
a.Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
b.Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, China
minminshi@zju.edu.cn (M.M.S.)
hzchen@zju.edu.cn (H.Z.C.)
Scan for full text
Shi-Zhe Geng, Wei-Tao Yang, Jian Gao, et al. Non-fullerene Acceptors with a Thieno[3,4-
Shi-Zhe Geng, Wei-Tao Yang, Jian Gao, et al. Non-fullerene Acceptors with a Thieno[3,4-
To achieve the red-shifted absorptions and appropriate energy levels of A-D-A type non-fullerene acceptors (NFAs), in this work, we design and synthesize two new NFAs, named TPDCIC and TPDCNC, whose electron-donating (D) unit is constructed by a thieno[3,4-,c,]pyrrole-4,6-dione (TPD) core attached to two cyclopentadithiophene (CPDT) moieties at both sides, and the electron-accepting (A) end-groups are 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC) and 2-(3-oxo-2,3-dihydro-1,H,-cyclopenta[,b,]naphthalen-1-ylidene)malononitrile (NC), respectively. Benefiting from TPD core, which easily forms quinoid structure and O···H or O···S intramolecular noncovalent interactions, TPDCIC and TPDCNC show more delocalization of ,π,-electrons and perfect planar molecular geometries, giving the absorption ranges extended to 822 and 852 nm, respectively. Furthermore, the highest occupied molecular orbital (HOMO) levels of TPDCIC and TPDCNC remain relatively low-lying due to the electronegativity of the carbonyl groups on TPD core. Considering that the absorptions and energy levels of the two NFAs match well with those of a widely used polymer donor, PBDB-T, we fabricate two kinds of organic solar cells (OSCs) based on the PBDB-T:TPDCIC and PBDB-T:TPDCNC blended films, respectively. Through a series of optimizations, the TPDCIC-based devices yield an impressing power conversion efficiency (PCE) of 10.12% with a large short-circuit current density (,J,SC,) of 18.16 mA·cm,−2, and the TPDCNC-based ones exhibit a comparable PCE of 9.80% with a ,J,SC, of 17.40 mA·cm,−2,. Our work is the first report of the TPD-core-based A-D-A type NFAs, providing a good reference for the molecular design of high-performance NFAs.
Non-fullerene acceptors (NFAs)Organic solar cells (OSCs)Thieno[34-c]pyrrole-46-dione (TPD)Narrow bandgapEnergy levels
Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y.; Wang, C.; Zhu, D.; Heeger, A. J.; Marder, S. R.; Zhan, X . High-performance electron acceptor with thienyl side chains for organic photovoltaics . J. Am. Chem. Soc. , 2016 . 138 4955 -4961 . DOI:10.1021/jacs.6b02004http://doi.org/10.1021/jacs.6b02004 .
Li, S.; Liu, W.; Li, C. Z.; Shi, M.; Chen, H . Efficient organic solar cells with non-fullerene acceptors . Small , 2017 . 13 1701120 DOI:10.1002/smll.v13.37http://doi.org/10.1002/smll.v13.37 .
Li, S.; Zhan, L.; Liu, F.; Ren, J.; Shi, M.; Li, C. Z.; Russell, T. P.; Chen, H . An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures . Adv. Mater. , 2018 . 30 1705208 DOI:10.1002/adma.201705208http://doi.org/10.1002/adma.201705208 .
Dai, S.; Zhao, F.; Zhang, Q.; Lau, T. K.; Li, T.; Liu, K.; Ling, Q.; Wang, C.; Lu, X.; You, W.; Zhan, X . Fused nonacyclic electron acceptors for efficient polymer solar cells . J. Am. Chem. Soc. , 2017 . 139 1336 -1343 . DOI:10.1021/jacs.6b12755http://doi.org/10.1021/jacs.6b12755 .
Zhang, K.; Liu, X.; Xu, B.; Cui, Y.; Sun, M.; Hou, J . High-performance fullerene-free polymer solar cells with solution-processed conjugated polymers as anode interfacial layer . Chinese J. Polym. Sci. , 2017 . 35 219 -229 . DOI:10.1007/s10118-017-1888-7http://doi.org/10.1007/s10118-017-1888-7 .
Wang, S.; Liu, Y.; Yang, J.; Tao, Y.; Guo, Y.; Cao, X.; Zhang, Z.; Li, Y.; Huang, W . Orthogonal solubility in fully conjugated donor-acceptor block copolymers: Compatibilizers for polymer/fullerene bulk-heterojunction solar cells . Chinese J. Polym. Sci. , 2017 . 35 207 -218 . DOI:10.1007/s10118-017-1889-6http://doi.org/10.1007/s10118-017-1889-6 .
Li, S.; Zhang, Z.; Shi, M.; Li, C. Z.; Chen, H . Molecular electron acceptors for efficient fullerene-free organic solar cells . Phys. Chem. Chem. Phys. , 2017 . 19 3440 -3458 . DOI:10.1039/C6CP07465Khttp://doi.org/10.1039/C6CP07465K .
Liu, Y.; Zhang, Z.; Feng, S.; Li, M.; Wu, L.; Hou, R.; Xu, X.; Chen, X.; Bo, Z . Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells . J. Am. Chem. Soc. , 2017 . 139 3356 -3359 . DOI:10.1021/jacs.7b00566http://doi.org/10.1021/jacs.7b00566 .
Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J . Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells . Adv. Mater. , 2016 . 28 9423 -9429 . DOI:10.1002/adma.201602776http://doi.org/10.1002/adma.201602776 .
Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K. K.; Zhu, J.; Huo, L.; Bin, H.; Zhang, Z. G.; Guo, X.; Zhang, M.; Sun, Y.; Gao, F.; Wei, Z.; Ma, W.; Wang, C.; Hodgkiss, J.; Bo, Z.; Inganas, O.; Li, Y.; Zhan, X . Mapping polymer donors toward high-efficiency fullerene free organic solar cells . Adv. Mater. , 2017 . 29 1604155 DOI:10.1002/adma.v29.3http://doi.org/10.1002/adma.v29.3 .
Baran, D.; Kirchartz, T.; Wheeler, S.; Dimitrov, S.; Abdelsamie, M.; Gorman, J.; Ashraf, R. S.; Holliday, S.; Wadsworth, A.; Gasparini, N.; Kaienburg, P.; Yan, H.; Amassian, A.; Brabec, C. J.; Durrant, J. R.; McCulloch, I . Reduced voltage losses yield 10% efficient fullerene free organic solar cells with > 1 V open circuit voltages . Energy Environ. Sci. , 2016 . 9 3783 -3793 . DOI:10.1039/C6EE02598Fhttp://doi.org/10.1039/C6EE02598F .
Kan, B.; Feng, H.; Wan, X.; Liu, F.; Ke, X.; Wang, Y.; Wang, Y.; Zhang, H.; Li, C.; Hou, J.; Chen, Y . Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells . J. Am. Chem. Soc. , 2017 . 139 4929 -4934 . DOI:10.1021/jacs.7b01170http://doi.org/10.1021/jacs.7b01170 .
Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X . An electron acceptor challenging fullerenes for efficient polymer solar cells . Adv. Mater. , 2015 . 27 1170 -1174 . DOI:10.1002/adma.201404317http://doi.org/10.1002/adma.201404317 .
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y . Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core . Joule , 2019 . 3 1 -12 . DOI:10.1016/j.joule.2018.12.022http://doi.org/10.1016/j.joule.2018.12.022 .
Chen, H . Electron-deficient core fused-ring based non-fullerene acceptor enables over 15% efficiency in single junction organic solar cells . Sci. China Chem. , 2019 . 62 (4 ):403 -404 . DOI:10.1007/s11426-019-9431-8http://doi.org/10.1007/s11426-019-9431-8 .
Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y . Achieving over 16% efficiency for single-junction organic solar cells . Sci. China Chem. , 2019 . 62 (6 ):746 -752 . DOI:10.1007/s11426-019-9457-5http://doi.org/10.1007/s11426-019-9457-5 .
Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H. L.; Cao, Y.; Chen, Y . Organic and solution-processed tandem solar cells with 17.3% efficiency . Science , 2018 . 361 1094 -1098 . DOI:10.1126/science.aat2612http://doi.org/10.1126/science.aat2612 .
Zhu, J.; Ke, Z.; Zhang, Q.; Wang, J.; Dai, S.; Wu, Y.; Xu, Y.; Lin, Y.; Ma, W.; You, W.; Zhan, X . Naphthodithiophene-based nonfullerene acceptor for high-performance organic photovoltaics: Effect of extended conjugation . Adv. Mater. , 2018 . 30 1704713 DOI:10.1002/adma.201704713http://doi.org/10.1002/adma.201704713 .
Li, W.; Ye, L.; Li, S.; Yao, H.; Ade, H.; Hou, J . A high-efficiency organic solar cell enabled by the strong intramolecular electron push-pull effect of the nonfullerene acceptor . Adv. Mater. , 2018 . 30 1707170 DOI:10.1002/adma.201707170http://doi.org/10.1002/adma.201707170 .
Li, S.; Zhan, L.; Sun, C.; Zhu, H.; Zhou, G.; Yang, W.; Shi, M.; Li, C. Z.; Hou, J.; Li, Y.; Chen, H . Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets . J. Am. Chem. Soc. , 2019 . 141 3073 -3082 . DOI:10.1021/jacs.8b12126http://doi.org/10.1021/jacs.8b12126 .
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, C.; Lau, T. K.; Zhang, G.; Lu, X.; Yip, H. L.; So, S. K.; Beaupre, S.; Mainville, M.; Johnson, P. A.; Leclerc, M.; Chen, H.; Peng, H.; Li, Y.; Zou, Y . Fused benzothiadiazole: A building block for n-type organic acceptor to achieve high-performance organic solar cells . Adv. Mater. , 2019 . 31 1807577 DOI:10.1002/adma.201807577http://doi.org/10.1002/adma.201807577 .
Yuan, J.; Huang, T.; Cheng, P.; Zou, Y.; Zhang, H.; Yang, J. L.; Chang, S. Y.; Zhang, Z.; Huang, W.; Wang, R.; Meng, D.; Gao, F.; Yang, Y . Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics . Nat. Commun. , 2019 . 10 570 DOI:10.1038/s41467-019-08386-9http://doi.org/10.1038/s41467-019-08386-9 .
Li, S.; Liu, W.; Shi, M.; Mai, J.; Lau, T. K.; Wan, J.; Lu, X.; Li, C. Z.; Chen, H . A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage . Energy Environ. Sci. , 2016 . 9 604 -610 . DOI:10.1039/C5EE03481Ghttp://doi.org/10.1039/C5EE03481G .
Chen, C. A.; Yang, P. C.; Wang, S. C.; Tung, S. H.; Su, W. F . Side chain effects on the optoelectronic properties and self-assembly behaviors of terthiophene-thieno[3,4-c]pyrrole-4,6-dione based conjugated polymers . Macromolecules , 2018 . 51 7828 -7835 . DOI:10.1021/acs.macromol.8b01073http://doi.org/10.1021/acs.macromol.8b01073 .
Guo, X.; Zhou, N.; Lou, S. J.; Hennek, J. W.; Ponce Ortiz, R.; Butler, M. R.; Boudreault, P. L.; Strzalka, J.; Morin, P. O.; Leclerc, M.; Lopez Navarrete, J. T.; Ratner, M. A.; Chen, L. X.; Chang, R. P.; Facchetti, A.; Marks, T. J . Bithiopheneimide-dithienosilole/dithienogermole copolymers for efficient solar cells: information from structure-property-device performance correlations and comparison to thieno[3,4-c]pyrrole-4,6-dione analogues . J. Am. Chem. Soc. , 2012 . 134 18427 -18439 . DOI:10.1021/ja3081583http://doi.org/10.1021/ja3081583 .
Guo, X.; Kim, F. S.; Jenekhe, S. A.; Watson, M. D . Phthalimide-based polymers for high performance organic thin-film transistors . J. Am. Chem. Soc. , 2009 . 131 7206 -7207 . DOI:10.1021/ja810050yhttp://doi.org/10.1021/ja810050y .
Chu, T. Y.; Lu, J.; Beaupre, S.; Zhang, Y.; Pouliot, J. R.; Zhou, J.; Najari, A.; Leclerc, M.; Tao, Y . Effects of the molecular weight and the side-chain length on the photovoltaic performance of dithienosilole/thienopyrrolodione copolymers . Adv. Funct. Mater. , 2012 . 22 2345 -2351 . DOI:10.1002/adfm.v22.11http://doi.org/10.1002/adfm.v22.11 .
Letizia, J. A.; Salata, M. R.; Tribout, C. M.; Facchetti, A.; Ratner, M. A.; Marks, T. J . N-channel polymers by design: Optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors . J. Am. Chem. Soc. , 2008 . 130 9679 -9694 . DOI:10.1021/ja710815ahttp://doi.org/10.1021/ja710815a .
Najari, A.; Beaupre, S.; Berrouard, P.; Zou, Y.; Pouliot, J. R.; Lepage-Perusse, C.; Leclerc, M . Synthesis and characterization of new thieno[3,4-c]pyrrole-4,6-dione derivatives for photovoltaic applications . Adv. Funct. Mater. , 2011 . 21 718 -728 . DOI:10.1002/adfm.201001771http://doi.org/10.1002/adfm.201001771 .
Li, Z.; Tsang, S. W.; Du, X.; Scoles, L.; Robertson, G.; Zhang, Y.; Toll, F.; Tao, Y.; Lu, J.; Ding, J . Alternating copolymers of cyclopenta[2,1-b;3,4-b′] dithiophene and thieno[3,4-c]pyrrole-4,6-dione for high-performance polymer solar cells . Adv. Funct. Mater. , 2011 . 21 3331 -3336 . DOI:10.1002/adfm.201100708http://doi.org/10.1002/adfm.201100708 .
Li, S.; Ye, L.; Zhao, W.; Liu, X.; Zhu, J.; Ade, H.; Hou, J . Design of a new small-molecule electron acceptor enables efficient polymer solar cells with high fill factor . Adv. Mater. , 2017 . 29 1704051 DOI:10.1002/adma.201704051http://doi.org/10.1002/adma.201704051 .
Wang, N.; Zhan, L.; Li, S.; Shi, M.; Lau, T. K.; Lu, X.; Shikler, R.; Li, C. Z.; Chen, H . Enhancement of intra- and inter-molecular π-conjugated effects for a non-fullerene acceptor to achieve high-efficiency organic solar cells with an extended photoresponse range and optimized morphology . Mater. Chem. Front. , 2018 . 2 2006 -2012 . DOI:10.1039/C8QM00318Ahttp://doi.org/10.1039/C8QM00318A .
Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganas, O.; Gao, F.; Hou, J . Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability . Adv. Mater. , 2016 . 28 4734 -4739 . DOI:10.1002/adma.v28.23http://doi.org/10.1002/adma.v28.23 .
Zhao, W.; Li, S.; Zhang, S.; Liu, X.; Hou, J . Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency . Adv. Mater. , 2017 . 29 1604059 DOI:10.1002/adma.v29.2http://doi.org/10.1002/adma.v29.2 .
Kang, H.; Kim, G.; Kim, J.; Kwon, S.; Kim, H.; Lee, K . Bulk-heterojunction organic solar cells: Five core technologies for their commercialization . Adv. Mater. , 2016 . 28 7821 -7861 . DOI:10.1002/adma.201601197http://doi.org/10.1002/adma.201601197 .
Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia, B.; Wang, Z.; Lu, K.; Ma, W.; Wei, Z . Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells . Nat. Commun. , 2016 . 7 13740 DOI:10.1038/ncomms13740http://doi.org/10.1038/ncomms13740 .
Li, S.; Zhan, L.; Zhao, W.; Zhang, S.; Ali, B.; Fu, Z.; Lau, T. K.; Lu, X.; Shi, M.; Li, C. Z.; Hou, J.; Chen, H . Revealing the effects of molecular packing on the performances of polymer solar cells based on A-D-C-D-A type non-fullerene acceptors . J. Mater. Chem. A , 2018 . 6 12132 -12141 . DOI:10.1039/C8TA03753Ahttp://doi.org/10.1039/C8TA03753A .
Yuan, L.; Lu, K.; Xia, B.; Zhang, J.; Wang, Z.; Wang, Z.; Deng, D.; Fang, J.; Zhu, L.; Wei, Z . Acceptor end-capped oligomeric conjugated molecules with broadened absorption and enhanced extinction coefficients for high-efficiency organic solar cells . Adv. Mater. , 2016 . 28 5980 -5985 . DOI:10.1002/adma.201600512http://doi.org/10.1002/adma.201600512 .
Zhan, L.; Li, S.; Zhang, H.; Gao, F.; Lau, T. K.; Lu, X.; Sun, D.; Wang, P.; Shi, M.; Li, C. Z.; Chen, H . A near-infrared photoactive morphology modifier leads to significant current improvement and energy loss mitigation for ternary organic solar cells . Adv. Sci. , 2018 . 5 1800755 DOI:10.1002/advs.v5.8http://doi.org/10.1002/advs.v5.8 .
Zheng, Z.; Awartani, O. M.; Gautam, B.; Liu, D.; Qin, Y.; Li, W.; Bataller, A.; Gundogdu, K.; Ade, H.; Hou, J . Efficient charge transfer and fine-tuned energy level alignment in a THF-processed fullerene-free organic solar cell with 11.3% efficiency . Adv. Mater. , 2017 . 29 1604241 DOI:10.1002/adma.201604241http://doi.org/10.1002/adma.201604241 .
Fan, B.; Zhang, K.; Jiang, X. F.; Ying, L.; Huang, F.; Cao, Y . High-performance nonfullerene polymer solar cells based on imide-functionalized wide-bandgap polymers . Adv. Mater. , 2017 . 29 1606396 DOI:10.1002/adma.201606396http://doi.org/10.1002/adma.201606396 .
Mai, J.; Xiao, Y.; Zhou, G.; Wang, J.; Zhu, J.; Zhao, N.; Zhan, X.; Lu, X . Hidden structure ordering along backbone of fused-ring electron acceptors enhanced by ternary bulk heterojunction . Adv. Mater. , 2018 . 30 1802888 DOI:10.1002/adma.v30.34http://doi.org/10.1002/adma.v30.34 .
Mai, J.; Lau, T. K.; Li, J.; Peng, S. H.; Hsu, C. S.; Jeng, U. S.; Zeng, J.; Zhao, N.; Xiao, X.; Lu, X . Understanding morphology compatibility for high-performance ternary organic solar cells . Chem. Mater. , 2016 . 28 6186 -6195 . DOI:10.1021/acs.chemmater.6b02264http://doi.org/10.1021/acs.chemmater.6b02264 .
0
Views
0
Downloads
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621