Light Electrospun Polyvinylpyrrolidone Blanket for Low Frequencies Sound Absorption
ARTICLE|Updated:2021-02-18
|
Light Electrospun Polyvinylpyrrolidone Blanket for Low Frequencies Sound Absorption
Chinese Journal of Polymer ScienceVol. 36, Issue 12, Pages: 1368-1374(2018)
Affiliations:
a.Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMaPI), Università degli Studi di Napoli Federico II, Napoli, Italy
b.Dipartimento di Ingegneria Industriale (DII), Università degli Studi di Napoli Federico II, Napoli, Italy
Joshua Avossa, Francesco Branda, Francesco Marulo, et al. Light Electrospun Polyvinylpyrrolidone Blanket for Low Frequencies Sound Absorption. [J]. Chinese Journal of Polymer Science 36(12):1368-1374(2018)
DOI:
Joshua Avossa, Francesco Branda, Francesco Marulo, et al. Light Electrospun Polyvinylpyrrolidone Blanket for Low Frequencies Sound Absorption. [J]. Chinese Journal of Polymer Science 36(12):1368-1374(2018) DOI: 10.1007/s10118-018-2154-3.
Light Electrospun Polyvinylpyrrolidone Blanket for Low Frequencies Sound Absorption
Light polymeric soundproofing materials (density = 63 kg/m,3,) of interest for the transportation industry were fabricated through electrospinning. Blankets of electrospun polyvinylpyrrolidone (average fiber diameter = (1.6 ± 0.5) or (2.8 ± 0.5) µm) were obtained by stacking disks of electrospun mats. The sound absorption coefficients were measured using the impedance tube instrument based on ASTM E1050 and ISO 10534-2. For a given set of disks (from a minimum of 6) the sound absorption coefficient changed with the frequency (in the range 200–1600 Hz) following a bell shape curve with a maximum (where the coefficient is greater than 0.9) that shifts to lower frequencies at higher piled disks number and greater fiber diameter. This work showed that electrospinning produced sound absorbers with reduced thickness (2–3 cm) and excellent sound-absorption properties in the low and medium frequency range.
Barber, A. "Handbook of noise and vibration control", Elsevier, Oxford, 1992
Crocker, M. J. "Handbook of noise and vibration control", John Wiley and Sons, New York, 2007
Khan, W. S.; Asmalutu, R.; Yildirim, M. B . Acoustical properties of electrospun fibers for aircraft interior noise reduction . J. Aerosp. Eng. , 2012 . 25 376 -382 . DOI:10.1061/(ASCE)AS.1943-5525.0000118http://doi.org/10.1061/(ASCE)AS.1943-5525.0000118 .
Ingard, U. Notes on sound absorption technology. 1994
Goines, L.; Hagler, L . Noise Pollution: A Modern Plague . South. Med. J. , 2007 . 100 287 -294 . DOI:10.1097/SMJ.0b013e3180318be5http://doi.org/10.1097/SMJ.0b013e3180318be5 .
Mahashabde, A.; Wolfe, P.; Ashok, A.; Dorbia, C.; He, Q.; Fan, A.; Lukachko, S.; Mozdzanowska, A.; Wollersheim, C.; Barrett, S. R. H.; Locke, M.; Waits, I. A . Assessing the environmental impacts of aircraft noise and emissions . Prog. Aerosp. Sci. , 2011 . 47 15 -52 . DOI:10.1016/j.paerosci.2010.04.003http://doi.org/10.1016/j.paerosci.2010.04.003 .
Zhao, D.; Li, X. Y . A review of acoustic dampers applied to combustion chambers in aerospace industry . Prog. Aerosp. Sci. , 2015 . 74 114 -30 . DOI:10.1016/j.paerosci.2014.12.003http://doi.org/10.1016/j.paerosci.2014.12.003 .
Harris, C. M., "Handbook of Acoustical Measurements and Noise Control", Mcgraw-Hill, 1997
Arenas, J. P.; Crocker, M. J . Recent trends in porous sound-absorbing materials . J. Sound Vib. , 2010 . 12 -17. .
Liu, H.; Wang, D.; Zhao, N.; Ma, J.; Gong, J.; Yang, S.; Xu, J . Application of electrospinning fibres on sound absorption in low and medium frequency range . Mater. Res. Innov. , 2014 . 18 888 -891. .
Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S . A review on polymer nanofibers by electrospinning and their applications in nanocomposites . Compos. Sci. Technol. , 2003 . 63 2223 -2253 . DOI:10.1016/S0266-3538(03)00178-7http://doi.org/10.1016/S0266-3538(03)00178-7 .
Teo, W. E.; Ramakrishna, S . A review on electrospinning design and nanofibre assemblies . Nanotechnology , 2006 . 17 89 -106 . DOI:10.1088/0957-4484/17/1/015http://doi.org/10.1088/0957-4484/17/1/015 .
Rutledge, G. C.; Fridrikh, S. V . Formation of fibers by electrospinning . Adv. Drug Deliv. Rev. , 2007 . 59 1384 -1391 . DOI:10.1016/j.addr.2007.04.020http://doi.org/10.1016/j.addr.2007.04.020 .
Bhardwaj, N.; Kundu, S. C . Electrospinning: A fascinating fiber fabrication technique . Biotechnol. Adv. , 2010 . 28 325 -347 . DOI:10.1016/j.biotechadv.2010.01.004http://doi.org/10.1016/j.biotechadv.2010.01.004 .
Lanotte, L.; Bilotti, C.; Sabetta, L.; Tomaiuolo, G.; Guido, S . Dispersion of sepiolite rods in nano fibers by electrospinning . Polymer , 2013 . 54 (4 ):1295 -1297 . DOI:10.1016/j.polymer.2013.01.009http://doi.org/10.1016/j.polymer.2013.01.009 .
Agarwal, S.; Greiner, A.; Wendorff, J. H . Functional materials by electrospinning of polymers . Prog. Polym. Sci. , 2013 . 38 963 -991 . DOI:10.1016/j.progpolymsci.2013.02.001http://doi.org/10.1016/j.progpolymsci.2013.02.001 .
Iannace, G . Sound absorption of materials obtained from the shredding of worn tyres . Building acoustics , 2014 . 21 (4 ):277 -286 . DOI:10.1260/1351-010X.21.4.277http://doi.org/10.1260/1351-010X.21.4.277 .
Chung, J. Y.; Blaser, D. A . Transfer function method of measuring in-duct acoustic properties . I. Theory. J. Acoust. Soc. Am. , 1980 . 68 907 -13 . DOI:10.1121/1.384778http://doi.org/10.1121/1.384778 .
Koruk, H . An assessment of the performance of impedance tube method . Noise Contr. Eng. J. , 2014 . 62 264 -274 . DOI:10.3397/1/376226http://doi.org/10.3397/1/376226 .
Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wrek, G. E . Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit . Polymer , 2005 . 46 3372 -3384 . DOI:10.1016/j.polymer.2005.03.011http://doi.org/10.1016/j.polymer.2005.03.011 .
Tarnow, V . Measured anisotropic air flow resistivity and sound attenuation of glass wool . J. Acoust. Soc. Am. , 2002 . 111 (6 ):2735 -2739 . DOI:10.1121/1.1476686http://doi.org/10.1121/1.1476686 .
Stani, M. M.; Muellner, H.; Plotizin, I. Sound insulation of plasterboard walls and air flow resistivity: an empirical examination with respect to practical applications. Proceedings of forum acusticum 2005 Budapest, 1987-1992
Blevins, R. D. Formulas for natural frequency and mode shape. Krieger Pub Co, ISBN-13: 978-1575241845, ISBN-10: 1575241846, 2001
Zhu, X. Z.; Chen, Z. B.; Jiao, Y. H.; Wang, Y. P . Broadening of the sound absorption bandwidth of the perforated panel using a membrane-type resonator . ASME J. Vib. Acoust. , 2018 . 140 (3 ):031014 DOI:10.1115/1.4038942http://doi.org/10.1115/1.4038942 .
SOUND ABSORPTION BEHAVIOR OF ELECTROSPUN POLYACRYLONITRILE NANOFIBROUS MEMBRANES
MOF-derived Porous Carbon Nanofiber Assembly as High Efficiency ORR Electrocatalysts for Zinc-air Batteries
High Strength Electrospun Single Copolyacrylonitrile (coPAN) Nanofibers with Improved Molecular Orientation by Drawing
Enhancement of β-Phase Crystal Content of Poly(vinylidene fluoride) Nanofiber Web by Graphene and Electrospinning Parameters
Enhanced Mechanical Properties of Poly(arylene sulfide sulfone) Membrane by Co-electrospinning with Poly(m-xylene adipamide)
Related Author
No data
Related Institution
Graduate University of the Chinese Academy of Sciences
Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences
Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University
Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University
Department of Chemistry and Chemical Engineering, Jiangxi Normal University