a.Laboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
zhailei@iccas.ac.cn (L.Z.)
fanlin@iccas.ac.cn (L.F.)
Scan for full text
Lan Bai, Lei Zhai, Min-Hui He, et al. Thermal Expansion Behavior of Poly(amide-imide) Films with Ultrahigh Tensile Strength and Ultralow CTE. [J]. Chinese Journal of Polymer Science 38(7):748-758(2020)
Lan Bai, Lei Zhai, Min-Hui He, et al. Thermal Expansion Behavior of Poly(amide-imide) Films with Ultrahigh Tensile Strength and Ultralow CTE. [J]. Chinese Journal of Polymer Science 38(7):748-758(2020) DOI: 10.1007/s10118-020-2366-1.
A series of novel poly(amide-imide) (PAI) films with different amide contents were prepared from pyromellitic dianhydride and four amide-containing diamines. These PAI films exhibited excellent mechanical and thermal properties with tensile strength of 203.7−297.4 MPa and ,T,g, above 407 °C. The rigid backbone structures combined with strong intermolecular interactions provided PAI films with ultralow in-plane CTE values from −4.17 ppm/°C to −0.39 ppm/°C in the temperature range of 30−300 °C. The correlation between thermal expansion behavior and aggregation structures of PAI film was investigated. The results suggested that hydrogen bonding interactions could be maintained even at high temperature, thus resulting in good dimension reversibility of films in multiple heating-cooling cycles. It is demonstrated that dimensional stabilities of PAI films are determined by the rigidity, orientation, and packing of molecular chains. Heat-resistant PAI films with ultralow CTE can be developed as flexible substrates by regulating backbones and aggregation structures for optoelectronic application.
Poly(amide-imide)sThermal expansion behaviorAggregation structures
Ji, D. Y.; Li, T.; Hu, W. P.; Fuchs, H. . Recent progress in aromatic polyimide dielectrics for organic electronic devices and circuits . Adv. Mater. , 2019 . 31 1 -19. .
Zhang, Q.; Tsai, C. Y.; Li, L. J.; Liaw, D. J. . Colorless-to-colorful switching electrochromic polyimides with very high contrast ratio . Nat. Commun. , 2019 . 10 1 -8 . DOI:10.1038/s41467-018-07882-8http://doi.org/10.1038/s41467-018-07882-8 .
Liu, H.; Zhai, L.; Bai, L.; He, M. H.; Wang, C. G.; Mo, S.; Fan, L. . Synthesis and characterization of optically transparent semi-aromatic polyimide films with low fluorine content . Polymer , 2019 . 163 106 -114 . DOI:10.1016/j.polymer.2018.12.045http://doi.org/10.1016/j.polymer.2018.12.045 .
Cai, W. A.; Cai, J. W.; Niu, H. J.; Xiao, T. D.; Bai, X. D.; Wang, C.; Zhang, Y. H.; Wang, W. . Synthesis and electrochromic properties of polyimides with pendent benzimidazole and triphenylamine units . Chinese J. Polym. Sci. , 2016 . 34 1091 -1102 . DOI:10.1007/s10118-016-1833-1http://doi.org/10.1007/s10118-016-1833-1 .
Zhuang, Y. B.; Seong, J. G.; Lee, Y. M. . Polyimides containing aliphatic/alicyclic segments in the main chains . Prog. Polym. Sci. , 2019 . 92 35 -88 . DOI:10.1016/j.progpolymsci.2019.01.004http://doi.org/10.1016/j.progpolymsci.2019.01.004 .
Zhang, G. D.; Fan, L.; Bai, L.; He, M. H.; Zhai, L.; Mo, S. . Mesoscopic simulation assistant design of immiscible polyimide/BN blend films with enhanced thermal conductivity . Chinese J. Polym. Sci. , 2018 . 36 1394 -1402 . DOI:10.1007/s10118-018-2155-2http://doi.org/10.1007/s10118-018-2155-2 .
Liu, Y. W.; Tang, L. S.; Qu, L. J.; Liu, S. W.; Chi, Z. G.; Zhang, Y.; Xu, J. R. . Synthesis and properties of high performance functional polyimides containing rigid nonplanar conjugated fluorene moieties . Chinese J. Polym. Sci. , 2019 . 37 416 -427 . DOI:10.1007/s10118-019-2225-0http://doi.org/10.1007/s10118-019-2225-0 .
Tsai, C. L.; Yen, H. J.; Liou, G. S. . Highly transparent polyimide hybrids for optoelectronic applications . React. Funct. Polym. , 2016 . 108 2 -30 . DOI:10.1016/j.reactfunctpolym.2016.04.021http://doi.org/10.1016/j.reactfunctpolym.2016.04.021 .
Hasegawa, M. . Development of solution-pocessable, optically transparent polyimides with ultra-low linear coefficients of thermal expansion . Polymers , 2017 . 9 1 -31 . DOI:10.3390/polym9010001http://doi.org/10.3390/polym9010001 .
Wang, S.; Yang, G. J.; Wu, S. B.; Ren, G.; Yang, W.; Liu, X. K. . Preparation of solution-processable colorless polyamide-imides with extremely low thermal expansion coefficients through an in-situ silylation method for potential space optical applications . e-Polymers , 2016 . 16 395 -402. .
Wang, Z. H.; Chen, X.; Yang, H. X.; Zhao, J.; Yang, S. Y. . The in-plane orientation and thermal mechanical properties of the chemically imidized polyimide films . Chinese J. Polym. Sci. , 2019 . 37 268 -278 . DOI:10.1007/s10118-019-2173-8http://doi.org/10.1007/s10118-019-2173-8 .
Hasegawa, M.; Kaneki, T.; Tsukui, M.; Okubo, N.; Ishii, J. . High-temperature polymers overcoming the trade-off between excellent thermoplasticity and low thermal expansion properties . Polymer , 2016 . 99 292 -306 . DOI:10.1016/j.polymer.2016.07.010http://doi.org/10.1016/j.polymer.2016.07.010 .
Bae, W. J.; Kovalev, M. K.; Kalinina, F.; Kim, M.; Cho, C. . Towards colorless polyimide/silica hybrids for flexible substrates . Polymer , 2016 . 105 124 -132 . DOI:10.1016/j.polymer.2016.10.023http://doi.org/10.1016/j.polymer.2016.10.023 .
Hasegawa, M.; Tokunaga, R.; Hashimoto, K.; Ishii, J. . Crosslinkable polyimides obtained from a reactive diamine and the effect of crosslinking on the thermal properties . React. Funct. Polym. , 2019 . 139 181 -188 . DOI:10.1016/j.reactfunctpolym.2019.04.005http://doi.org/10.1016/j.reactfunctpolym.2019.04.005 .
Sekiguchi, K.; Takizawa, K.; Ando, S. . Thermal expansion behavior of the ordered domain in polyimide films investigated by variable temperature WAXD measurements . J. Photopolym. Sci. Technol. , 2013 . 26 327 -332 . DOI:10.2494/photopolymer.26.327http://doi.org/10.2494/photopolymer.26.327 .
Ando, S.; Harada, M.; Okada, T.; Ishige, R. . Effective reduction of volumetric thermal expansion of aromatic polyimide films by incorporating interchain crosslinking . Polymers , 2018 . 10 1 -14. .
Lian, M.; Lu, X. M.; Lu, Q. H. . Synthesis of superheat-resistant polyimides with high Tg and low coefficient of thermal expansion by introduction of strong intermolecular interaction . Macromolecules , 2018 . 51 10127 -10135 . DOI:10.1021/acs.macromol.8b02282http://doi.org/10.1021/acs.macromol.8b02282 .
Kim S. D.; Lee, B.; Byun, T.; Chung, I. S.; Park, J.; Shin, I.; Ahn, N. Y.; Seo, M.; Lee, Y.; Kim, Y.; Kim, W. Y.; Kwon, H.; Moon, H.; Yoo, S.; Kim, S. Y. . Poly(amide-imide) materials for transparent and flexible displays . Sci. Adv. , 2018 . 4 1 -10. .
Bai, L.; Zhai, L.; He, M. H.; Wang, C. G.; Mo, S.; Fan, L. . Preparation of heat-resistant poly(amide-imide) films with ultralow coefficients of thermal expansion for optoelectronic application . React. Funct. Polym. , 2019 . 141 155 -164 . DOI:10.1016/j.reactfunctpolym.2019.05.009http://doi.org/10.1016/j.reactfunctpolym.2019.05.009 .
Numata, S.; Oohara, S.; Fujisaki, K.; Imaizumi, J.; Kinjo, N. . Thermal expansion behavior of various aromatic polyimides . J. Appl. Polym. Sci. , 1986 . 31 101 -110 . DOI:10.1002/app.1986.070310110http://doi.org/10.1002/app.1986.070310110 .
Numata, S.; Fujisaki, K.; Kinjo, N. . Re-examination of the relationship between packing coefficient and thermal expansion coefficent for aromatic polyimides . Polymer , 1987 . 28 2282 -2288 . DOI:10.1016/0032-3861(87)90388-0http://doi.org/10.1016/0032-3861(87)90388-0 .
Numata, S.; Miwa, T. . Thermal expansion coefficients and moduli of uniaxially stretched polyimide films with rigid and flexible molecular chains . Polymer , 1989 . 30 1170 -1174 . DOI:10.1016/0032-3861(89)90100-6http://doi.org/10.1016/0032-3861(89)90100-6 .
Hasegawa, M.; Tsujimura, Y.; Koseki, K.; Miyazaki, T. . Poly(ester imide)s possessing low CTE and low water absorption (II). Effect of substituents . Polym. J. , 2008 . 40 56 -67 . DOI:10.1295/polymj.PJ2007142http://doi.org/10.1295/polymj.PJ2007142 .
Hasegawa, M.; Sakamoto, Y.; Tanaka, Y.; Kobayashi, Y. . Poly(ester imide)s possessing low coefficients of thermal expansion (CTE) and low water absorption (III). Use of bis(4-aminophenyl)terephthalate and effect of substituents . Eur. Polym. J. , 2010 . 46 1510 -1524 . DOI:10.1016/j.eurpolymj.2010.04.014http://doi.org/10.1016/j.eurpolymj.2010.04.014 .
Hasegawa, M.; Ishigami, T.; Ishii, J.; Sugiura, K.; Fujii, M. . Solution-processable transparent polyimides with low coefficients of thermal expansion and self-orientation behavior induced by solution casting . Eur. Polym. J. , 2013 . 49 3657 -3672 . DOI:10.1016/j.eurpolymj.2013.08.002http://doi.org/10.1016/j.eurpolymj.2013.08.002 .
Ishige, R.; Masuda, T.; Kozaki, Y.; Fujiwara, E.; Okada, T.; Ando, S. . Precise analysis of thermal volume expansion of crystal lattice for fully aromatic crystalline polyimides by X-ray diffraction method: relationship between molecular structure and linear/volumetric thermal expansion . Macromolecules , 2017 . 50 2112 -2123 . DOI:10.1021/acs.macromol.7b00095http://doi.org/10.1021/acs.macromol.7b00095 .
Ishige, R.; Tanaka, K.; Ando, S. . In situ analysis of chain orientation behavior in thin film aromatic polyimides by variable temperature pMAIRS during thermal imidization . Macromol. Chem. Phys. , 2018 . 219 1 -13 . DOI:10.1002/macp.201700370http://doi.org/10.1002/macp.201700370 .
Ando, S.; Sekiguchi, K.; Mizoroki, M.; Okada, T.; Ishige, R. . Anisotropic linear and volumetric thermal-expansion behaviors of self-standing polyimide films analyzed by thermomechanical analysis (TMA) and optical interferometry . Macromol. Chem. Phys. , 2018 . 219 1 -10 . DOI:10.1002/macp.201700354http://doi.org/10.1002/macp.201700354 .
Li, T.; Tashiro, K.; Kobayashi, M.; Tadokoro, H. . Thermomechanical and ultrasonic properties of high-modulus aromatic polyamide fibers . Macromolecules , 1986 . 19 1809 -1814 . DOI:10.1021/ma00161a006http://doi.org/10.1021/ma00161a006 .
Zhuang, Y. B.; Liu, X. Y.; Gu, Y. . Molecular packing and properties of poly(benzoxazole-benzimidazole-imide) copolymers . Polym. Chem. , 2012 . 3 1517 -1525 . DOI:10.1039/c2py20074khttp://doi.org/10.1039/c2py20074k .
Song, G. L.; Zhang, X. D.; Wang, D. M.; Zhao, X. G.; Zhou, H. W.; Chen, C. H.; Dang, G. D. . Negative in-plane CTE of benzimidazole-based polyimide film and its thermal expansion behavior . Polymer , 2014 . 55 3242 -3246 . DOI:10.1016/j.polymer.2014.05.041http://doi.org/10.1016/j.polymer.2014.05.041 .
Song, G. L.; Wang, D. M.; Dang, G. D.; Zhou, H. W.; Chen, C. H.; Zhao, X. G. . Thermal expansion behavior of polyimide films containing benzoxazole unit . High Perform. Polym. , 2014 . 26 413 -419 . DOI:10.1177/0954008313517250http://doi.org/10.1177/0954008313517250 .
Hasegawa, M.; Hoshino, Y.; Katsura, N.; Ishii, J. . Superheat-resistant polymers with low coefficients of thermal expansion . Polymer , 2017 . 111 91 -102 . DOI:10.1016/j.polymer.2017.01.028http://doi.org/10.1016/j.polymer.2017.01.028 .
Hasegawa, M.; Watanabe, Y.; Tsukuda, S.; Ishii, J. . Solution-processable colorless polyimides with ultralow coefficients of thermal expansion for optoelectronic applications . Polym. Int. , 2016 . 65 1063 -1073 . DOI:10.1002/pi.5152http://doi.org/10.1002/pi.5152 .
Parveen, A. S.; Thirukumaran, P.; Sarojadevi, M. . Fabrication of highly durable hydrophobic PBZ/SiO2 surfaces . RSC Adv. , 2015 . 5 43601 -43610 . DOI:10.1039/C5RA06413Ahttp://doi.org/10.1039/C5RA06413A .
Yoshioka, Y.; Tashiro, K. . Structural change in the Brill transition of Nylon m/n (1) Nylon 10/10 and its model compounds . Polymer , 2003 . 44 7007 -7019 . DOI:10.1016/j.polymer.2003.04.001http://doi.org/10.1016/j.polymer.2003.04.001 .
Ishii, J.; Takata, A.; Oami, Y.; Yokota, R.; Vladimirov, L.; Hasegawa, M. . Spontaneous molecular orientation of polyimides induced by thermal imidization (6). Mechanism of negative in-plane CTE generation in non-stretched polyimide films . Eur. Polym. J. , 2010 . 46 681 -693 . DOI:10.1016/j.eurpolymj.2010.01.007http://doi.org/10.1016/j.eurpolymj.2010.01.007 .
Hu, J. H.; Li, R. K.; Chen, C.; Lu, Z.; Zeng, K.; Yang, G. . New insights into mechanism of negative in-plane CTE based on bio-based adenine-containing polyimide film . Polymer , 2018 . 146 133 -141 . DOI:10.1016/j.polymer.2018.05.001http://doi.org/10.1016/j.polymer.2018.05.001 .
Matsuda, S. I.; Ando, S. J. . Molecular orientation of rigid-rod polyimide films characterized by polarized attenuated total reflection/Fourier transform infrared spectroscopy . J. Polym. Sci., Part B: Polym. Phys. , 2003 . 41 418 -428 . DOI:10.1002/polb.10376http://doi.org/10.1002/polb.10376 .
Wang, L. L.; Dong, X.; Huang, M. M.; Wang, D. J. . Transient microstructure in long alkane segment polyamide: deformation mechanism and its temperature dependence . Polymer , 2016 . 97 217 -225 . DOI:10.1016/j.polymer.2016.05.038http://doi.org/10.1016/j.polymer.2016.05.038 .
Ree, M.; Kim, K.; Woo, S. H.; Chang, H. . Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities . J. Appl. Phys. , 1997 . 81 698 -708 . DOI:10.1063/1.364210http://doi.org/10.1063/1.364210 .
Ree, M.; Shin, T. J.; Lee, S. W. . Fully rod-like aromatic polyimides: structure, properties, and chemical modifications . Korea Polym. J. , 2001 . 9 1 -19. .
Takizawa, K.; Wakita, J.; Azami, S.; Ando, S. . Relationship between molecular aggregation structures and optical properties of polyimide films analyzed by synchrotron wide-angle X-ray diffraction, infrared absorption, and UV/visible absorption spectroscopy at very high pressure . Macromolecules , 2011 . 44 349 -359 . DOI:10.1021/ma101765khttp://doi.org/10.1021/ma101765k .
0
Views
6
Downloads
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution