1.College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
fengchen@scu.edu.cn (F.C.)
qiangfu@scu.edu.cn (Q.F.)
Scan for full text
Yan-Ling Mo, Yu-Xin Tian, Yu-Hang Liu, et al. Preparation and Properties of Ultrathin Flexible Expanded Graphite Film
Yan-Ling Mo, Yu-Xin Tian, Yu-Hang Liu, et al. Preparation and Properties of Ultrathin Flexible Expanded Graphite Film
Expanded graphite (EG) films exhibit potential use in a wide field including thermal management, conductive applications, and electromagnetic interference (EMI) shielding. However, their poor tensile strength and brittleness are crucial deficiencies for commercial applications. To address these defects, in our work, natural rubber (NR) is employed to improve EG films for better mechanical strength and flexibility. The origin of the strengthening effect of EG films by the addition of natural rubber mainly arises from the formation of a simulate shell structure. Compared to the neat EG films, the addition of merely 2 wt% NR can give rise to superior ductility. Further, the loading of 10 wt% NR realizes a significant mechanical enhancement of the EG/NR films,i.e,., 2.4 and 11.4 times increase in tensile strength and elongation at break, respectively. Besides, EG/NR films containing 10 wt% NR can still sustain excellent thermal and electric conductivities of 173 W·m,−1,·K,−1, and 75 S·cm,−1, respectively. Furthermore, a very high EMI of 41.4 dB is achieved as the film thickness reaches 50 μm. Thus, the lightweight EG/NR films with comprehensive performance as well as their virtue of green and simple large-scale preparation endow them with the possibility of designing next-generation flexible electronics.
Expanded graphiteNatural rubberComposite filmsThermal and electric properties
Nika, D. L.; Balandin, A. A . Phonons and thermal transport in graphene and graphene-based materials . Rep. Prog. Phys. , 2017 . 80 036502 DOI:10.1088/1361-6633/80/3/036502http://doi.org/10.1088/1361-6633/80/3/036502 .
Balandin, A. A . Thermal properties of graphene and nanostructured carbon materials . Nat. Mater. , 2011 . 10 569 -581 . DOI:10.1038/nmat3064http://doi.org/10.1038/nmat3064 .
Kumar, P.; Shahzad, F.; Yu, S.; Hong, S. M.; Kim, Y. H.; Koo, C. M . Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness . Carbon , 2015 . 94 494 -500 . DOI:10.1016/j.carbon.2015.07.032http://doi.org/10.1016/j.carbon.2015.07.032 .
Renteria, J. D.; Ramirez, S.; Malekpour, H.; Alonso, B.; Centeno, A.; Zurutuza, A.; Cocemasov, A. I.; Nika, D. L.; Balandin, A. A . Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature . Adv. Funct. Mater. , 2015 . 25 4664 -4672 . DOI:10.1002/adfm.201501429http://doi.org/10.1002/adfm.201501429 .
Geim, A. K.; Novoselov, K. S . The rise of graphene . Nat. Mater. , 2007 . 6 183 -191 . DOI:10.1038/nmat1849http://doi.org/10.1038/nmat1849 .
Wang, N.; Tian, H.; Zhu, S. Y.; Yan, D, Y.; Mai, Y. Y . Two-dimensional nitrogen-doped mesoporous carbon/graphene nanocomposites from the self-assembly of block copolymer micelles in solution . Chinese J. Polym. Sci. , 2018 . 36 266 -272 . DOI:10.1007/s10118-018-2091-1http://doi.org/10.1007/s10118-018-2091-1 .
Ranjbartoreh, A. R.; Wang, B.; Shen, X.; Wang, G . Advanced mechanical properties of graphene paper . J. Appl. Phys. , 2011 . 109 014306 DOI:10.1063/1.3528213http://doi.org/10.1063/1.3528213 .
Chen, H.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D . Mechanically strong, electrically conductive, and biocompatible graphene paper . Adv. Mater. , 2008 . 20 3557 -3561 . DOI:10.1002/adma.200800757http://doi.org/10.1002/adma.200800757 .
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S . Graphene-based composite materials . Nature , 2006 . 442 282 -286 . DOI:10.1038/nature04969http://doi.org/10.1038/nature04969 .
Furio, A.; Landi, G.; Altavilla, C.; Sofia, D.; Iannace, S.; Sorrentino, A.; Neitzert, H. C . Neitzert light irradiation tuning of surface wettability, optical, and electric properties of graphene oxide thin films . Nanotechnology , 2017 . 28 054003 .
Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H . A green approach to the synthesis of graphene nanosheets . ACS Nano , 2009 . 3 2653 -2659 . DOI:10.1021/nn900227dhttp://doi.org/10.1021/nn900227d .
Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G . Processable aqueous dispersions of graphene nanosheets . Nat. Nanotechnol. , 2008 . 3 101 -105 . DOI:10.1038/nnano.2007.451http://doi.org/10.1038/nnano.2007.451 .
Shen, B.; Zhai, W.; Zheng, W . Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding . Adv. Funct. Mater. , 2014 . 24 4542 -4548 . DOI:10.1002/adfm.v24.28http://doi.org/10.1002/adfm.v24.28 .
Liu, Z.; Li, Z.; Xu, Z.; Xia, Z.; Hu, X.; Kou, L.; Peng, L.; Wei, Y.; Gao, C . Wet-spun continuous graphene films . Chem. Mater. , 2014 . 26 6786 -6795 . DOI:10.1021/cm5033089http://doi.org/10.1021/cm5033089 .
Lin, X.; Shen, X.; Zheng, Q.; Yousefi, N.; Ye, L.; Mai, Y. W.; Kim, J. K . Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets . ACS Nano , 2012 . 6 10708 -10719 . DOI:10.1021/nn303904zhttp://doi.org/10.1021/nn303904z .
Teng, C.; Xie, D.; Wang, J.; Yang, Z.; Ren, G.; Zhu, Y . Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene . Adv. Funct. Mater. , 2017 . 27 1700240 DOI:10.1002/adfm.v27.20http://doi.org/10.1002/adfm.v27.20 .
Ionov, S. G.; Avdeev, V. V.; Kuvshinnikov, S. V.; Pavlova, E. P . Physical and chemical properties of flexible graphite foils . Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A , 2000 . 340 349 -354 . DOI:10.1080/10587250008025491http://doi.org/10.1080/10587250008025491 .
Lai, Q . Preparation of flexible graphite sheet with fine flake graphite . Adv. Mater. Res. , 2011 . 328-330 1642 -1645 . DOI:10.4028/www.scientific.net/AMR.328-330http://doi.org/10.4028/www.scientific.net/AMR.328-330 .
Leng, Y.; Gu, J.; Cao, W.; Zhang, T. Y . Influences of density and flake size on the mechanical properties of flexible graphite . Carbon , 1998 . 36 875 -881 . DOI:10.1016/S0008-6223(97)00196-6http://doi.org/10.1016/S0008-6223(97)00196-6 .
Reynolds, R. A.; Greinke, R. A . Influence of expansion volume of intercalated graphite on tensile properties of flexible graphite . Carbon , 2001 . 39 479 -481 . DOI:10.1016/S0008-6223(00)00291-8http://doi.org/10.1016/S0008-6223(00)00291-8 .
Veca, L. M.; Meziani, M. J.; Wang, W.; Wang, X.; Lu, F.; Zhang, P.; Lin, Y.; Fee, R.; Connell, J. W.; Sun, Y. P . Carbon nanosheets for polymeric nanocomposites with high thermal conductivity . Adv. Mater. , 2009 . 21 2088 -2092 . DOI:10.1002/adma.v21:20http://doi.org/10.1002/adma.v21:20 .
Wen, B.; Wang, X. X.; Cao, W. Q.; Shi, H. L.; Lu, M. M.; Wang, G.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S . Reduced graphene oxides: The thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world . Nanoscale , 2014 . 6 5754 -5761 . DOI:10.1039/C3NR06717Chttp://doi.org/10.1039/C3NR06717C .
Wei, Y.; Huang, R.; Dong, P.; Qi, X. D.; Fu, Q . Preparation of polylactide/poly(ether)urethane blends with excellent electro-actuated shape memory via incorporating carbon black and carbon nanotubes hybrids fillers . Chinese J. Polym. Sci. , 2018 . 36 1175 -1186 . DOI:10.1007/s10118-018-2138-3http://doi.org/10.1007/s10118-018-2138-3 .
Wei, Z. B.; Zhao, Y.; Wang, C.; Kuga, S.; Huang, Y.; Wu, M . Antistatic PVC-graphene composite through plasticizer-mediated exfoliation of graphite . Chinese J. Polym. Sci. , 2018 . 36 1361 -1367 . DOI:10.1007/s10118-018-2160-5http://doi.org/10.1007/s10118-018-2160-5 .
Sun, C. B.; Mao, H. D.; Chen, F.; Fu, Q . Preparation of polylactide composite with excellent flame retardance and improved mechanical properties . Chinese J. Polym. Sci. , 2018 . 36 1385 -1393 . DOI:10.1007/s10118-018-2150-7http://doi.org/10.1007/s10118-018-2150-7 .
Pu, S. Q.; Guo, S.; Wang, K.; Fu, Q . Largely improved stretch ductility and β-form room-temperature durability of poly(vinylidene fluoride) by incorporating aliphatic polyketone . Chinese J. Polym. Sci , 2018 . 36 1277 -1285 . DOI:10.1007/s10118-018-2134-7http://doi.org/10.1007/s10118-018-2134-7 .
Zhu, G. L.; Han, D.; Yuan, Y.; Chen, F.; Fu, Q . Improving damping properties and thermal stability of epoxy/polyurethane grafted copolymer by adding glycidyl POSS . Chinese J. Polym. Sci. , 2018 . 36 1297 -1302 . DOI:10.1007/s10118-018-2145-4http://doi.org/10.1007/s10118-018-2145-4 .
Cote Laura, J.; Kim, J.; Tung Vincent, C.; Luo, J.; Kim, F.; Huang, J . Graphene oxide as surfactant sheets . Pure Appl. Chem. , 2010 . 83 (1 ):95 -110 . DOI:10.1351/PAC-CON-10-10-25http://doi.org/10.1351/PAC-CON-10-10-25 .
Liu, Y. H.; Zeng, J.; Han, D.; Wu, K.; Yu, B. W.; Chai, S. G.; Chen, F.; Fu, Q . New insight of high temperature oxidation on self-exfoliation capability of graphene oxide . Nanotechnology , 2018 . 29 185601 DOI:10.1088/1361-6528/aaaf3dhttp://doi.org/10.1088/1361-6528/aaaf3d .
Wen, B.; Cao, M.; Lu, M.; Cao, W.; Shi, H.; Liu, J.; Wang, X.; Jin, H.; Fang, X.; Wang, W.; Yuan, J . Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures . Adv. Mater. , 2014 . 26 3484 -3489 . DOI:10.1002/adma.v26.21http://doi.org/10.1002/adma.v26.21 .
Zeng, Z.; Chen, M.; Jin, H.; Li, W.; Xue, X.; Zhou, L.; Pei, Y.; Zhang, H.; Zhang, Z . Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding . Carbon , 2016 . 96 768 -777 . DOI:10.1016/j.carbon.2015.10.004http://doi.org/10.1016/j.carbon.2015.10.004 .
Wu, H. Y.; Jia, L. C.; Yan, D. X.; Gao, J. F.; Zhang, X. P.; Ren, P. G.; Li, Z. M . Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding . Compos. Sci. Technol. , 2018 . 156 87 -94 . DOI:10.1016/j.compscitech.2017.12.027http://doi.org/10.1016/j.compscitech.2017.12.027 .
Thomassin, J. M.; Jerome, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C . Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials . Mater. Sci. Eng. Rep. , 2013 . 74 211 -232 . DOI:10.1016/j.mser.2013.06.001http://doi.org/10.1016/j.mser.2013.06.001 .
Bernal, M. M.; Di Pierro, A.; Novara, C.; Giorgis, F.; Mortazavi, B.; Saracco, G.; Fina, A . Edge-grafted molecular junctions between graphene nanoplatelets: Applied chemistry to enhance heat transfer in nanomaterials . Adv. Funct. Mater. , 2018 . 28 1706954 DOI:10.1002/adfm.v28.18http://doi.org/10.1002/adfm.v28.18 .
Zhang, Y.; Edwards, M.; Samani, M. K.; Logothetis, N.; Ye, L.; Fu, Y.; Jeppson, K.; Liu, J . Characterization and simulation of liquid phase exfoliated graphene-based films for heat spreading applications . Carbon , 2016 . 106 195 -201 . DOI:10.1016/j.carbon.2016.05.014http://doi.org/10.1016/j.carbon.2016.05.014 .
Pei, S.; Cheng, H. M . The reduction of graphene oxide . Carbon , 2012 . 50 3210 -3228 . DOI:10.1016/j.carbon.2011.11.010http://doi.org/10.1016/j.carbon.2011.11.010 .
Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N . Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions . J. Am. Chem. Soc. , 2009 . 131 3611 -3620 . DOI:10.1021/ja807449uhttp://doi.org/10.1021/ja807449u .
Yang, W. X.; Zhang, Y.; Liu, T. Y.; Huang, R.; Chai, S. G.; Chen, F.; Fu, Q . Completely green approach for the preparation of strong and highly conductive graphene composite film by using nanocellulose as dispersing agent and mechanical compression . ACS Sustain. Chem. Eng. , 2017 . 5 9102 -9113 . DOI:10.1021/acssuschemeng.7b02012http://doi.org/10.1021/acssuschemeng.7b02012 .
Wu, H.; Drzal, L. T . Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties . Carbon , 2012 . 50 1135 -1145 . DOI:10.1016/j.carbon.2011.10.026http://doi.org/10.1016/j.carbon.2011.10.026 .
Hamilton, C. E.; Lomeda, J. R.; Sun, Z.; Tour, J. M.; Barron, A. R . High-yield organic dispersions of unfunctionalized graphene . Nano Lett. , 2009 . 9 3460 -3462 . DOI:10.1021/nl9016623http://doi.org/10.1021/nl9016623 .
0
Views
0
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution