Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids
ARTICLE|Updated:2021-02-18
|
Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids
Chinese Journal of Polymer ScienceVol. 37, Issue 2, Pages: 189-196(2019)
Affiliations:
a.Guangzhou Special Pressure Equipment Inspection and Research Institute, Guangzhou 510663, China
b.School of Materials Science and Technology, South China University of Technology, Guangzhou 510000, China
Bo Yang, Shuang-Hong Zhang, Yi-Feng Zou, et al. Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids. [J]. Chinese Journal of Polymer Science 37(2):189-196(2019)
DOI:
Bo Yang, Shuang-Hong Zhang, Yi-Feng Zou, et al. Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids. [J]. Chinese Journal of Polymer Science 37(2):189-196(2019) DOI: 10.1007/s10118-019-2185-4.
Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids
The SiO,2, nanoparticles were coated on the surface of graphene oxide (GO) by sol-gel method to get the SiO,2,-G compound. The SiO,2,-G was restored and oleophylically modified to prepare hydrophobic modified SiO,2,-G (HM-SiO,2,-G) which was subsequently added to silicone rubber matrix to prepare two-component room temperature vulcanized (RTV-2) thermal conductive silicone rubber. The morphology, chemical structure and dispersity of the modified graphene were characterized with SEM, FTIR, Raman, and XPS methods. In addition, the heat-resistance behavior, mechanical properties, thermal conductivity, and electrical conductivity of the RTV-2 silicone rubber were also studied systematically. The results showed that the SiO,2, nanoparticles were coated on graphene oxide successfully, and HM-SiO,2,-G was uniformly dispersed in RTV-2 silicone rubber. The addition of HM-SiO,2,-G could effectively improve the thermal stability, mechanical properties and thermal conductivity of RTV-2 silicone rubber and had no great influence on the electrical insulation performance.
关键词
Keywords
GrapheneModificationTwo componentsRoom temperature vulcanized silicone rubberThermal conductivity
references
Zheng, Z. M.; Xu, C. H.; Jiang, J.; Ren, C. Y.; Gao, W.; Xie, Z. M . Hydrophobicity of contaminated silicone rubber surfaces . Chinese J. Polym. Sci. , 2002 . 20 559 -564. .
Gan, T. F.; Shentu, B. Q.; Weng, Z. X . Modification of CeO2 and its effect on the heat-resistance of silicone rubber . Chinese J. Polym. Sci. , 2008 . 26 (4 ):489 -494 . DOI:10.1142/S0256767908003163http://doi.org/10.1142/S0256767908003163 .
Wang, J. B.; Li, Q. Y.; Wu, C. F.; Xu, H. Y . Thermal conductivity and mechanical properties of carbon black filled silicone rubber . Polym. Polym. Compos. , 2014 . 22 393 -400 . DOI:10.1177/096739111402200405http://doi.org/10.1177/096739111402200405 .
Jiang, M. J.; Dang, Z. M.; Xu, H. P . Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite . Eur. Polym. J. , 2007 . 43 4924 -4930 . DOI:10.1016/j.eurpolymj.2007.09.022http://doi.org/10.1016/j.eurpolymj.2007.09.022 .
Pradhan, B.; Srivastava, S. K . Synergistic effect of three-dimensional multi-walled carbon nanotube-graphene nanofiller in enhancing the mechanical and thermal properties of high-performance silicone rubber . Polym. Int. , 2014 . 63 1219 -1228 . DOI:10.1002/pi.2014.63.issue-7http://doi.org/10.1002/pi.2014.63.issue-7 .
Gan, L.; Shang, S. M.; Yuen, C. W. M.; Jiang, S. X.; Luo, N. M . Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties . Compos. Part B Eng. , 2015 . 69 237 -242 . DOI:10.1016/j.compositesb.2014.10.019http://doi.org/10.1016/j.compositesb.2014.10.019 .
Chabot, V.; Higgins, D.; Yu, A. P.; Xiao, X. C.; Chen, Z. W.; Zhang, J. J . A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment . Energ. Environ. Sci. , 2014 . 7 1564 -1596 . DOI:10.1039/c3ee43385dhttp://doi.org/10.1039/c3ee43385d .
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Dubonos, S. V.; Grigorieva, V. I.; Firsov, A. A . Electric field effect in atomically thin carbon films . Science , 2004 . 306 666 -669 . DOI:10.1126/science.1102896http://doi.org/10.1126/science.1102896 .
Geim, A. K.; Novoselov, K. S . The rise of graphene . Nat. Mater. , 2007 . 6 183 -191 . DOI:10.1038/nmat1849http://doi.org/10.1038/nmat1849 .
Huang, G. J.; Chen, Z. G.; Li, M. D.; Yang, B.; Xin, M. L.; Li, S. P.; Yin, Z. J . Surface functional modification of graphene and graphene oxide . Acta Chimica Sinica (in Chinese) , 2016 . 74 789 -799 . DOI:10.6023/A16070360http://doi.org/10.6023/A16070360 .
Yang, Y. K.; He, C. E.; Peng, R. G.; Baji, A.; Du, X. S.; Huang, Y. L.; Xie, X. L.; Mai, Y. W . Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites . J. Mater. Chem. , 2012 . 22 5666 -5675 . DOI:10.1039/c2jm16006dhttp://doi.org/10.1039/c2jm16006d .
Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWiliams, J. L.; Hamon, M. A.; Haddon, R. C . Solution properties of graphite and graphene . J. Am. Chem. Soc. , 2006 . 128 7720 -7721 . DOI:10.1021/ja060680rhttp://doi.org/10.1021/ja060680r .
Hu, H. T.; Wang, X. B.; Wang, J. C.; Liu, F. M.; Zhang, M.; Xu, C. H . Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics . Appl. Surf. Sci. , 2011 . 257 2637 -2642 . DOI:10.1016/j.apsusc.2010.10.035http://doi.org/10.1016/j.apsusc.2010.10.035 .
Vadukumpully, S.; Gupta, J.; Zhang, Y. P.; Xu, G. Q.; Valiyaveettil, S . Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility . Nanoscale , 2011 . 3 303 -308 . DOI:10.1039/C0NR00547Ahttp://doi.org/10.1039/C0NR00547A .
Zhu, D. Y.; Xiao, Z. Y.; Liu, X. M . Introducing polyethyleneimine (PEI) into the electrospun fibrous membranes containing diiron mimics of [FeFe]-hydrogenase: Membrane electrodes and their electrocatalysis on proton reduction in aqueous media . Int. J. Hydro. Energ. , 2015 . 40 5081 -5091 . DOI:10.1016/j.ijhydene.2015.02.050http://doi.org/10.1016/j.ijhydene.2015.02.050 .
Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q . Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets . J. Am. Chem. Soc. , 2008 . 130 5856 -5864 . DOI:10.1021/ja800745yhttp://doi.org/10.1021/ja800745y .
Vallés, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M. S.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Pénicaud, A . Solutions of negatively charged graphene sheets and ribbons . J. Am. Chem. Soc. , 2008 . 130 15802 -15804 . DOI:10.1021/ja808001ahttp://doi.org/10.1021/ja808001a .
Hummers, W. S.; Offeman, R. E . Preparation of Graphitic Oxide . J. Am. Chem. Soc. , 1958 . 80 (6 ):1339 -1344 . DOI:10.1021/ja01539a017http://doi.org/10.1021/ja01539a017 .
Ramezanzadeh, B.; Haeri, Z.; Ramezanzadeh, M . A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance . Chem. Eng. J. , 2016 . 303 511 -528 . DOI:10.1016/j.cej.2016.06.028http://doi.org/10.1016/j.cej.2016.06.028 .
Kou, L.; Gao, C . Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings . Nanoscale , 2011 . 3 519 -528 . DOI:10.1039/C0NR00609Bhttp://doi.org/10.1039/C0NR00609B .
Haeri, S. Z.; Ramezanzadeh, B.; Asghari, M . A novel fabrication of a high performance SiO2-graphene oxide (GO) nanohybrids: Characterization of thermal properties of epoxy nanocomposites filled with SiO2-GO nanohybrids . J. Colloid Inter. Sci. , 2017 . 493 111 -122 . DOI:10.1016/j.jcis.2017.01.016http://doi.org/10.1016/j.jcis.2017.01.016 .
Unique Damping Properties of Modified Eucommia Ulmoides Gum Bearing Polar and Branched Pendants
Thermally Conductive Polyimide/Boron Nitride Composite Films with Improved Interfacial Compatibility Based on Modified Fillers by Polyimide Brushes
The Effect of Substrate on the Properties of Non-volatile Ferroelectric P(VDF-TrFE)/P3HT Memory Devices
Thermally Conductive Poly(lactic acid) Composites with Superior Electromagnetic Shielding Performances via 3D Printing Technology
Related Author
No data
Related Institution
National & Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia Ulmoides, College of Chemistry and Chemical Engineering, Jishou University, Jishou
School of Chemistry and Molecular Engineering, East China Normal University
School of Chemical Sciences, University of Chinese Academy of Sciences
Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences
School of Aerospace Engineering, Beijing Institute of Technology