a.Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
b.Department of Physics, Comsats Institute of Information Technology, Chakshahzad 45550, Islamabad Pakistan
c.Department of Chemistry, Hazara University, Mansehra, Pakistan
Muhammad Siddiq, E-mail m_sidiq12@yahoo.com
Scan for full text
Sobia Imtiaz, Muhammad Siddiq, Ayesha Kausar, et al. A Review Featuring Fabrication, Properties and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites. [J]. Chinese Journal of Polymer Science 36(4):445-461(2018)
Sobia Imtiaz, Muhammad Siddiq, Ayesha Kausar, et al. A Review Featuring Fabrication, Properties and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites. [J]. Chinese Journal of Polymer Science 36(4):445-461(2018) DOI: 10.1007/s10118-018-2045-7.
Carbon nanotubes (CNTs) have long been recognized as the stiffest and strongest man-made material known to date. In addition, their high electrical conductivity has roused interest in the areas of electrical appliances and communication related applications. However, due to their miniature size, the excellent properties of these nanostructures can only be exploited if they are homogeneously embedded into light-weight matrices as those offered by a whole series of engineering polymers. In order to enhance their chemical affinity to engineering polymer matrices, chemical modification of the graphitic sidewalls and tips is necessary. The mechanical and electrical properties to date of a whole range of nanocomposites of various carbon nanotube contents are also reviewed in this attempt to facilitate progress in this emerging area. Recently, carbonaceous nano-fillers such as graphene and carbon nanotubes (CNTs) play a promising role due to their better structural and functional properties and broad range of applications in every field. Since CNTs usually form stabilized bundles due to van der Waals interactions, they are extremely difficult to disperse and align in a polymer matrix. The biggest issues in the preparation of CNTs reinforced composites reside in efficient dispersion of CNTs into a polymer matrix, the assessment of the dispersion, and the alignment and control of the CNTs in the matrix. An overview of various CNT functionalization methods is given. In particular, CNT functionalization using click chemistry and the preparation of CNT composites employing hyperbranched polymers are stressed as potential techniques to achieve good CNT dispersion. In addition, discussions on mechanical, thermal, electrical, electrochemical and applications of polymer/CNT composites are also included.
Polymer nanocompositesCNTsEpoxyConducting polymersRAMs
W. Bauhofer , J. Z. Kovacs . A review and analysis of electrical percolation in carbon nanotube polymer composites . Compos. Sci. Technol. , 2009 . 69 (10 ):1486 -1498 . DOI:10.1016/j.compscitech.2008.06.018http://doi.org/10.1016/j.compscitech.2008.06.018.
P. Pötschke , M. Abdel-Goad , I. Alig , S. Dudkin , D. Lellinger . Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites . Polymer , 2004 . 45 (26 ):8863 -8870 . DOI:10.1016/j.polymer.2004.10.040http://doi.org/10.1016/j.polymer.2004.10.040.
S. Bibi , T. Yasin , S. Hassan , M. Riaz , M. Nawaz . Chitosan/CNTs green nanocomposite membrane:synthesis, swelling and polyaromatic hydrocarbons removal . Mater. Sci. Eng., C , 2015 . 46 359 -365 . DOI:10.1016/j.msec.2014.10.057http://doi.org/10.1016/j.msec.2014.10.057.
N. M. Mendoza , S. Goyanes , C. Chiliotte , V. Bekeris , G. Rubiolo , R. Candal . Magnetic binary nanofillers . Physica B , 2012 . 407 (16 ):3203 -3205 . DOI:10.1016/j.physb.2011.12.065http://doi.org/10.1016/j.physb.2011.12.065.
Y. Tan , H. Zhang , H. H. Liu , L. C. Hou , Y. M. Jin , X. X. Zhang . 4-Aminobenzoic acid functionalized PAN-base carbon fibers in mild polyphosphoric acid/phosphorous pentoxide . Adv. Mater. Res. , 2011 . 332 219 -222 . https://www.scientific.net/AMR.332-334.219https://www.scientific.net/AMR.332-334.219, .
M. Assali , M. P. Leal , I. Fernández , P. Romero-Gomez , R. Baati , N. Khiar . Improved non-covalent biofunctionalization of multi-walled carbon nanotubes using carbohydrate amphiphiles with a butterfly-like polyaromatic tail . Nano Res. , 2010 . 3 (11 ):764 -778 . DOI:10.1007/s12274-010-0044-2http://doi.org/10.1007/s12274-010-0044-2.
M. T. Kim , K. Y. Rhee , S. J. Park , D. Hui . Effects of silane-modified carbon nanotubes on flexural and fracture behaviors of carbon nanotube-modified epoxy/basalt composites . Compos. Part B-Eng. , 2012 . 43 (5 ):2298 -2302 . DOI:10.1016/j.compositesb.2011.12.007http://doi.org/10.1016/j.compositesb.2011.12.007.
J. Fu , X. Huang , Y. Huang , J. Zhang , X. Tang . One-pot noncovalent method to functionalize multi-walled carbon nanotubes using cyclomatrix-type polyphosphazenes . Chem. Commun. , 2009 . 9 1049 -1051 . https://www.ncbi.nlm.nih.gov/pubmed/19225632https://www.ncbi.nlm.nih.gov/pubmed/19225632, .
L. Liu , K. C. Etika , K. S. Liao , L. A. Hess , D. E. Bergbreiter , J. C. Grunlan . Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy . Macromol. Rapid Commun. , 2009 . 30 (8 ):627 -632 . DOI:10.1002/marc.v30:8http://doi.org/10.1002/marc.v30:8.
C. Kingston , R. Zepp , A. Andrady , D. Boverhof , R. Fehir , D. Hawkins , V. Vejins . Release characteristics of selected carbon nanotube polymer composites . Carbon , 2014 . 68 33 -57 . DOI:10.1016/j.carbon.2013.11.042http://doi.org/10.1016/j.carbon.2013.11.042.
May, C. A., Tanaka, Y., "Epoxy Resin: Chemistry and Technology" Marcel Dekker, New York, 1973.
H. Xie , B. Liu , Z. Yuan , J. Shen , R. Cheng . Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry . J. Polym. Sci., Part B:Polym. Phys. , 2004 . 42 (20 ):3701 -3712 . DOI:10.1002/(ISSN)1099-0488http://doi.org/10.1002/(ISSN)1099-0488.
W. Jia , R. Tchoudakov , R. Joseph , M. Narkis , A. Siegmann . The conductivity behavior of multi-component epoxy, metal particle, carbon black, carbon fibril composites . J. Appl. Polym. Sci. , 2002 . 85 (8 ):1706 -1713 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628.
Z. Spitalsky , D. Tasis , K. Papagelis , C. Galiotis . Carbon nanotube-polymer composites:chemistry, processing, mechanical and electrical properties . Prog. Polym. Sci. , 2010 . 35 (3 ):357 -401 . DOI:10.1016/j.progpolymsci.2009.09.003http://doi.org/10.1016/j.progpolymsci.2009.09.003.
P. R. Thakre , Y. Bisrat , D. C. Lagoudas . Electrical and mechanical properties of carbon nanotube-epoxy nanocomposites . J. Appl. Polym. Sci. , 2010 . 116 (1 ):191 -202 . DOI:10.1002/app.v116:1http://doi.org/10.1002/app.v116:1.
S. Bhadra , D. Khastgir , N. K. Singha , J. H. Lee . Progress in preparation, processing and applications of polyaniline . Prog. Polym. Sci. , 2009 . 34 (8 ):783 -810 . DOI:10.1016/j.progpolymsci.2009.04.003http://doi.org/10.1016/j.progpolymsci.2009.04.003.
D. Micheli , R. Pastore , G. Gradoni , V. M. Primiani , F. Moglie , M. Marchetti . Reduction of satellite electromagnetic scattering by carbon nanostructured multilayers . Acta Astronaut. , 2013 . 88 61 -73 . DOI:10.1016/j.actaastro.2013.03.003http://doi.org/10.1016/j.actaastro.2013.03.003.
D. Micheli , C. Apollo , R. Pastore , D. Barbera , R. B. Morles , M. Marchetti , F. Moglie . Optimization of multilayer shields made of composite nanostructured materials . IEEE Trans. Electromagn. Compat. , 2012 . 54 (1 ):60 -69 . DOI:10.1109/TEMC.2011.2171688http://doi.org/10.1109/TEMC.2011.2171688.
D. Micheli , R. Pastore , C. Apollo , M. Marchetti , G. Gradoni , V. M. Primiani , F. Moglie . Broadband electromagnetic absorbers using carbon nanostructure-based composites . IEEE Trans. Microw. Theory Techn. , 2011 . 59 (10 ):2633 -2646 . DOI:10.1109/TMTT.2011.2160198http://doi.org/10.1109/TMTT.2011.2160198.
S. Iijima . Helical microtubules of graphitic carbon . Nature , 1991 . 354 56 -58 . DOI:10.1038/354056a0http://doi.org/10.1038/354056a0.
M. Abdalla , D. Dean , M. Theodore , J. Fielding , E. Nyairo , G. Price . Magnetically processed carbon nanotube/epoxy nanocomposites:morphology, thermal, and mechanical properties . Polymer , 2010 . 51 (7 ):1614 -1620 . DOI:10.1016/j.polymer.2009.05.059http://doi.org/10.1016/j.polymer.2009.05.059.
P. C. Ma , N. A. Siddiqui , G. Marom , J. K. Kim . Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites:a review . Compos. Part A-Appl. S. , 2010 . 41 (10 ):1345 -1367 . DOI:10.1016/j.compositesa.2010.07.003http://doi.org/10.1016/j.compositesa.2010.07.003.
H. W. Kroto , J. R. Heath , S. C. Obrien , R. F. Curl , R. E. Smalley . Long carbon chain molecules in circumstellar shells . Astrophys. J. , 1987 . 314 352 -355 . DOI:10.1086/165065http://doi.org/10.1086/165065.
S. Iijima , T. Ichihashi . Single-shell carbon nanotubes of 1-nm diameter . Nature , 1993 . 363 603 -606 . DOI:10.1038/363603a0http://doi.org/10.1038/363603a0.
D. S. Bethune , C. H. Klang , M. S. De Vries , G. Gorman , R. Savoy , J. Vazquez , R. Beyers . Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls . Nature , 1993 . 363 605 -607 . DOI:10.1038/363605a0http://doi.org/10.1038/363605a0.
T.W. Chou . "Microstructural design of fiber composites" , Cambridge University Press , 2005 .
P. G. Collins , P. Avouris . Nanotubes for Electronics . Sci. Am. , 2000 . 283 (6 ):62 -69 . DOI:10.1038/scientificamerican1200-62http://doi.org/10.1038/scientificamerican1200-62.
S. Fan , M. G. Chapline , N. R. Franklin , T. W. Tombler , A. M. Cassell , H. Dai . Self-oriented regular arrays of carbon nanotubes and their field emission properties . Science , 1999 . 283 (5401 ):512 -514 . DOI:10.1126/science.283.5401.512http://doi.org/10.1126/science.283.5401.512.
S. S. Wong , E. Joselevich , A. T. Woolley , C. L. Cheung , C. M. Lieber . Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology . Nature , 1998 . 394 (6688 ):52 -55 . DOI:10.1038/27873http://doi.org/10.1038/27873.
T. Rueckes , K. Kim , E. Joselevich , G. Y. Tseng , C. L. Cheung , C. M. Lieber . Carbon nanotube-based nonvolatile random access memory for molecular computing . Science , 2000 . 289 (5476 ):94 -97 . DOI:10.1126/science.289.5476.94http://doi.org/10.1126/science.289.5476.94.
C. Journet , W. K. Maser , P. Bernier , A. Loiseau , M. L. de la Chapelle , D. L. S. Lefrant , J. E. Fischer . Large-scale production of single-walled carbon nanotubes by the electric-arc technique . Nature , 1997 . 388 (6644 ):756 -758 . DOI:10.1038/41972http://doi.org/10.1038/41972.
A. G. Rinzler , J. Liu , H. Dai , P. Nikolaev , C. B. Huffman , F. J. Rodriguez-Macias , R. S. Lee . Large-scale purification of single-wall carbon nanotubes:process, product, and characterization . Appl. Phys. A , 1998 . 67 (1 ):29 -37 . https://link.springer.com/article/10.1007/s003390050734https://link.springer.com/article/10.1007/s003390050734, .
P. Nikolaev , M. J. Bronikowski , R. K. Bradley , F. Rohmund , D. T. Colbert , K. A. Smith , R. E. Smalley . Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide . Chem. Phys. Lett. , 1999 . 313 (1 ):91 -97 . https://www.sciencedirect.com/science/article/pii/S0009261499010295https://www.sciencedirect.com/science/article/pii/S0009261499010295, .
Z. F. Ren , Z. P. Huang , D. Z. Wang , J. G. Wen , J. W. Xu , J. H. Wang , M. A. Reed . Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot . Appl. Phys. Lett. , 1999 . 75 (8 ):1086 -1088 . DOI:10.1063/1.124605http://doi.org/10.1063/1.124605.
Z. F. Ren , Z. P. Huang , J. W. Xu , J. H. Wang , P. Bush , M. P. Siegal , P. N. Provencio . Synthesis of large arrays of well-aligned carbon nanotubes on glass . Science , 1998 . 282 (5391 ):1105 -1107 . DOI:10.1126/science.282.5391.1105http://doi.org/10.1126/science.282.5391.1105.
Z. P. Huang , J. W. Xu , Z. F. Ren , J. H. Wang , M. P. Siegal , P. N. Provencio . Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition . Appl. Phys. Lett. , 1998 . 73 (26 ):3845 -3847 . DOI:10.1063/1.122912http://doi.org/10.1063/1.122912.
V. Ambrogi , G. Gentile , C. Ducati , M. C. Oliva , C. Carfagna . Multiwalled carbon nanotubes functionalized with maleated poly (propylene) by a dry mechano-chemical process . Polymer , 2012 . 53 (2 ):291 -299 . DOI:10.1016/j.polymer.2011.11.048http://doi.org/10.1016/j.polymer.2011.11.048.
T. W. Ebbesen , P. M. Ajayan . Large-scale synthesis of carbon nanotubes . Nature , 1992 . 358 (6383 ):220 -222 . DOI:10.1038/358220a0http://doi.org/10.1038/358220a0.
Y. Zhang , S. Iijima . Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature . Appl. Phys. Lett. , 1999 . 75 (20 ):3087 -3089 . DOI:10.1063/1.125239http://doi.org/10.1063/1.125239.
X. X. Zhang , Z. Q. Li , G. H. Wen , K. K. Fung , J. Chen , Y. Li . Microstructure and growth of bamboo-shaped carbon nanotubes . Chem. Phys. Lett. , 2001 . 333 (6 ):509 -514 . DOI:10.1016/S0009-2614(00)01431-7http://doi.org/10.1016/S0009-2614(00)01431-7.
C. Bower , W. Zhu , S. Jin , O. Zhou . Plasma-induced alignment of carbon nanotubes . Appl. Phys. Lett. , 2000 . 77 (6 ):830 -832 . DOI:10.1063/1.1306658http://doi.org/10.1063/1.1306658.
Z. Han , A. Fina . Thermal conductivity of carbon nanotubes and their polymer nanocomposites:a review . Prog. Polym. Sci. , 2011 . 36 (7 ):914 -944 . DOI:10.1016/j.progpolymsci.2010.11.004http://doi.org/10.1016/j.progpolymsci.2010.11.004.
P. Costa , J. Silva , A. Ansón-Casaos , M. T. Martinez , M. J. Abad , J. Viana , S. Lanceros-Mendez . Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styrene-butadiene-styrene composites for large strain sensor applications . Compos. Part B-Eng. , 2014 . 61 136 -146 . DOI:10.1016/j.compositesb.2014.01.048http://doi.org/10.1016/j.compositesb.2014.01.048.
N. Karousis , N. Tagmatarchis , D. Tasis . Current progress on the chemical modification of carbon nanotubes . Chem. Rev. , 2010 . 110 (9 ):5366 -5397 . DOI:10.1021/cr100018ghttp://doi.org/10.1021/cr100018g.
R. Yu , L. Chen , Q. Liu , J. Lin , K. L. Tan , S. C. Ng , T. A. Hor . Platinum deposition on carbon nanotubes via chemical modification . Chem. Mater. , 1998 . 10 (3 ):718 -722 . DOI:10.1021/cm970364zhttp://doi.org/10.1021/cm970364z.
P. M. Ajayan , O. Stephan , C. Colliex , D. Trauth . Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite . Science , 1994 . 265 (5176 ):1212 -1212 . DOI:10.1126/science.265.5176.1212http://doi.org/10.1126/science.265.5176.1212.
B. Safadi , R. Andrews , E. A. Grulke . Multiwalled carbon nanotube polymer composites:synthesis and characterization of thin films . J. Appl. Polym. Sci. , 2002 . 84 (14 ):2660 -2669 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628.
E. T. Thostenson , T. W. Chou . Aligned multi-walled carbon nanotube-reinforced composites:processing and mechanical characterization . J. Phys. D Appl. Phys. , 2002 . 35 (16 ):L77 -L80 . DOI:10.1088/0022-3727/35/16/103http://doi.org/10.1088/0022-3727/35/16/103.
H. Xia , Q. Wang , K. Li , G. H. Hu . Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process . J. Appl. Polym. Sci. , 2004 . 93 (1 ):378 -386 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628.
W. E. Dondero , R. E. Gorga . Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding . J. Polym. Sci., Part B:Polym. Phys. , 2006 . 44 (5 ):864 -878 . DOI:10.1002/(ISSN)1099-0488http://doi.org/10.1002/(ISSN)1099-0488.
C. Velasco-Santos , A. L. Martínez-Hernández , F. T. Fisher , R. Ruoff , V. M. Castaño . Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization . Chem. Mater. , 2003 . 15 (23 ):4470 -4475 . DOI:10.1021/cm034243chttp://doi.org/10.1021/cm034243c.
D. Blond , V. Barron , M. Ruether , K. P. Ryan , V. Nicolosi , W. J. Blau , J. N. Coleman . Enhancement of modulus, strength, and toughness in poly(methyl methacrylate) based composites by the incorporation of poly(methyl methacrylate)-functionalized nanotubes . Adv. Funct. Mater. , 2006 . 16 (12 ):1608 -1614 . DOI:10.1002/(ISSN)1616-3028http://doi.org/10.1002/(ISSN)1616-3028.
M. C. Weisenberger , E. A. Grulke , D. Jacques , A. T. Rantell , R. Andrewsa . Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers . J. Nanosci. Nanotechnol. , 2003 . 3 (6 ):535 -539 . DOI:10.1166/jnn.2003.239http://doi.org/10.1166/jnn.2003.239.
H. Hou , J. J. Ge , J. Zeng , Q. Li , D. H. Reneker , A. Greiner , S. Z. Cheng . Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes . Chem. Mater. , 2005 . 17 (5 ):967 -973 . DOI:10.1021/cm0484955http://doi.org/10.1021/cm0484955.
J. Yang , J. Hu , C. Wang , Y. Qin , Z. Guo . Fabrication and characterization of soluble multi-walled carbon nanotubes reinforced P(MMA-co-EMA) composites . Macromol. Mater. Eng. , 2004 . 289 (9 ):828 -832 . DOI:10.1002/(ISSN)1439-2054http://doi.org/10.1002/(ISSN)1439-2054.
J. K. W. Sandler , S. Pegel , M. Cadek , F. Gojny , M. Van Es , J. Lohmar , M. S. P. Shaffer . A comparative study of melt spun polyamide-12 fibers reinforced with carbon nanotubes and nanofibers . Polymer , 2004 . 45 (6 ):2001 -2015 . DOI:10.1016/j.polymer.2004.01.023http://doi.org/10.1016/j.polymer.2004.01.023.
A. R. Bhattacharyya , P. Pötschke , M. Abdel-Goad , D. Fischer . Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites . Chem. Phys. Lett. , 2004 . 392 (1 ):28 -33 . https://www.sciencedirect.com/science/article/pii/S0009261404007432https://www.sciencedirect.com/science/article/pii/S0009261404007432, .
N. H. Tai , M. K. Yeh , J. H. Liu . Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement . Carbon , 2004 . 42 (12 ):2774 -2777 . http://www.iccm-central.org/Proceedings/ICCM16proceedings/contents/pdf/WedH/WeHM1-08ge_tzengs223433p.pdfhttp://www.iccm-central.org/Proceedings/ICCM16proceedings/contents/pdf/WedH/WeHM1-08ge_tzengs223433p.pdf, .
M. R. Loos , J. Yang , D. L. Feke , I. Manas-Zloczower , S. Unal , U. Younes . Enhancement of fatigue life of polyurethane composites containing carbon nanotubes . Compos. Part B-Eng. , 2013 . 44 (1 ):740 -744 . DOI:10.1016/j.compositesb.2012.01.038http://doi.org/10.1016/j.compositesb.2012.01.038.
D. R. Bortz , C. Merino , I. Martin-Gullon . Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system . Compos. Sci. Technol. , 2011 . 71 (1 ):31 -38 . DOI:10.1016/j.compscitech.2010.09.015http://doi.org/10.1016/j.compscitech.2010.09.015.
Wang, C. F. ; Chang, F. C. ; Kuo, S. W. "Handbook of Polybenzoxazine" ed., Elsevier, Amsterdam, 2011, p 579.
C. C. Yang , Y. C. Lin , P. I. Wang , D. J. Liaw , S. W. Kuo . Polybenzoxazine/single-walled carbon nanotube nanocomposites stabilized through noncovalent bonding interactions . Polymer , 2014 . 55 (8 ):2044 -2050 . DOI:10.1016/j.polymer.2014.02.061http://doi.org/10.1016/j.polymer.2014.02.061.
M. Chapartegui , J. Barcena , X. Irastorza , C. Elizetxea , M. Fernandez , A. Santamaria . Analysis of the conditions to manufacture a MWCNT buckypaper/benzoxazine nanocomposite . Compos. Sci. Technol. , 2012 . 72 (4 ):489 -497 . DOI:10.1016/j.compscitech.2011.12.001http://doi.org/10.1016/j.compscitech.2011.12.001.
Q. Chen , R. Xu , D. Yu . Multiwalled carbon nanotube/polybenzoxazine nanocomposites:preparation, characterization and properties . Polymer , 2006 . 47 (22 ):7711 -7719 . DOI:10.1016/j.polymer.2006.08.058http://doi.org/10.1016/j.polymer.2006.08.058.
J. M. Huang , M. F. Tsai , S. J. Yang , W. M. Chiu . Preparation and thermal properties of multiwalled carbon nanotube/polybenzoxazine nanocomposites . J. Appl. Polym. Sci. , 2011 . 122 (3 ):1898 -1904 . DOI:10.1002/app.34290http://doi.org/10.1002/app.34290.
C. M. Chang , Y. L. Liu . Electrical conductivity enhancement of polymer/multiwalled carbon nanotube (MWCNT) composites by thermally-induced defunctionalization of MWCNTs . ACS Appl. Mater. Interfaces , 2011 . 3 (7 ):2204 -2208 . DOI:10.1021/am200558fhttp://doi.org/10.1021/am200558f.
L. Dumas , L. Bonnaud , M. Olivier , M. Poorteman , P. Dubois . Facile preparation of a novel high performance benzoxazine-CNT based nano-hybrid network exhibiting outstanding thermo-mechanical properties . Chem. Commun. , 2013 . 49 (83 ):9543 -9545 . DOI:10.1039/c3cc45179hhttp://doi.org/10.1039/c3cc45179h.
M. H. Al-Saleh , B. A. Al-Saidi , R. M. Al-Zoubi . Experimental and theoretical analysis of the mechanical and thermal properties of carbon nanotube/acrylonitrile-styrene-butadiene nanocom-posites . Polymer , 2016 . 89 12 -17 . DOI:10.1016/j.polymer.2016.01.053http://doi.org/10.1016/j.polymer.2016.01.053.
M. H. Al-Saleh , U. Sundararaj . Microstructure, electrical, and electromagnetic interference shielding properties of carbon nanotube/acrylonitrile-butadiene-styrene nanocomposites . J. Polym. Sci., Part B:Polym. Phys. , 2012 . 50 (19 ):1356 -1362 . DOI:10.1002/polb.v50.19http://doi.org/10.1002/polb.v50.19.
M. H. Al-Saleh , U. Sundararaj . Morphological, electrical and electromagnetic interference shielding characterization of vapor grown carbon nanofiber/polystyrene nanocomposites . Polym. Int. , 2013 . 62 (4 ):601 -607 . DOI:10.1002/pi.2013.62.issue-4http://doi.org/10.1002/pi.2013.62.issue-4.
R. V. Kurahatti , A. O. Surendranathan , S. A. Kori , N. Singh , A. R. Kumar , S. Srivastava . Defence applications of polymer nanocomposites . Def. Sci. J. , 2010 . 60 (5 ):551 -563 . DOI:10.14429/dsjhttp://doi.org/10.14429/dsj.
M. F. de Volder , S. H. Tawfick , R. H. Baughman , A. J. Hart . Carbon nanotubes:present and future commercial applications . Science , 2013 . 339 (6119 ):535 -539 . DOI:10.1126/science.1222453http://doi.org/10.1126/science.1222453.
Margolis, J. Ed. "Conductive polymers and plastics", Springer Science & Business Media, London, 2012.
C. Peng , S. Zhang , D. Jewell , G. Z. Chen . Carbon nanotube and conducting polymer composites for supercapacitors . Prog. Nat. Sci. , 2008 . 18 (7 ):777 -788 . DOI:10.1016/j.pnsc.2008.03.002http://doi.org/10.1016/j.pnsc.2008.03.002.
M. M. Ayad , N. Salahuddin , M. A. Shenashin . The optimum HCl concentration for the in situ polyaniline film formation . Synth. Met. , 2004 . 142 (1 ):101 -106 . http://downloads.hindawi.com/journals/tswj/2014/861904.xmlhttp://downloads.hindawi.com/journals/tswj/2014/861904.xml, .
H. Liu , X. B. Hu , J. Y. Wang , R.I. Boughton . Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method . Macromolecules , 2002 . 35 (25 ):9414 -9419 . DOI:10.1021/ma0119326http://doi.org/10.1021/ma0119326.
W. Li , J. Chen , J. Zhao , J. Zhang , J. Zhu . Application of ultrasonic irradiation in preparing conducting polymer as active materials for supercapacitor . Mater. Lett. , 2005 . 59 (7 ):800 -803 . DOI:10.1016/j.matlet.2004.11.024http://doi.org/10.1016/j.matlet.2004.11.024.
T. S. Swathy , M. A. Jose , M. J. Antony . AOT assisted preparation of ordered, conducting and dispersible core-shell nanostructured polythiophene-MWCNT nanocomposites . Polymer , 2016 . 103 206 -213 . DOI:10.1016/j.polymer.2016.09.047http://doi.org/10.1016/j.polymer.2016.09.047.
E. N. Konyushenko , J. Stejskal , M. Trchová , J. Hradil , J. Kovářová , J. Prokeš , I. Sapurina . Multi-wall carbon nanotubes coated with polyaniline . Polymer , 2006 . 47 (16 ):5715 -5723 . DOI:10.1016/j.polymer.2006.05.059http://doi.org/10.1016/j.polymer.2006.05.059.
M. Heimann , M. Wirts-Ruetters , B. Boehme , K. J. Wolter . Investigations of carbon nanotubes epoxy composites for electronics packaging . IEEE 58th Electronic Components and Technology Conference. , 2008 . 1731 -1736 . https://www.researchgate.net/profile/Matthias_Heimann/publication/224319277_Investigations_of_carbon_nanotubes_epoxy_composites_for_electronics_packaging/links/556c359508aec22683038e5c.pdfhttps://www.researchgate.net/profile/Matthias_Heimann/publication/224319277_Investigations_of_carbon_nanotubes_epoxy_composites_for_electronics_packaging/links/556c359508aec22683038e5c.pdf, .
S. S. Mahapatra , S. K. Yadav , H. J. Yoo , J. W. Cho , J. S. Park . Highly branched polyurethane:synthesis, characterization and effects of branching on dispersion of carbon nanotubes . Compos. Part B-Eng. , 2013 . 45 (1 ):165 -171 . DOI:10.1016/j.compositesb.2012.05.039http://doi.org/10.1016/j.compositesb.2012.05.039.
Z. Yang , K. McElrath , J. Bahr , N. A. D'Souza . Effect of matrix glass transition on reinforcement efficiency of epoxy-matrix composites with single walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers and graphite . Compos. Part B-Eng. , 2012 . 43 (4 ):2079 -2086 . DOI:10.1016/j.compositesb.2012.01.049http://doi.org/10.1016/j.compositesb.2012.01.049.
M. T. Kim , K. Y. Rhee , J. H. Lee , D. Hui , A. K. Lau . Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes . Compos. Part B-Eng. , 2011 . 42 (5 ):1257 -1261 . DOI:10.1016/j.compositesb.2011.02.005http://doi.org/10.1016/j.compositesb.2011.02.005.
S. Halder , P. K. Ghosh , M. S. Goyat , S. Ray . Ultrasonic dual mode mixing and its effect on tensile properties of SiO2-epoxy nanocomposite . J. Adhes. Sci. Technol. , 2013 . 27 (2 ):111 -124 . DOI:10.1080/01694243.2012.701510http://doi.org/10.1080/01694243.2012.701510.
P. K. Ghosh , A. Pathak , M. S. Goyat , S. Halder . Influence of nanoparticle weight fraction on morphology and thermal properties of epoxy/Ti2 nanocomposite . J. Reinf. Plast. Compos. , 2012 . 31 (17 ):1180 -1188 . DOI:10.1177/0731684412455955http://doi.org/10.1177/0731684412455955.
S. Halder , P. K. Ghosh , M. S. Goyat . Influence of ultrasonic dual mode mixing on morphology and mechanical properties of Zr2-epoxy nanocomposite . High Perform. Polym. , 2012 . 24 (4 ):331 -341 . DOI:10.1177/0954008312440714http://doi.org/10.1177/0954008312440714.
K. Chrissafis , D. Bikiaris . Can nanoparticles really enhance thermal stability of polymers? Part Ⅰ:an overview on thermal decomposition of addition polymers . Thermochim. Acta , 2011 . 523 (1 ):1 -24 . https://www.sciencedirect.com/science/article/pii/S004060311100339Xhttps://www.sciencedirect.com/science/article/pii/S004060311100339X, .
O. Starkova , S. T. Buschhorn , E. Mannov , K. Schulte , A. Aniskevich . Creep and recovery of epoxy/MWCNT nanocomposites . Compos. Part A-Appl. S. , 2012 . 43 (8 ):1212 -1218 . DOI:10.1016/j.compositesa.2012.03.015http://doi.org/10.1016/j.compositesa.2012.03.015.
C. M. Damian , S. A. Garea , E. Vasile , H. Iovu . Covalent and non-covalent functionalized MWCNTs for improved thermo-mechanical properties of epoxy composites . Compos. Part B-Eng. , 2012 . 43 (8 ):3507 -3515 . DOI:10.1016/j.compositesb.2011.11.052http://doi.org/10.1016/j.compositesb.2011.11.052.
N. G. Sahoo , H. K. F. Cheng , L. Li , S. H. Chan , Z. Judeh , J. Zhao . Specific functionalization of carbon nanotubes for advanced polymer nanocomposites . Adv. Funct. Mater. , 2009 . 19 (24 ):3962 -3971 . DOI:10.1002/(ISSN)1616-3028http://doi.org/10.1002/(ISSN)1616-3028.
P. C. Ma , Q. B. Zheng , E. Mäder , J. K. Kim . Behavior of load transfer in functionalized carbon nanotube/epoxy nanocomposites . Polymer , 2012 . 53 (26 ):6081 -6088 . DOI:10.1016/j.polymer.2012.10.053http://doi.org/10.1016/j.polymer.2012.10.053.
G. L. Hwang , Y. T. Shieh , K. C. Hwang . Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites . Adv. Funct. Mater. , 2004 . 14 (5 ):487 -491 . DOI:10.1002/(ISSN)1616-3028http://doi.org/10.1002/(ISSN)1616-3028.
D. K. Rathore , R. K. Prusty , B.C. Ray . Mechanical, thermomechanical, and creep performance of CNT embedded epoxy at elevated temperatures:an emphasis on the role of carboxyl functionalization . J. Appl. Polym. Sci. , 2017 . DOI:10.1002/app.44851http://doi.org/10.1002/app.44851 .
M. Garg , S. Sharma , R. Mehta . Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites . Compos. Part A-Appl. S. , 2015 . 76 92 -101 . DOI:10.1016/j.compositesa.2015.05.012http://doi.org/10.1016/j.compositesa.2015.05.012.
J. Luan , A. Zhang , Y. Zheng , L. Sun . Effect of pyrene-modified multiwalled carbon nanotubes on the properties of epoxy composites . Compos. Part A-Appl. S. , 2012 . 43 (7 ):1032 -1037 . DOI:10.1016/j.compositesa.2012.02.005http://doi.org/10.1016/j.compositesa.2012.02.005.
M. Theodore , M. Hosur , J. Thomas , S. Jeelani . Influence of functionalization on properties of MWCNT-epoxy nanocomposites . Mater. Sci. Eng., A. , 2011 . 528 (3 ):1192 -1200 . DOI:10.1016/j.msea.2010.09.095http://doi.org/10.1016/j.msea.2010.09.095.
C. H. Tseng , C. C. Wang , C. Y. Chen . Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites . Chem. Mater. , 2007 . 19 (2 ):308 -315 . DOI:10.1021/cm062277phttp://doi.org/10.1021/cm062277p.
O. Starkova , S. T. Buschhorn , E. Mannov , K. Schulte , A. Aniskevich . Water transport in epoxy/MWCNT composites . Eur. Polym. J. , 2013 . 49 (8 ):2138 -2148 . DOI:10.1016/j.eurpolymj.2013.05.010http://doi.org/10.1016/j.eurpolymj.2013.05.010.
S. G. Prolongo , M. R. Gude , A. Urena . Water uptake of epoxy composites reinforced with carbon nanofillers . Compos. Part A-Appl. S. , 2012 . 43 (12 ):2169 -2175 . DOI:10.1016/j.compositesa.2012.07.014http://doi.org/10.1016/j.compositesa.2012.07.014.
O. Starkova , S. Chandrasekaran , L. A. S. A. Prado , F. Tölle , R. Mülhaupt , K. Schulte . Hydrothermally resistant thermally reduced graphene oxide and multi-wall carbon nanotube based epoxy nanocomposites . Polym. Degrad. Stab. , 2013 . 98 (2 ):519 -526 . DOI:10.1016/j.polymdegradstab.2012.12.005http://doi.org/10.1016/j.polymdegradstab.2012.12.005.
J. D. Sudha , S. Sivakala , R. Prasanth , V. L. Reena , P. R. Nair . Development of electromagnetic shielding materials from the conductive blends of polyaniline and polyaniline-clay nanocomposite-EVA:Preparation and properties . Compos. Sci. Technol. , 2009 . 69 (3 ):358 -364 . https://www.sciencedirect.com/science/article/pii/S0266353808004260https://www.sciencedirect.com/science/article/pii/S0266353808004260, .
I. Krakovský , J. Pleštil , L. Almásy . Structure and swelling behaviour of hydrophilic epoxy networks investigated by SANS . Polymer , 2006 . 47 (1 ):218 -226 . DOI:10.1016/j.polymer.2005.11.021http://doi.org/10.1016/j.polymer.2005.11.021.
I. Krakovský , M. Varga , G. G. Ferrer , R. S. I. Serra , M. Salmerón-Sánchez . Structure and properties of epoxy/polyaniline nanocomposites . J. Non-Cryst. Solids , 2012 . 358 (2 ):414 -419 . DOI:10.1016/j.jnoncrysol.2011.10.012http://doi.org/10.1016/j.jnoncrysol.2011.10.012.
H. Deng , Q. Cao , X. Wang , Q. Chen , H. Kuang , X. Wang . Studies on preparation and properties of the multi-walled carbon nanotubes (MWNTs)/epoxy nanocomposites . Mater. Sci. Eng. A-Struct. , 2011 . 528 (18 ):5759 -5763 . DOI:10.1016/j.msea.2011.04.010http://doi.org/10.1016/j.msea.2011.04.010.
L. Deng , M. Han . Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability . Appl. Phys. Lett. , 2007 . 91 (2 ):023119 DOI:10.1063/1.2755875http://doi.org/10.1063/1.2755875.
H. Lin , H. Zhu , L. Y. Guo . Materials processing by simple shear . Mater. Lett. , 2007 . 61 (2 ):3547 -3550 . https://www.researchgate.net/publication/222811113_Materials_processing_by_simple_shearhttps://www.researchgate.net/publication/222811113_Materials_processing_by_simple_shear, .
V. A. Silva , L. D. C. Folgueras , G. M. Cândido , A. L. D. Paula , M. C. Rezende , M. L. Costa . Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials . Mater. Res. , 2013 . 16 (6 ):1299 -1308 . DOI:10.1590/S1516-14392013005000146http://doi.org/10.1590/S1516-14392013005000146.
Y. J. Kim , S. S. Kim . Microwave absorbing properties of co-substituted Ni 2 W hexaferrites in Ka-band frequencies (26.5-40 GHz) . IEEE Trans. Magn. , 2002 . 38 (5 ):3108 -3110 . DOI:10.1109/TMAG.2002.802483http://doi.org/10.1109/TMAG.2002.802483.
V. M. Petrov , V. V. Gagulin . Microwave absorbing materials . Inorg. Mater. , 2001 . 37 (2 ):93 -98 . DOI:10.1023/A:1004171120638http://doi.org/10.1023/A:1004171120638.
Folgueras, L. D. C. ; Alves, M. A. ; Rezende, M. C. Electromagnetic radiation absorbing paints based on carbonyl iron and polyaniline. 2009 SBMO/IEEE MTT-S International Microwave And Optoelectronics Conference. 2009, 510-513.http://www.mendeley.com/research/electromagnetic-radiation-absorbing-paints-based-carbonyl-iron-polyaniline/
A. N. Yusoff , M. H. Abdullah . Microwave electromagnetic and absorption properties of some LiZn ferrites . J. Magn. Magn. Mater. , 2004 . 269 (2 ):271 -280 . DOI:10.1016/S0304-8853(03)00617-6http://doi.org/10.1016/S0304-8853(03)00617-6.
R. Sen , B. Zhao , D. Perea , M. E. Itkis , H. Hu , J. Love , R. C. Haddon . Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning . Nano Lett. , 2004 . 4 (3 ):459 -464 . DOI:10.1021/nl035135shttp://doi.org/10.1021/nl035135s.
D. D. L. Chung . Electromagnetic interference shielding effectiveness of carbon materials . Carbon , 2001 . 39 (2 ):279 -285 . DOI:10.1016/S0008-6223(00)00184-6http://doi.org/10.1016/S0008-6223(00)00184-6.
J. Joo , C. Y. Lee . High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers . J. Appl. Phys. , 2000 . 88 (1 ):513 -518 . DOI:10.1063/1.373688http://doi.org/10.1063/1.373688.
J. Hu , F. Jia , Y. F. Song . Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries . Chem. Eng. J. , 2017 . 326 273 -280 . DOI:10.1016/j.cej.2017.05.153http://doi.org/10.1016/j.cej.2017.05.153.
L. Xue , W. Wang , Y. Guo , G. Liu , P. Wan . Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors . Sensor. Actuat. B-Chem. , 2017 . 244 47 -53 . DOI:10.1016/j.snb.2016.12.064http://doi.org/10.1016/j.snb.2016.12.064.
A. Kumar , P. K. Ghosh , K. L. Yadav , K. Kumar . Thermo-mechanical and anti-corrosive properties of MWCNT/epoxy nanocomposite fabricated by innovative dispersion technique . Compos. Part B-Eng. , 2017 . 113 291 -299 . DOI:10.1016/j.compositesb.2017.01.046http://doi.org/10.1016/j.compositesb.2017.01.046.
L. Vertuccio , L. Guadagno , G. Spinelli , P. Lamberti , V. Tucci , S. Russo . Piezoresistive properties of resin reinforced with carbon nanotubes for health-monitoring of aircraft primary structures . Compos. Part B-Eng. , 2016 . 107 192 -202 . DOI:10.1016/j.compositesb.2016.09.061http://doi.org/10.1016/j.compositesb.2016.09.061.
V. Saadattalab , A. Shakeri , H. Gholami . Effect of CNTs and nano ZnO on physical and mechanical properties of polyaniline composites applicable in energy devices . Prog. Nat. Sci. , 2016 . 26 (6 ):517 -522 . DOI:10.1016/j.pnsc.2016.09.005http://doi.org/10.1016/j.pnsc.2016.09.005.
B. Zhang , R. Shi , Y. Zhang , C. Pan . CNTs/TiO2 composites and its electrochemical properties after UV light irradiation . Prog. Nat. Sci. , 2013 . 23 (2 ):164 -169 . DOI:10.1016/j.pnsc.2013.03.002http://doi.org/10.1016/j.pnsc.2013.03.002.
A. Olad , M. Barati , S. Behboudi . Preparation of PANI/epoxy/Zn nanocomposite using Zn nanoparticles and epoxy resin as additives and investigation of its corrosion protection behavior on iron . Prog. Org. Coat. , 2012 . 74 (1 ):221 -227 . DOI:10.1016/j.porgcoat.2011.12.012http://doi.org/10.1016/j.porgcoat.2011.12.012.
K. Diamanti , C. Soutis . Structural health monitoring techniques for aircraft composite structures . Prog. Aerosp. Sci. , 2010 . 46 (8 ):342 -352 . DOI:10.1016/j.paerosci.2010.05.001http://doi.org/10.1016/j.paerosci.2010.05.001.
O. Gohardani , M. C. Elola , C. Elizetxea . Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles:a review of current and expected applications in aerospace sciences . Prog. Aerosp. Sci. , 2014 . 70 42 -68 . DOI:10.1016/j.paerosci.2014.05.002http://doi.org/10.1016/j.paerosci.2014.05.002.
A. S. Gohardani , G. Doulgeris , R. Singh . Challenges of future aircraft propulsion:a review of distributed propulsion technology and its potential application for the electric commercial aircraft . Prog. Aerosp. Sci. , 2011 . 47 (5 ):369 -391 . DOI:10.1016/j.paerosci.2010.09.001http://doi.org/10.1016/j.paerosci.2010.09.001.
0
Views
0
Downloads
8
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution