.1016/j.electacta.2017.05.013 .
Lim, L.; Liu, Y.; Liu, W.; Tjandra, R.; Rasenthiram, L.; Chen, Z.; Yu, A. . All-in-one graphene based composite fiber: toward wearable supercapacitor . ACS Appl. Mater. Interfaces , 2017 . 9 39576 -39583 . DOI:10.1021/acsami.7b10182http://doi.org/10.1021/acsami.7b10182 .
Wang, B.; Wu, Q.; Sun, H.; Zhang, J.; Ren, J.; Luo, Y.; Wang, M.; Peng, H. . An intercalated graphene/(molybdenum disulfide) hybrid fiber for capacitive energy storage . J. Mater. Chem. A , 2017 . 5 925 -930 . DOI:10.1039/C6TA09360Dhttp://doi.org/10.1039/C6TA09360D .
Wang, Z.; Cheng, J.; Zhou, J.; Zhang, J.; Huang, H.; Yang, J.; Li, Y.; Wang, B. . All-climate aqueous fiber-shaped supercapacitors with record areal energy density and high safety . Nano Energy , 2018 . 50 106 -117 . DOI:10.1016/j.nanoen.2018.05.029http://doi.org/10.1016/j.nanoen.2018.05.029 .
Xiong, T.; Lee, W. S. V.; Chen, L.; Tan, T. L.; Huang, X.; Xue, J. . Indole-based conjugated macromolecules as a redox-mediated electrolyte for an ultrahigh power supercapacitor . Energy Environ. Sci. , 2017 . 10 2441 -2449 . DOI:10.1039/C7EE02584Jhttp://doi.org/10.1039/C7EE02584J .
Beguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. . Carbons and electrolytes for advanced supercapacitors . Adv. Mater. , 2014 . 26 2219 -2251, 2283 . DOI:10.1002/adma.201304137http://doi.org/10.1002/adma.201304137 .
Reber, D.; Kühnel, R. S.; Battaglia, C. . High-voltage aqueous supercapacitors based on NaTFSI . Sust. Energ. Fuel. , 2017 . 1 2155 -2161 . DOI:10.1039/C7SE00423Khttp://doi.org/10.1039/C7SE00423K .
Yang, Z.; Tian, J.; Yin, Z.; Cui, C.; Qian, W.; Wei, F. . Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review . Carbon , 2019 . 141 467 -480 . DOI:10.1016/j.carbon.2018.10.010http://doi.org/10.1016/j.carbon.2018.10.010 .
Xiong, T.; Tan, T. L.; Lu, L.; Lee, W. S. V.; Xue, J. . Harmonizing energy and power density toward 2.7 V asymmetric aqueous supercapacitor . Adv. Energy Mater. , 2018 . 8 1702630 DOI:10.1002/aenm.201702630http://doi.org/10.1002/aenm.201702630 .
Sun, J.; Huang, Y.; Fu, C.; Huang, Y.; Zhu, M.; Tao, X.; Zhi, C.; Hu, H. . A high performance fiber-shaped PEDOT@MnO2//C@Fe3O4 asymmetric supercapacitor for wearable electronics . J. Mater. Chem. A , 2016 . 4 14877 -14883 . DOI:10.1039/C6TA05898Ahttp://doi.org/10.1039/C6TA05898A .
Fic, K.; Lota, G.; Meller, M.; Frackowiak, E. . Novel insight into neutral medium as electrolyte for high-voltage supercapacitors . Energy Environ. Sci. , 2012 . 5 5842 -5850 . DOI:10.1039/C1EE02262Hhttp://doi.org/10.1039/C1EE02262H .
Yu, M.; Lu, Y.; Zheng, H.; Lu, X. . New insights into the operating voltage of aqueous supercapacitors . Chem. Eur. J. , 2018 . 24 3639 -3649 . DOI:10.1002/chem.201704420http://doi.org/10.1002/chem.201704420 .
Wu, T. H.; Hsu, C. T.; Hu, C. C.; Hardwick, L. J. . Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors . J. Power Sources , 2013 . 242 289 -298 . DOI:10.1016/j.jpowsour.2013.05.080http://doi.org/10.1016/j.jpowsour.2013.05.080 .
Dou, Q.; Lu, Y.; Su, L.; Zhang, X.; Lei, S.; Bu, X.; Liu, L.; Xiao, D.; Chen, J.; Shi, S.; Yan, X. B. . A sodium perchlorate-based hybrid electrolyte with high salt-to-water molar ratio for safe 2.5 V carbon-based supercapacitor . Energy Stor. Mater. , 2019 . 23 603 -609 . DOI:10.1016/j.ensm.2019.03.016http://doi.org/10.1016/j.ensm.2019.03.016 .
Xu, R.; Guo, F.; Cui, X.; Zhang, L.; Wang, K.; Wei, J. . High performance carbon nanotube based fiber-shaped supercapacitors using redox additives of polypyrrole and hydroquinone . J. Mater. Chem. A , 2015 . 3 22353 -22360 . DOI:10.1039/C5TA06165Bhttp://doi.org/10.1039/C5TA06165B .
Hwang, J. Y.; Li, M.; El-Kady, M. F.; Kaner, R. B. . Next-generation activated carbon supercapacitors: a simple step in electrode processing leads to remarkable gains in energy density . Adv. Funct. Mater. , 2017 . 27 1605745 DOI:10.1002/adfm.201605745http://doi.org/10.1002/adfm.201605745 .
Gui, Q.; Wu, L.; Li, Y.; Liu, J. . Scalable wire-type asymmetric pseudocapacitor achieving high volumetric energy/power densities and ultralong cycling stability of 100000 times . Adv. Sci. , 2019 . 6 1802067 DOI:10.1002/advs.201802067http://doi.org/10.1002/advs.201802067 .
Tao, F.; Qin, L.; Wang, Z.; Pan, Q. . Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte . ACS Appl. Mater. Interfaces , 2017 . 9 15541 -15548 . DOI:10.1021/acsami.7b03223http://doi.org/10.1021/acsami.7b03223 .
Lin, X.; Salari, M.; Arava, L. M.; Ajayan, P. M.; Grinstaff, M. W. . High temperature electrical energy storage: advances, challenges, and frontiers . Chem. Soc. Rev. , 2016 . 45 5848 -5887 . DOI:10.1039/C6CS00012Fhttp://doi.org/10.1039/C6CS00012F .
Zhang, Z.; Wang, L.; Li, Y.; Wang, Y.; Zhang, J.; Guan, G.; Pan, Z.; Zheng, G.; Peng, H. . Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor . Adv. Energy Mater. , 2017 . 7 1601814 DOI:10.1002/aenm.201601814http://doi.org/10.1002/aenm.201601814 .
Sun, D.; Sun, G.; Zhu, X.; Guarin, A.; Li, B.; Dai, Z.; Ling, J. . A comprehensive review on self-healing of asphalt materials: mechanism, model, characterization and enhancement . Adv. Colloid Interface Sci. , 2018 . 256 65 -93 . DOI:10.1016/j.cis.2018.05.003http://doi.org/10.1016/j.cis.2018.05.003 .
Guo, Q.; Li, J.; Zhang, B.; Nie, G.; Wang, D. . High-performance asymmetric electrochromic-supercapacitor device based on poly(indole-6-carboxylicacid)/TiO2 nanocomposites . ACS Appl. Mater. Interfaces , 2019 . 11 6491 -6501 . DOI:10.1021/acsami.8b19505http://doi.org/10.1021/acsami.8b19505 .
Qin, S.; Zhang, Q.; Yang, X.; Liu, M.; Sun, Q.; Wang, Z. L. . Hybrid piezo/triboelectric-driven self-charging electrochromic supercapacitor power package . Adv. Energy Mater. , 2018 . 8 1800069 DOI:10.1002/aenm.201800069http://doi.org/10.1002/aenm.201800069 .
He, S.; Hu, Y.; Wan, J.; Gao, Q.; Wang, Y.; Xie, S.; Qiu, L.; Wang, C.; Zheng, G.; Wang, B. . Biocompatible carbon nanotube fibers for implantable supercapacitors . Carbon , 2017 . 122 162 -167 . DOI:10.1016/j.carbon.2017.06.053http://doi.org/10.1016/j.carbon.2017.06.053 .
Huang, Y.; Huang, Y.; Zhu, M.; Meng, W.; Pei, Z.; Liu, C.; Hu, H.; Zhi, C. . Magnetic-assisted, self-healable, yarn-based supercapacitor . ACS Nano , 2015 . 9 6242 -6251 . DOI:10.1021/acsnano.5b01602http://doi.org/10.1021/acsnano.5b01602 .
Wang, S.; Liu, N.; Su, J.; Li, L.; Long, F.; Zou, Z.; Jiang, X.; Gao, Y. . Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs . ACS Nano , 2017 . 11 2066 -2074 . DOI:10.1021/acsnano.6b08262http://doi.org/10.1021/acsnano.6b08262 .
Liang, J.; Zhu, G.; Wang, C.; Wang, Y.; Zhu, H.; Hu, Y.; Lv, H.; Chen, R.; Ma, L.; Chen, T.; Jin, Z.; Liu, J. . MoS2-based all-purpose fibrous electrode and self-powering energy fiber for efficient energy harvesting and storage . Adv. Energy Mater. , 2017 . 7 1601208 DOI:10.1002/aenm.201601208http://doi.org/10.1002/aenm.201601208 .
Shen, D.; Xiao, M.; Zou, G.; Liu, L.; Duley, W. W.; Zhou, Y. N. . Self-powered wearable electronics based on moisture enabled electricity generation . Adv. Mater. , 2018 . 30 e1705925 DOI:10.1002/adma.201705925http://doi.org/10.1002/adma.201705925 .
Fu, Y.; Wu, H.; Ye, S.; Cai, X.; Yu, X.; Hou, S.; Kafafy, H.; Zou, D. . Integrated power fiber for energy conversion and storage . Energy Environ. Sci. , 2013 . 6 805 DOI:10.1039/c3ee23970ehttp://doi.org/10.1039/c3ee23970e .
Wang, Z.; Cheng, J.; Huang, H.; Wang, B. . Flexible self-powered fiber-shaped photocapacitors with ultralong cyclelife and total energy efficiency of 5.1% . Energy Stor. Mater. , 2020 . 24 255 -264 . DOI:10.1016/j.ensm.2019.08.011http://doi.org/10.1016/j.ensm.2019.08.011 .
Sun, N.; Wen, Z.; Zhao, F.; Yang, Y.; Shao, H.; Zhou, C.; Shen, Q.; Feng, K.; Peng, M.; Li, Y. . All flexible electrospun papers based self-charging power system . Nano Energy , 2017 . 38 210 -217 . DOI:10.1016/j.nanoen.2017.05.048http://doi.org/10.1016/j.nanoen.2017.05.048 .
Zhang, Y.; Zhao, Y.; Ren, J.; Weng, W.; Peng, H. . Advances in wearable fiber-shaped lithium-ion batteries . Adv. Mater. , 2016 . 28 4524 -4531 . DOI:10.1002/adma.201503891http://doi.org/10.1002/adma.201503891 .
Zhang, Y.; Wang, L.; Guo, Z.; Xu, Y.; Wang, Y.; Peng, H. . High-performance lithium-air battery with a coaxial-fiber architecture . Angew. Chem. Int. Ed. , 2016 . 55 4487 -4491 . DOI:10.1002/anie.201511832http://doi.org/10.1002/anie.201511832 .
Qiu, M.; Sun, P.; Cui, G.; Tong, Y.; Mai, W. . A flexible, micro-supercapacitor with integral photocatalytic fuel cell for self-charging . ACS Nano , 2019 . 13 8246 -8255 . DOI:10.1021/acsnano.9b03603http://doi.org/10.1021/acsnano.9b03603 .
Zhang, Y.; Zhao, Y.; Cheng, X.; Weng, W.; Ren, J.; Fang, X.; Jiang, Y.; Chen, P.; Zhang, Z.; Wang, Y. . Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers . Angew. Chem. Int. Ed. , 2015 . 54 11177 -11182 . DOI:10.1002/anie.201506142http://doi.org/10.1002/anie.201506142 .
0
Views
3
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution