a.Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Engineering Technology Research Centre of Environmental Cleaning Materials, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
b.Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
Yi Cao, E-mail caoyi@nju.edu.cn
Scan for full text
Ying Li, Yi Cao. The Physical Chemistry for the Self-assembly of Peptide Hydrogels. [J]. Chinese Journal of Polymer Science 36(3):366-378(2018)
Ying Li, Yi Cao. The Physical Chemistry for the Self-assembly of Peptide Hydrogels. [J]. Chinese Journal of Polymer Science 36(3):366-378(2018) DOI: 10.1007/s10118-018-2099-6.
Peptide hydrogels have been widely used for diverse biomedical applications. However, our current understanding of the physical principles underlying the self-assembly process is still limited. In this review, we summarize our current understanding on the physical chemistry principles from the basic interactions that drive the self-assembly process to the energy landscapes that dictate the thermodynamics and kinetics of the process. We discuss the effect of different factors that affect the kinetics of the self-assembly of peptide fibrils and how this is related to the macroscopic gelation process. We provide our understanding on the molecular origin of the complex and rugged energy landscape for the self-assembly of peptide hydrogels. The hierarchical self-assembled structures and the diverse self-assembling mechanism make it difficult and challenging to rationally design the physical and chemical properties of peptide hydrogels at the molecular level. We also give our personal perspective to the potential future directions in this field.
HydrogelPeptideSelf-assemblyKineticsThermodynamics
J. M. Lehn . Perspectives in supramolecular chemistry-from molecular recognition towards molecular informationprocessing and self-organization . Angew. Chem. Int. Ed. , 1990 . 29 (11 ):1304 -1319 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773.
G. M. Whitesides , J. P. Mathias , C. T. Seto . Molecular self-assembly and nanochemistry-a chemical strategy for the synthesis of nanostructures . Science , 1991 . 254 (5036 ):1312 -1319 . http://www.sciencemag.org/content/254/5036/1312.shorthttp://www.sciencemag.org/content/254/5036/1312.short, .
R. V. Ulijn , A. M. Smith . Designing peptide based nanomaterials . Chem. Soc. Rev. , 2008 . 37 (4 ):664 -675 . DOI:10.1039/b609047hhttp://doi.org/10.1039/b609047h.
F. Zhao , M. L. Ma , B. Xu . Molecular hydrogels of therapeutic agents . Chem. Soc. Rev. , 2009 . 38 (4 ):883 -891 . DOI:10.1039/b806410phttp://doi.org/10.1039/b806410p.
H. Cui , M. J. Webber , S. I. Stupp . Self-assembly of peptide amphiphiles:from molecules to nanostructures to biomaterials . Biopolymers , 2010 . 94 (1 ):1 -18 . DOI:10.1002/bip.21328http://doi.org/10.1002/bip.21328.
Y. Gao , Z. Yang , Y. Kuang , M. L. Ma , J. Li , F. Zhao , B. Xu . Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels . Biopolymers , 2010 . 94 (1 ):19 -31 . DOI:10.1002/bip.21321http://doi.org/10.1002/bip.21321.
Y. Gao , F. Zhao , Q. Wang , Y. Zhang , B. Xu . Small peptide nanofibers as the matrices of molecular hydrogels for mimicking enzymes and enhancing the activity of enzymes . Chem. Soc. Rev. , 2010 . 39 (9 ):3425 -3433 . DOI:10.1039/b919450ahttp://doi.org/10.1039/b919450a.
D. N. Woolfson . Building fibrous biomaterials from alpha-helical and collagen-like coiled-coil peptides . Biopolymers , 2010 . 94 (1 ):118 -127 . DOI:10.1002/bip.21345http://doi.org/10.1002/bip.21345.
C. Yan , D. J. Pochan . Rheological properties of peptide-based hydrogels for biomedical and other applications . Chem. Soc. Rev. , 2010 . 39 (9 ):3528 -3540 . http://pubs.rsc.org/en/Content/ArticleLanding/CS/2010/B919449Phttp://pubs.rsc.org/en/Content/ArticleLanding/CS/2010/B919449P, .
T. Aida , E. W. Meijer , S. I. Stupp . Functional supramolecular polymers . Science , 2012 . 335 (6070 ):813 -817 . DOI:10.1126/science.1205962http://doi.org/10.1126/science.1205962.
J. B. Matson , S. I. Stupp . Self-assembling peptide scaffolds for regenerative medicine . Chem. Commun. , 2012 . 48 (1 ):26 -33 . http://pubs.rsc.org/en/content/articlehtml/2012/cc/c1cc15551bhttp://pubs.rsc.org/en/content/articlehtml/2012/cc/c1cc15551b, .
J. Boekhoven , S. I. Stupp . 25th anniversary article:supramolecular materials for regenerative medicine . Adv. Mater. , 2014 . 26 (11 ):1642 -1659 . DOI:10.1002/adma.201304606http://doi.org/10.1002/adma.201304606.
G. Fichman , E. Gazit . Self-assembly of short peptides to form hydrogels:design of building blocks, physical properties and technological applications . Acta Biomater. , 2014 . 10 (4 ):1671 -1682 . DOI:10.1016/j.actbio.2013.08.013http://doi.org/10.1016/j.actbio.2013.08.013.
S. Fleming , R. V. Ulijn . Design of nanostructures based on aromatic peptide amphiphiles . Chem. Soc. Rev. , 2014 . 43 (23 ):8150 -8177 . DOI:10.1039/C4CS00247Dhttp://doi.org/10.1039/C4CS00247D.
V. W. Ng , J. M. Chan , H. Sardon , R. J. Ono , J. M. Garcia , Y. Y. Yang , J. L. Hedrick . Antimicrobial hydrogels:a new weapon in the arsenal against multidrug-resistant infections . Adv. Drug. Deliver. Rev. , 2014 . 78 46 -62 . DOI:10.1016/j.addr.2014.10.028http://doi.org/10.1016/j.addr.2014.10.028.
B. E. Ramakers , J. C. van Hest , D. W. Lowik . Molecular tools for the construction of peptide-based materials . Chem. Soc. Rev. , 2014 . 43 (8 ):2743 -2756 . DOI:10.1039/c3cs60362hhttp://doi.org/10.1039/c3cs60362h.
C. Ren , J. Zhang , M. Chen , Z. Yang . Self-assembling small molecules for the detection of important analytes . Chem. Soc. Rev. , 2014 . 43 (21 ):7257 -7266 . DOI:10.1039/C4CS00161Chttp://doi.org/10.1039/C4CS00161C.
X. Du , J. Zhou , J. Shi , B. Xu . Supramolecular hydrogelators and hydrogels:from soft matter to molecular biomaterials . Chem. Rev. , 2015 . 115 (24 ):13165 -13307 . http://pubs.acs.org/doi/pdfplus/10.1021/acs.chemrev.5b00299http://pubs.acs.org/doi/pdfplus/10.1021/acs.chemrev.5b00299, .
Y. Loo , C. A. Hauser . Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications . Biomed. Mater. , 2015 . 11 (1 ):DOI:10.1088/1748-6041/11/1/014103http://doi.org/10.1088/1748-6041/11/1/014103 .
C. M. Rubert Perez , N. Stephanopoulos , S. Sur , S. S. Lee , C. Newcomb , S. I. Stupp . The powerful functions of peptide-based bioactive matrices for regenerative medicine . Ann. Biomed. Eng. , 2015 . 43 (3 ):501 -514 . https://link.springer.com/content/pdf/10.1007/s10439-014-1166-6.pdfhttps://link.springer.com/content/pdf/10.1007/s10439-014-1166-6.pdf, .
L. M. de Leon Rodriguez , Y. Hemar , J. Cornish , M. A. Brimble . Structure-mechanical property correlations of hydrogel forming beta-sheet peptides . Chem. Soc. Rev. , 2016 . 45 (17 ):4797 -4824 . DOI:10.1039/C5CS00941Chttp://doi.org/10.1039/C5CS00941C.
S. Koutsopoulos . Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine:progress, design guidelines, and applications . J. Biomed. Mater. Res. A , 2016 . 104 (4 ):1002 -1016 . https://trove.nla.gov.au/work/204500504https://trove.nla.gov.au/work/204500504, .
K. Tao , A. Levin , L. Adler-Abramovich , E. Gazit . Fmoc-modified amino acids and short peptides:simple bio-inspired building blocks for the fabrication of functional materials . Chem. Soc. Rev. , 2016 . 45 (14 ):3935 -3953 . DOI:10.1039/C5CS00889Ahttp://doi.org/10.1039/C5CS00889A.
X. Q. Dou , C. L. Feng . Amino acids and peptide-based supramolecular hydrogels for three-dimensional cell culture . Adv. Mater. , 2017 . 29 (16 ):DOI:10.1002/adma.201604062http://doi.org/10.1002/adma.201604062 .
S. Eskandari , T. Guerin , I. Toth , R. J. Stephenson . Recent advances in self-assembled peptides:Implications for targeted drug delivery and vaccine engineering . Adv. Drug. Deliver. Rev. , 2017 . 110 -187 . 110-111, 169-187 https://espace.library.uq.edu.au/view/UQ:396332https://espace.library.uq.edu.au/view/UQ:396332, .
N. Singh , M. Kumar , J. F. Miravet , R. V. Ulijn , B. Escuder . Peptide-based molecular hydrogels as supramolecular protein mimics . Chemistry , 2017 . 23 (5 ):981 -993 . DOI:10.1002/chem.201602624http://doi.org/10.1002/chem.201602624.
Z. Song , X. Chen , X. You , K. Huang , A. Dhinakar , Z. Gu , J. Wu . Self-assembly of peptide amphiphiles for drug delivery:the role of peptide primary and secondary structures . Biomater. Sci. , 2017 . 5 (12 ):2369 -2380 . DOI:10.1039/C7BM00730Bhttp://doi.org/10.1039/C7BM00730B.
P. Worthington , S. Langhans , D. Pochan . beta-hairpin peptide hydrogels for package delivery . Adv. Drug. Deliv. Rev. , 2017 . 110 -136 . 110-111, 127-136 http://pubs.acs.org/doi/suppl/10.1021/ma5024796http://pubs.acs.org/doi/suppl/10.1021/ma5024796, .
J. Zhou , J. Li , X. Du , B. Xu . Supramolecular biofunctional materials . Biomaterials , 2017 . 129 1 -27 . DOI:10.1016/j.biomaterials.2017.03.014http://doi.org/10.1016/j.biomaterials.2017.03.014.
X. Zhao , F. Pan , H. Xu , M. Yaseen , H. Shan , C. A. Hauser , S. Zhang , J. R. Lu . Molecular self-assembly and applications of designer peptide amphiphiles . Chem. Soc. Rev. , 2010 . 39 (9 ):3480 -3498 . DOI:10.1039/b915923chttp://doi.org/10.1039/b915923c.
Z. Luo , S. Zhang . Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society . Chem. Soc. Rev. , 2012 . 41 (13 ):4736 -4754 . http://pubmed.cn/22627925http://pubmed.cn/22627925, .
C. J. Bowerman , B. L. Nilsson . Self-assembly of amphipathic beta-sheet peptides:insights and applications . Biopolymers , 2012 . 98 (3 ):169 -184 . DOI:10.1002/bip.22058http://doi.org/10.1002/bip.22058.
E. R. Draper , D. J. Adams . Low-molecular-weight gels:the state of the art . Chem , 2017 . 3 (3 ):390 -410. .
J. H. van Esch . We can design molecular gelators, but do we understand them? . Langmuir , 2009 . 25 (15 ):8392 -8394 . DOI:10.1021/la901720ahttp://doi.org/10.1021/la901720a.
J. N. Onuchic , Z. Luthey-Schulten , P. G. Wolynes . Theory of protein folding:the energy landscape perspective . Annu. Rev. Phys. Chem. , 1997 . 48 545 -600 . https://www.researchgate.net/profile/Peter_Wolynes/publication/13879984_Theory_of_Protein_Folding_The_Energy_Landscape_Perspective/links/548f51520cf225bf66a7ffc2.pdfhttps://www.researchgate.net/profile/Peter_Wolynes/publication/13879984_Theory_of_Protein_Folding_The_Energy_Landscape_Perspective/links/548f51520cf225bf66a7ffc2.pdf, .
Y. Li , M. Qin , Y. Cao , W. Wang . Designing the mechanical properties of peptide-based supramolecular hydrogels for biomedical applications . Sci. China Phys. Mech. , 2014 . 57 (5 ):849 -858 . DOI:10.1007/s11433-014-5427-zhttp://doi.org/10.1007/s11433-014-5427-z.
J. Raeburn , A. Zamith Cardoso , D. J. Adams . The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels . Chem. Soc. Rev. , 2013 . 42 (12 ):5143 -5156 . DOI:10.1039/c3cs60030khttp://doi.org/10.1039/c3cs60030k.
E. Mattia , S. Otto . Supramolecular systems chemistry . Nat. Nanotechnol. , 2015 . 10 (2 ):111 -119 . DOI:10.1038/nnano.2014.337http://doi.org/10.1038/nnano.2014.337.
S. Q. Cai , Z. G. Suo . Equations of state for ideal elastomeric gels . EPL , 2012 . 97 (3 ):DOI:10.1209/0295-5075/97/34009http://doi.org/10.1209/0295-5075/97/34009 .
W. R. K. Illeperuma , J. Y. Sun , Z. G. Suo , J. J. Vlassak . Force and stroke of a hydrogel actuator . Soft Matter , 2013 . 9 (35 ):8504 -8511 . DOI:10.1039/c3sm51617bhttp://doi.org/10.1039/c3sm51617b.
J. D. Hartgerink , E. Beniash , S. I. Stupp . Self-assembly and mineralization of peptide-amphiphile nanofibers . Science , 2001 . 294 (5547 ):1684 -1688 . DOI:10.1126/science.1063187http://doi.org/10.1126/science.1063187.
K. J. van Bommel , C. van der Pol , I. Muizebelt , A. Friggeri , A. Heeres , A. Meetsma , B. L. Feringa , J. van Esch . Responsive cyclohexane-based low-molecular-weight hydrogelators with modular architecture . Angew. Chem. Int. Ed. , 2004 . 43 (13 ):1663 -1667 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773.
H. Yokoi , T. Kinoshita , S. Zhang . Dynamic reassembly of peptide RADA16 nanofiber scaffold . Proc. Natl. Acad. Sci. USA , 2005 . 102 (24 ):8414 -8419 . DOI:10.1073/pnas.0407843102http://doi.org/10.1073/pnas.0407843102.
J. P. Schneider , D. J. Pochan , B. Ozbas , K. Rajagopal , L. Pakstis , J. Kretsinger . Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide . J. Am. Chem. Soc. , 2002 . 124 (50 ):15030 -15037 . https://www.ncnr.nist.gov/programs/sans/pdf/publications/0262.pdfhttps://www.ncnr.nist.gov/programs/sans/pdf/publications/0262.pdf, .
A. M. Smith , R. J. Williams , C. Tang , P. Coppo , R. F. Collins , M. L. Turner , A. Saiani , R. V. Ulijn . Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on pi-pi interlocked beta-sheets . Adv. Mater. , 2008 . 20 (1 ):37 -41 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095.
A. Mahler , M. Reches , M. Rechter , S. Cohen , E. Gazit . Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide . Adv. Mater. , 2006 . 18 (11 ):1365 -1370 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095.
M. Ma , Y. Kuang , Y. Gao , Y. Zhang , P. Gao , B. Xu . Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels . J. Am. Chem. Soc. , 2010 . 132 (8 ):2719 -2728 . DOI:10.1021/ja9088764http://doi.org/10.1021/ja9088764.
D. A. Dougherty . The cation-pi interaction . Acc. Chem. Res. , 2013 . 46 (4 ):885 -893 . DOI:10.1021/ar300265yhttp://doi.org/10.1021/ar300265y.
D. Chandler . Interfaces and the driving force of hydrophobic assembly . Nature , 2005 . 437 (7059 ):640 -647 . DOI:10.1038/nature04162http://doi.org/10.1038/nature04162.
S. Tsonchev , K. L. Niece , G. C. Schatz , M. A. Ratner , S. I. Stupp . Phase diagram for assembly of biologically-active peptide amphiphiles . J. Phys. Chem. B , 2008 . 112 (2 ):441 -447 . DOI:10.1021/jp076273zhttp://doi.org/10.1021/jp076273z.
T. H. Rehm , C. Schmuck . Ion-pair induced self-assembly in aqueous solvents . Chem. Soc. Rev. , 2010 . 39 (10 ):3597 -3611 . DOI:10.1039/b926223ghttp://doi.org/10.1039/b926223g.
A. C. Legon , D. J. Millen . Angular geometries and other properties of hydrogen-bonded dimers-a simple electrostatic interpretation of the success of the electron-pair model . Chem. Soc. Rev. , 1987 . 16 (4 ):467 -498 . http://chem.scichina.com:8081/sciBe/CN/10.1007/s11426-011-4380-1http://chem.scichina.com:8081/sciBe/CN/10.1007/s11426-011-4380-1, .
T. P. Knowles , A. W. Fitzpatrick , S. Meehan , H. R. Mott , M. Vendruscolo , C. M. Dobson , M. E. Welland . Role of intermolecular forces in defining material properties of protein nanofibrils . Science , 2007 . 318 (5858 ):1900 -1903 . DOI:10.1126/science.1150057http://doi.org/10.1126/science.1150057.
C. A. Hunter , J. K. M. Sanders . The nature of pi-pi interactions . J. Am. Chem. Soc. , 1990 . 112 (14 ):5525 -5534 . DOI:10.1021/ja00170a016http://doi.org/10.1021/ja00170a016.
C. D. Ma , C. Wang , C. Acevedo-Velez , S. H. Gellman , N. L. Abbott . Modulation of hydrophobic interactions by proximally immobilized ions . Nature , 2015 . 517 (7534 ):347 -350 . https://www.chem.wisc.edu/content/modulation-hydrophobic-interactions-proximally-immobilized-ionshttps://www.chem.wisc.edu/content/modulation-hydrophobic-interactions-proximally-immobilized-ions, .
X. Yan , P. Zhu , J. Li . Self-assembly and application of diphenylalanine-based nanostructures . Chem. Soc. Rev. , 2010 . 39 (6 ):1877 -1890 . DOI:10.1039/b915765bhttp://doi.org/10.1039/b915765b.
G. I. Bell . Models for specific adhesion of cells to cells . Science , 1978 . 200 (4342 ):618 -627 . DOI:10.1126/science.347575http://doi.org/10.1126/science.347575.
M. Jaremko , L. Jaremko , H. Y. Kim , M. K. Cho , C. D. Schwieters , K. Giller , S. Becker , M. Zweckstetter . Cold denaturation of a protein dimer monitored at atomic resolution . Nat. Chem. Biol. , 2013 . 9 (4 ):264 -270 . DOI:10.1038/nchembio.1181http://doi.org/10.1038/nchembio.1181.
J. M. Mason , K. M. Arndt . Coiled coil domains:stability, specificity, and biological implications . ChemBioChem , 2004 . 5 (2 ):170 -176 . http://cat.inist.fr/?aModele=afficheN&cpsidt=15460260http://cat.inist.fr/?aModele=afficheN&cpsidt=15460260, .
M. J. Pandya , G. M. Spooner , M. Sunde , J. R. Thorpe , A. Rodger , D. N. Woolfson . Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis . Biochemistry , 2000 . 39 (30 ):8728 -8734 . DOI:10.1021/bi000246ghttp://doi.org/10.1021/bi000246g.
E. F. Banwell , E. S. Abelardo , D. J. Adams , M. A. Birchall , A. Corrigan , A. M. Donald , M. Kirkland , L. C. Serpell , M. F. Butler , D. N. Woolfson . Rational design and application of responsive alpha-helical peptide hydrogels . Nat. Mater. , 2009 . 8 (7 ):596 -600 . DOI:10.1038/nmat2479http://doi.org/10.1038/nmat2479.
C. Vepari , D. L. Kaplan . Silk as a Biomaterial . Prog. Polym. Sci. , 2007 . 32 (8-9 ):991 -1007 . https://www.sciencedirect.com/science/article/pii/S0079670007000731https://www.sciencedirect.com/science/article/pii/S0079670007000731, .
T. Asakura , T. Ohata , S. Kametani , K. Okushita , K. Yazawa , Y. Nishiyama , K. Nishimura , A. Aoki , F. Suzuki , H. Kaji , A. S. Ulrich , M. P. Williamson . Intermolecular packing in B. mori Silk fibroin:multinuclear NMR Study of the model peptide (Ala-Gly)(15) Defines a heterogeneous antiparallel antipolar mode of assembly in the silk ò form . Macromolecules , 2015 . 48 (1 ):28 -36 . DOI:10.1021/ma502191ghttp://doi.org/10.1021/ma502191g.
G. H. Altman , F. Diaz , C. Jakuba , T. Calabro , R. L. Horan , J. S. Chen , H. Lu , J. Richmond , D. L. Kaplan . Silk-based biomaterials . Biomaterials. , 2003 . 24 (3 ):401 -416 . DOI:10.1016/S0142-9612(02)00353-8http://doi.org/10.1016/S0142-9612(02)00353-8.
S. Zhang , T. Holmes , C. Lockshin , A. Rich . Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane . Proc. Natl. Acad. Sci. USA. , 1993 . 90 (8 ):3334 -3338 . DOI:10.1073/pnas.90.8.3334http://doi.org/10.1073/pnas.90.8.3334.
J. H. Collier , B. H. Hu , J. W. Ruberti , J. Zhang , P. Shum , D. H. Thompson , P. B. Messersmith . Thermally and photochemically triggered self-assembly of peptide hydrogels . J. Am. Chem. Soc. , 2001 . 123 (38 ):9463 -9464 . DOI:10.1021/ja011535ahttp://doi.org/10.1021/ja011535a.
C. J. Bowerman , W. Liyanage , A. J. Federation , B. L. Nilsson . Tuning beta-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity . Biomacromolecules , 2011 . 12 (7 ):2735 -2745 . https://www.ncbi.nlm.nih.gov/pubmed/21568346https://www.ncbi.nlm.nih.gov/pubmed/21568346, .
N. R. Lee , C. J. Bowerman , B. L. Nilsson . Effects of varied sequence pattern on the self-assembly of amphipathic peptides . Biomacromolecules. , 2013 . 14 (9 ):3267 -3277 . DOI:10.1021/bm400876shttp://doi.org/10.1021/bm400876s.
H. Dong , S. E. Paramonov , L. Aulisa , E. L. Bakota , J. D. Hartgerink . Self-assembly of multidomain peptides:balancing molecular frustration controls conformation and nanostructure . J. Am. Chem. Soc. , 2007 . 129 (41 ):12468 -12472 . DOI:10.1021/ja072536rhttp://doi.org/10.1021/ja072536r.
Z. M. Yang , K. M. Xu , Z. F. Guo , Z. H. Guo , B. Xu . Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death . Adv. Mater. , 2007 . 19 (20 ):3152 -3156 . DOI:10.1002/adma.200701971http://doi.org/10.1002/adma.200701971.
Z. M. Yang , P. L. Ho , G. L. Liang , K. H. Chow , Q. G. Wang , Y. Cao , Z. H. Guo , B. Xu . Using beta-lactamase to trigger supramolecular hydrogelation . J. Am. Chem. Soc. , 2007 . 129 (2 ):266 -267 . DOI:10.1021/ja0675604http://doi.org/10.1021/ja0675604.
Y. Zhang , Y. Kuang , Y. Gao , B. Xu . Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels . Langmuir , 2011 . 27 (2 ):529 -537 . DOI:10.1021/la1020324http://doi.org/10.1021/la1020324.
H. M. Wang , C. H. Yang , M. Tan , L. Wang , D. L. Kong , Z. M. Yang . A structure-gelation ability study in a short peptide-based nSuper Hydrogelatoro system . Soft Matter , 2011 . 7 (8 ):3897 -3905 . DOI:10.1039/c0sm01405bhttp://doi.org/10.1039/c0sm01405b.
C. H. Liang , D. B. Zheng , F. Shi , T. Y. Xu , C. H. Yang , J. F. Liu , L. Wang , Z. M. Yang . Enzyme-assisted peptide folding, assembly and anti-cancer properties . Nanoscale , 2017 . 9 (33 ):11987 -11993 . DOI:10.1039/C7NR04370Hhttp://doi.org/10.1039/C7NR04370H.
Z. Y. Wang , C. H. Liang , F. Shi , T. He , C. Y. Gong , L. Wang , Z. M. Yang . Cancer vaccines using supramolecular hydrogels of NSAID-modified peptides as adjuvants abolish tumorigenesis . Nanoscale , 2017 . 9 (37 ):14058 -14064 . DOI:10.1039/C7NR04990Khttp://doi.org/10.1039/C7NR04990K.
J. Zhan , Y. B. Cai , S. L. Ji , S. S. He , Y. Cao , D. Ding , L. Wang , Z. M. Yang . Spatiotemporal control of supramolecular self-assembly and function . ACS Appl. Mater. Interfaces , 2017 . 9 (11 ):10012 -10018 . http://pubsdc3.acs.org/doi/abs/10.1021/acsami.7b00784http://pubsdc3.acs.org/doi/abs/10.1021/acsami.7b00784, .
Y. B. Cai , H. S. Shen , J. Zhan , M. L. Lin , L. H. Dai , C. H. Ren , Y. Shi , J. F. Liu , J. Gao , Z. M. Yang . Supramolecular "Trojan Horse" for nuclear delivery of dual anticancer drugs . J. Am. Chem. Soc. , 2017 . 139 (8 ):2876 -2879 . DOI:10.1021/jacs.6b12322http://doi.org/10.1021/jacs.6b12322.
H. M. Wang , Z. Luo , Y. C. Z. Wang , T. He , C. B. Yang , C. H. Ren , L. S. Ma , C. Y. Gong , X. Y. Li , Z. M. Yang . Enzyme-catalyzed formation of supramolecular hydrogels as promising vaccine adjuvants . Adv. Funct. Mater. , 2016 . 26 (11 ):1822 -1829 . http://onlinelibrary.wiley.com/doi/10.1002/adfm.201505188/abstracthttp://onlinelibrary.wiley.com/doi/10.1002/adfm.201505188/abstract, .
X. L. Zhang , C. M. Dong , W. Y. Huang , H. M. Wang , L. Wang , D. Ding , H. Zhou , J. F. Long , T. L. Wang , Z. M. Yang . Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide-protein conjugate for responsive hydrogel formation . Nanoscale , 2015 . 7 (40 ):16666 -16670 . DOI:10.1039/C5NR05213Khttp://doi.org/10.1039/C5NR05213K.
J. W. Zhang , C. W. Ou , Y. Shi , L. Wang , M. S. Chen , Z. M. Yang . Visualized detection of melamine in milk by supramolecular hydrogelations . Chem. Commun. , 2014 . 50 (85 ):12873 -12876 . DOI:10.1039/C4CC05826Ghttp://doi.org/10.1039/C4CC05826G.
Z. J. Hai , J. D. Li , J. J. Wu , J. C. Xu , G. L. Liang . Alkaline phosphatase-triggered simultaneous hydrogelation and chemiluminescence . J. Am. Chem. Soc. , 2017 . 139 (3 ):1041 -1044 . DOI:10.1021/jacs.6b11041http://doi.org/10.1021/jacs.6b11041.
C. F. Wu , Z. Zheng , Y. N. Guo , C. L. Tian , Q. Xue , G. L. Liang . Fluorine substitution enhances the self-assembling ability of hydrogelators . Nanoscale , 2017 . 9 (32 ):11429 -11433 . http://onlinelibrary.wiley.com/doi/10.1002/1521-3773(20000703)39:13%3C2263::AID-ANIE2263%3E3.0.CO;2-V/abstracthttp://onlinelibrary.wiley.com/doi/10.1002/1521-3773(20000703)39:13%3C2263::AID-ANIE2263%3E3.0.CO;2-V/abstract, .
Z. Zheng , P. Y. Chen , M. L. Xie , C. F. Wu , Y. F. Luo , W. T. Wang , J. Jiang , G. L. Liang . Cell environment-differentiated self-assembly of nanofibers . J. Am. Chem. Soc. , 2016 . 138 (35 ):11128 -11131 . DOI:10.1021/jacs.6b06903http://doi.org/10.1021/jacs.6b06903.
Y. Ding , Y. Li , M. Qin , Y. Cao , W. Wang . Photo-cross-linking approach to engineering small tyrosine-containing peptide hydrogels with enhanced mechanical stability . Langmuir , 2013 . 29 (43 ):13299 -13306 . DOI:10.1021/la4029639http://doi.org/10.1021/la4029639.
B. Xue , M. Qin , T. K. Wang , J. H. Wu , D. J. Luo , Q. Jiang , Y. Li , Y. Cao , W. Wang . Electrically controllable actuators based on supramolecular peptide hydrogels . Adv. Funct. Mater. , 2016 . 26 (48 ):9053 -9062 . DOI:10.1002/adfm.v26.48http://doi.org/10.1002/adfm.v26.48.
Y. Li , L. Wang . Removing organic dyes by using a small peptide hydrogel . Chem. Lett. , 2016 . 45 (11 ):1253 -1255 . DOI:10.1246/cl.160597http://doi.org/10.1246/cl.160597.
W. Cheng , Y. Li . Peptide hydrogelation triggered by enzymatic induced pH switch . Sci. China Phys. Mech. , 2016 . 59 (7 ):678 -711 . http://adsabs.harvard.edu/abs/2016SCPMA..59g..83Chttp://adsabs.harvard.edu/abs/2016SCPMA..59g..83C, .
C. J. Newcomb , R. Bitton , Y. S. Velichko , M. L. Snead , S. I. Stupp . The role of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization . Small , 2012 . 8 (14 ):2195 -2202 . http://onlinelibrary.wiley.com/doi/10.1002/smll.201102150/fullhttp://onlinelibrary.wiley.com/doi/10.1002/smll.201102150/full, .
E. T. Pashuck , H. G. Cui , S. I. Stupp . Tuning supramolecular rigidity of peptide fibers through molecular structure . J. Am. Chem. Soc. , 2010 . 132 (17 ):6041 -6046 . DOI:10.1021/ja908560nhttp://doi.org/10.1021/ja908560n.
R. M. da Silva , D. van der Zwaag , L. Albertazzi , S. S. Lee , E. W. Meijer , S. I. Stupp . Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres . Nat. Commun. , 2016 . 7 DOI:10.1038/ncomms11561http://doi.org/10.1038/ncomms11561 .
J. H. Ortony , B. Qiao , C. J. Newcomb , T. J. Keller , L. C. Palmer , E. Deiss-Yehiely , M. Olvera de la Cruz , S. Han , S. I. Stupp . Water Dynamics from the Surface to the Interior of a Supramolecular Nanostructure . J. Am. Chem. Soc. , 2017 . 139 (26 ):8915 -8921 . DOI:10.1021/jacs.7b02969http://doi.org/10.1021/jacs.7b02969.
D. J. Pochan , J. P. Schneider , J. Kretsinger , B. Ozbas , K. Rajagopal , L. Haines . Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide . J. Am. Chem. Soc. , 2003 . 125 (39 ):11802 -11803 . DOI:10.1021/ja0353154http://doi.org/10.1021/ja0353154.
M. S. Lamm , K. Rajagopal , J. P. Schneider , D. J. Pochan . Laminated morphology of nontwisting beta-sheet fibrils constructed via peptide self-assembly . J. Am. Chem. Soc. , 2005 . 127 (47 ):16692 -16700 . http://pubs.acs.org/doi/pdf/10.1021/ja054721f?cookieSet=1http://pubs.acs.org/doi/pdf/10.1021/ja054721f?cookieSet=1, .
D. A. Salick , D. J. Pochan , J. P. Schneider . Design of an injectable beta-hairpin peptide hydrogel that kills methicillin-resistant staphylococcus aureus . Adv. Mater. , 2009 . 21 (41 ):4120 -4123 . http://doi.wiley.com/10.1002/adma.200900189http://doi.wiley.com/10.1002/adma.200900189, .
R. V. Rughani , D. A. Salick , M. S. Lamm , T. Yucel , D. J. Pochan , J.P. Schneider . Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel . Biomacromolecules , 2009 . 10 (5 ):1295 -1304 . DOI:10.1021/bm900113zhttp://doi.org/10.1021/bm900113z.
K. Rajagopal , M. S. Lamm , L. A. Haines-Butterick , D. J. Pochan , J. P. Schneider . Tuning the pH Responsiveness of beta-Hairpin peptide folding, self-assembly, and hydrogel material formation . Biomacromolecules , 2009 . 10 (9 ):2619 -2625 . DOI:10.1021/bm900544ehttp://doi.org/10.1021/bm900544e.
B. Y. Ding , Y. Li , M. Qin , Y. Ding , Y. Cao , W. Wang . Two approaches for the engineering of homogeneous small-molecule hydrogels . Soft Matter , 2013 . 9 (18 ):4672 -4680 . DOI:10.1039/c3sm50324khttp://doi.org/10.1039/c3sm50324k.
J. Wang , K. Liu , R. Xing , X. Yan . Peptide self-assembly:thermodynamics and kinetics . Chem. Soc. Rev. , 2016 . 45 (20 ):5589 -5604 . DOI:10.1039/C6CS00176Ahttp://doi.org/10.1039/C6CS00176A.
I. R. Sasselli , P. J. Halling , R. V. Ulijn , T. Tuttle . Supramolecular fibers in gels can be at thermodynamic equilibrium:a simple packing model reveals preferential fibril formation versus crystallization . ACS Nano , 2016 . 10 (2 ):2661 -2668 . DOI:10.1021/acsnano.5b07690http://doi.org/10.1021/acsnano.5b07690.
D. J. Adams , K. Morris , L. Chen , L. C. Serpell , J. Bacsa , G. M. Day . The delicate balance between gelation and crystallisation:structural and computational investigations . Soft Matter , 2010 . 6 (17 ):4144 -4156 . DOI:10.1039/c0sm00409jhttp://doi.org/10.1039/c0sm00409j.
Y. Lan , M. G. Corradini , R. G. Weiss , S. R. Raghavan , M. A. Rogers . To gel or not to gel:correlating molecular gelation with solvent parameters . Chem. Soc. Rev. , 2015 . 44 (17 ):6035 -6058 . DOI:10.1039/C5CS00136Fhttp://doi.org/10.1039/C5CS00136F.
M. Raynal , L. Bouteiller . Organogel formation rationalized by Hansen solubility parameters . Chem. Commun. , 2011 . 47 (29 ):8271 -8273 . DOI:10.1039/c1cc13244jhttp://doi.org/10.1039/c1cc13244j.
G. O. Lloyd , J. W. Steed . Anion-tuning of supramolecular gel properties . Nat. Chem. , 2009 . 1 (6 ):437 -442 . DOI:10.1038/nchem.283http://doi.org/10.1038/nchem.283.
F. Massi , J. E. Straub . Energy landscape theory for Alzheimer's amyloid beta-peptide fibril elongation . Proteins , 2001 . 42 (2 ):217 -229 . http://onlinelibrary.wiley.com/doi/10.1002/1097-0134(20010201)42:2%3C217::AID-PROT90%3E3.0.CO;2-N/fullhttp://onlinelibrary.wiley.com/doi/10.1002/1097-0134(20010201)42:2%3C217::AID-PROT90%3E3.0.CO;2-N/full, .
J. E. Straub , D. Thirumalai . Toward a molecular theory of early and late events in monomer to amyloid fibril formation . Annu. Rev. Phys. Chem. , 2011 . 62 437 -463 . DOI:10.1146/annurev-physchem-032210-103526http://doi.org/10.1146/annurev-physchem-032210-103526.
P. T. Lansbury . A reductionist view of Alzheimer's disease . Acc. Chem. Res. , 1996 . 29 (7 ):317 -321 . DOI:10.1021/ar950159uhttp://doi.org/10.1021/ar950159u.
D. Hall , N. Hirota , C. M. Dobson . A toy model for predicting the rate of amyloid formation from unfolded protein . J. Mol. Biol. , 2005 . 351 (1 ):195 -205 . DOI:10.1016/j.jmb.2005.05.013http://doi.org/10.1016/j.jmb.2005.05.013.
A. Lomakin , D. S. Chung , G. B. Benedek , D. A. Kirschner , D. B. Teplow . On the nucleation and growth of amyloid beta-protein fibrils:detection of nuclei and quantitation of rate constants . Proc. Natl. Acad. Sci. USA , 1996 . 93 (3 ):1125 -1129 . DOI:10.1073/pnas.93.3.1125http://doi.org/10.1073/pnas.93.3.1125.
A. Lomakin , D. B. Teplow , D. A. Kirschner , G. B. Benedek . Kinetic theory of fibrillogenesis of amyloid beta-protein . Proc. Natl. Acad. Sci. USA. , 1997 . 94 (15 ):7942 -7947 . DOI:10.1073/pnas.94.15.7942http://doi.org/10.1073/pnas.94.15.7942.
T. J. Gibson , R. M. Murphy . Design of peptidyl compounds that affect beta-amyloid aggregation:importance of surface tension and context . Biochemistry , 2005 . 44 (24 ):8898 -8907 . DOI:10.1021/bi050225shttp://doi.org/10.1021/bi050225s.
T. P. Knowles , C. A. Waudby , G. L. Devlin , S. I. Cohen , A. Aguzzi , M. Vendruscolo , E. M. Terentjev , M. E. Welland , C. M. Dobson . An analytical solution to the kinetics of breakable filament assembly . Science , 2009 . 326 (5959 ):1533 -1537 . DOI:10.1126/science.1178250http://doi.org/10.1126/science.1178250.
J. D. Harper , S. S. Wong , C. M. Lieber , P. T. Lansbury . Observation of metastable Abeta amyloid protofibrils by atomic force microscopy . Chem. Biol. , 1997 . 4 (2 ):119 -125 . DOI:10.1016/S1074-5521(97)90255-6http://doi.org/10.1016/S1074-5521(97)90255-6.
D. M. Walsh , A. Lomakin , G. B. Benedek , M. M. Condron , D. B. Teplow . Amyloid beta-protein fibrillogenesis . Detection of a protofibrillar intermediate. J. Biol. Chem. , 1997 . 272 (35 ):22364 -22372 . http://www.jbc.org/cgi/doi/10.1074/jbc.274.36.25945http://www.jbc.org/cgi/doi/10.1074/jbc.274.36.25945, .
P. Arosio , T. P. J. Knowles , S. Linse . On the lag phase in amyloid fibril formation . Phys. Chem. Chem. Phys. , 2015 . 17 (12 ):7606 -7618 . DOI:10.1039/C4CP05563Bhttp://doi.org/10.1039/C4CP05563B.
N. L. Fletcher , C. V. Lockett , A. F. Dexter . A pH-responsive coiled-coil peptide hydrogel . Soft Matter , 2011 . 7 (21 ):10210 -10218 . http://pubs.rsc.org/en/Content/ArticleLanding/SM/2011/C1SM06261A#!divAbstracthttp://pubs.rsc.org/en/Content/ArticleLanding/SM/2011/C1SM06261A#!divAbstract, .
F. Massi , J. E. Straub . Energy landscape theory for Alzheimer's amyloid beta-peptide fibril elongation . Proteins , 2001 . 42 (2 ):217 -229 . DOI:10.1002/(ISSN)1097-0134http://doi.org/10.1002/(ISSN)1097-0134.
S. Ahmed , B. Pramanik , K. N. A. Sankar , A. Srivastava , N. Singha , P. Dowari , A. Srivastava , K. Mohanta , A. Debnath , D. Das . Solvent assisted tuning of morphology of a peptide-perylenediimide conjugate: helical fibers to nano-rings and their differential semiconductivity . Sci. Rep. , 2017 . 7 (1 ):DOI:10.1038/s41598-017-09730-zhttp://doi.org/10.1038/s41598-017-09730-z .
Y. Tian , H. V. Zhang , K. L. Kiick , J. G. Saven , D. J. Pochan . Transition from disordered aggregates to ordered lattices: kinetic control of the assembly of a computationally designed peptide . Org. Biomol. Chem. , 2017 . 15 (29 ):6109 -6118 . DOI:10.1039/C7OB01197Khttp://doi.org/10.1039/C7OB01197K.
Y. Wang , R. Huang , W. Qi , Z. Wu , R. Su , Z. He . Kinetically controlled self-assembly of redox-active ferrocene-diphenylalanine: from nanospheres to nanofibers . Nanotechnology , 2013 . DOI:10.1088/0957-4484/24/46/465603http://doi.org/10.1088/0957-4484/24/46/465603 .
T. Heuser , E. Weyandt , A. Walther . Biocatalytic feedback-driven temporal programming of self-regulating peptide hydrogels . Angew. Chem. Int. Ed. , 2015 . 54 (45 ):13258 -13262 . DOI:10.1002/anie.201505013http://doi.org/10.1002/anie.201505013.
M. P. Conte , N. Singh , I. R. Sasselli , B. Escuder , R. V. Ulijn . Metastable hydrogels from aromatic dipeptides . Chem. Commun. , 2016 . 52 (96 ):13889 -13892 . http://www.rsc.org/suppdata/c6/cc/c6cc05821c/c6cc05821c1.pdfhttp://www.rsc.org/suppdata/c6/cc/c6cc05821c/c6cc05821c1.pdf, .
S. Debnath , S. Roy , R. V. Ulijn . Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly . J. Am. Chem. Soc. , 2013 . 135 (45 ):16789 -16792 . DOI:10.1021/ja4086353http://doi.org/10.1021/ja4086353.
R. J. Williams , A. M. Smith , R. Collins , N. Hodson , A. K. Das , R. V. Ulijn . Enzyme-assisted self-assembly under thermodynamic control . Nat. Nanotechnol. , 2009 . 4 (1 ):19 -24 . DOI:10.1038/nnano.2008.378http://doi.org/10.1038/nnano.2008.378.
D. J. Adams , M. F. Butler , W. J. Frith , M. Kirkland , L. Mullen , P. Sanderson . A new method for maintaining homogeneity during liquid-hydrogel transitions using low molecular weight hydrogelators . Soft Matter , 2009 . 5 (9 ):1856 -1862 . DOI:10.1039/b901556fhttp://doi.org/10.1039/b901556f.
D. U. Ferreiro , E. A. Komives , P. G. Wolynes . Frustration in biomolecules . Q. Rev. Biophys. , 2014 . 47 (4 ):285 -363 . DOI:10.1017/S0033583514000092http://doi.org/10.1017/S0033583514000092.
P.G. Wolynes . Evolution, energy landscapes and the paradoxes of protein folding . Biochimie. , 2015 . 119 218 -230 . DOI:10.1016/j.biochi.2014.12.007http://doi.org/10.1016/j.biochi.2014.12.007.
Y. Levy , J. N. Onuchic . Mechanisms of protein assembly: lessons from minimalist models . Acc. Chem. Res. , 2006 . 39 (2 ):135 -142 . DOI:10.1021/ar040204ahttp://doi.org/10.1021/ar040204a.
M. Friedel , J. E. Shea . Self-assembly of peptides into a beta-barrel motif . J. Chem. Phys. , 2004 . 120 (12 ):5809 -5823 . DOI:10.1063/1.1649934http://doi.org/10.1063/1.1649934.
M. Schmidt , A. Rohou , K. Lasker , J. K. Yadav , C. Schiene-Fischer , M. Fandrich , N. Grigorieff . Peptide dimer structure in an Abeta(1-42) fibril visualized with cryo-EM . Proc. Natl. Acad. Sci. USA , 2015 . 112 (38 ):11858 -11863 . DOI:10.1073/pnas.1503455112http://doi.org/10.1073/pnas.1503455112.
D. Pinotsi , G. S. Kaminski Schierle , C. F. Kaminski . Optical Super-resolution imaging of beta-amyloid aggregation in vitro and in vivo: method and techniques . Method. Mol. Biol. , 2016 . 1303 125 -141 . http://www.springerprotocols.com/Abstract/doi/10.1007/978-1-4939-2627-5_6http://www.springerprotocols.com/Abstract/doi/10.1007/978-1-4939-2627-5_6, .
P. E. Milhiet , D. Yamamoto , O. Berthoumieu , P. Dosset , C. Le Grimellec , J. M. Verdier , S. Marchal , T. Ando . Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy . PLoS One. , 2010 . 5 (10 ):DOI:10.1371/journal.pone.0013240http://doi.org/10.1371/journal.pone.0013240 .
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution