Enhanced stability of polyplexes in physiological condition was an important prerequisite for successful systemic gene delivery. Herein novel method was reported to develop stable gene vector by nanotechnology. Thiolated polyplexes were constructed and then cross-linked with gold nanoparticles (AuNPs) by gold-thiol interactions. TEM pictures showed that AuNPs were attached to the shell of spherical polyplexes. The hybrid gene vector was stable enough in physiological condition and maintained efficient transfection, which showed great potential in gene delivery research and application.
Abstract
Enhanced stability of polyplexes in physiological condition was an important prerequisite for successful systemic gene delivery. Herein novel method was reported to develop stable gene vector by nanotechnology. Thiolated polyplexes were constructed and then cross-linked with gold nanoparticles (AuNPs) by gold-thiol interactions. TEM pictures showed that AuNPs were attached to the shell of spherical polyplexes. The hybrid gene vector was stable enough in physiological condition and maintained efficient transfection, which showed great potential in gene delivery research and application.