College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
longyu88@scu.edu.cn (L.Y.L.)
rensj@scu.edu.cn (S.J.R.)
纸质出版日期:2024-08-01,
网络出版日期:2024-05-17,
收稿日期:2024-02-25,
修回日期:2024-04-06,
录用日期:2024-04-07
Scan for full text
Gong, X.; Xiao, Q.; Li, Q. Y.; Liang, W. C.; Chen, F.; Li, L. Y.; Ren, S. J. Cross-linked electrospun gel polymer electrolytes for lithium-ion batteries. Chinese J. Polym. Sci. 2024, 42, 1021–1028
Xue Gong, Qin Xiao, Qing-Yin Li, et al. Cross-linked Electrospun Gel Polymer Electrolytes for Lithium-Ion Batteries[J]. Chinese Journal of Polymer Science, 2024,42(8):1021-1028.
Gong, X.; Xiao, Q.; Li, Q. Y.; Liang, W. C.; Chen, F.; Li, L. Y.; Ren, S. J. Cross-linked electrospun gel polymer electrolytes for lithium-ion batteries. Chinese J. Polym. Sci. 2024, 42, 1021–1028 DOI: 10.1007/s10118-024-3136-2.
Xue Gong, Qin Xiao, Qing-Yin Li, et al. Cross-linked Electrospun Gel Polymer Electrolytes for Lithium-Ion Batteries[J]. Chinese Journal of Polymer Science, 2024,42(8):1021-1028. DOI: 10.1007/s10118-024-3136-2.
We prepared CPM films with excellent thermal stability and high porosity by electrospinning and cross-linking in sequence. Then CPM films were activated by immersing in electrolyte to prepare CGPEs with enhanced electrolyte uptake and high ionic conductivity.
Lithium-ion batteries (LI
Bs) benefit from an effective electrolyte system design in both terms of their safety and energy storage capability. Herein
a series of precursor membranes with high porosity were produced using electrospinning technology by mixing PVDF and triblock copolymer (PS-PEO-PS)
resulting in a porous structure with good interconnections
which facilitates the absorbency of a large amount of electrolyte and further increases the ionic conductivity of gel polymer electrolytes (GPEs). It has been demonstrated that post-cross-linking of the precursor membranes increases the rigidity of the nanofibers
which allows the polymer film to be dimensionally stable up to 260 °C while maintaining superior electrochemical properties. The obtained cross-linked GPEs (CGPEs) showed high ionic conductivity up to 4.53×10
−3
S·cm
−1
. With the CGPE-25
the assembled Li/LiFePO
4
half cells exhibited good rate capability and maintained a capacity of 99.4% and a coulombic efficiency of 99.3% at 0.1 C. These results suggest that the combination of electrospinning technique and post-cross-linking is an effective method to construct polymer electrolytes with high thermal stability and steadily decent electrochemical performance
particularly useful for Lithium-ion battery applications that require high-temperature usage.
ElectrospinningCross-linkedGel polymer electrolytesLithium-ion batteries
Zhang, J. G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J. Lithium metal anodes with nonaqueous electrolytes.Chem. Rev.2020,120, 13312−13348..
Zhang, X.; Xu, C.; Yosef, N. Simulating multiple faceted variability in single cell RNA sequencing.Nat. Commun.2019,10, 1−16..
Zhang, Y.; Sun, J.; Liu, W.; Niu, Z.; Yan, Y.; Qiao, L.; Wu, N. A low-surface-tension strategy to construct ultrathin reduced graphene oxide as lithiophilic matrix for lithium metal anode.Adv. Mater. Interfaces2022,9, 2200752..
Chombo, P. V.; Laoonual, Y. A review of safety strategies of a Li-ion battery.J. Power Sources2020,478, 228649..
Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review.Energy Storage Mater.2018,10, 246−267..
Yuan, S.; Kong, T.; Zhang, Y.; Dong, P.; Zhang, Y.; Dong, X.; Wang, Y.; Xia, Y. Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions.Angew. Chem. Int. Ed.2021,133, 25828−25842..
Zampardi, G.; La Mantia, F. Solid-electrolyte interphase at positive electrodes in high-energy Li-ion batteries: current understanding and analytical tools.Batteries Supercaps2020,3, 672−697..
Zhang, S. S. A review on the separators of liquid electrolyte Li-ion batteries.J. Power Sources2007,164, 351−364..
Liu, F.; Bin, F.; Xue, J.; Wang, L.; Yang, Y.; Huo, H.; Zhou, J.; Li, L. Polymer electrolyte membrane with high ionic conductivity and enhanced interfacial stability for lithium metal battery.ACS Appl. Mater. Interfaces2020,12, 22710−22720..
Pei, X.; Li, Y.; Ou, T.; Liang, X.; Yang, Y.; Jia, E.; Tan, Y.; Guo, S. Li-N interaction induced deep eutectic gel polymer electrolyte for high performance lithium-metal batteries.Angew. Chem. Int. Ed.2022,61, e202205075..
Wang, Q.; Xu, X.; Hong, B.; Bai, M.; Li, J.; Zhang, Z.; Lai, Y. Molecular engineering of a gel polymer electrolytevia in-situpolymerization for high performance lithium metal batteries.Chem. Eng. J.2022,428, 131331..
Huo, S.; He, Y.; Hu, Z.; Bao, W.; Chen, W.; Wang, Y.; Zeng, D.; Cheng, H.; Zhang, Y. New insights into designation of single-ion conducting gel polymer electrolyte for high-performance lithium metal batteries.J. Membr. Sci.2022,647, 120287..
Wang, J.; Wang, Z.; Ni, J.; Li, L. Electrospun materials for batteries moving beyond lithium-ion technologies.Electrochem. Energy Rev.2022,5, 211−241..
Bicy, K.; Gueye, A. B.; Rouxel, D.; Kalarikkal, N.; Thomas, S. Lithium-ion battery separators based on electrospun PVDF: a review.Surf. Interfaces2022,31, 101977..
Song, X. Y.; Wang, Z.; Zhao, F. Z.; Sun, Y. Z.; Cheng, B. W.; Xing, J. F. A separator with a novel thermal crosslinking structure based on electrospun PI/A-POSS for lithium-ion battery with high safety and outstanding electrochemical performance.Adv. Mater. Interfaces2021,8, 2100458..
Tang, W.; Liu, Q. Q.; Luo, N.; Chen, F.; Fu, Q. High safety and electrochemical performance electrospunpara-aramid nanofiber composite separator for lithium-ion battery.Compos. Sci. Technol.2022,225, 109479..
Lai, W.; Shan, L.; Bai, J.; Xiao, L.; Liu, L.; Wang, S.; Gong, L.; Jiao, Y.; Xie, W.; Liu, H. Highly permeable and acid-resistant nanofiltration membrane fabricated byin-situinterlaced stacking of COF and polysulfonamide films.Chem. Eng. J.2022,450, 137965..
Bandyopadhyay, S.; Gupta, A.; Srivastava, R.; Nandan, B. Bio-inspired design of electrospun poly(acrylonitrile) and novel ionene based nanofibrous mats as highly flexible solid state polymer electrolyte for lithium batteries.Chem. Eng. J.2022,440, 135926..
Seidl, L.; Grissa, R.; Zhang, L.; Trabesinger, S.; Battaglia, C. Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries.Adv. Mater. Interfaces2022,9, 2100704..
Sharon, D.; Deng, C.; Bennington, P.; Webb, M. A.; Patel, S. N.; de Pablo, J. J.; Nealey, P. F. Critical percolation threshold for solvation-site connectivity in polymer electrolyte mixtures.Macromolecules2022,55, 7212−7221..
Ma, X.; Zuo, X.; Wu, J.; Deng, X.; Xiao, X.; Liu, J. S.; Nan, J. M. Polyethylene-supported ultra-thin polyvinylidene fluoride/hydroxyethyl cellulose blended polymer electrolyte for 5 V high voltage lithium ion batteries.J. Mater. Chem. A2018,6, 1496−1503..
Silva, F. C. A.; Ortega, P. F. R.; dos Reis, R. A.; Lavall, R. L.; Costa, L. T. Polymer-ion interactions in PVDF@ionic liquid polymer electrolytes: a combined experimental and computational study.Electrochim. Acta2022,427, 140831..
Chiu, L. L.; Chung, S. H. Composite gel-polymer electrolyte for high-loading polysulfide cathodes.J. Mater. Chem. A2022,10, 13719−13726..
Yi, L. G.; Zou, C. F.; Chen, X. Y.; Liu, J. L.; Cao, S.; Tao, X. Y.; Zang, Z. H.; Liu, L.; Chang, B. B.; Shen, Y. Q.; Wang, X. Y. One-step synthesis of PVDF-HFP/PMMA-ZrO2gel polymer electrolyte to boost the performance of a lithium metal battery.ACS Appl. Energy Mater.2022,5, 7317−7327..
Shen, Z.; Zhong, J.; Jiang, S.; Xie, W.; Zhan, S.; Lin, K.; Zeng, L.; Hu, H.; Lin, G.; Lin, Y.; Sun, S.; Shi, Z. Polyacrylonitrile porous membrane-based gel polymer electrolyte byin situfree-radical polymerization for stable Li metal batteries.ACS Appl. Mater. Interfaces2022,14, 41022−41036..
He, C. F.; Liu, J. Q.; Li, J.; Zhu, F. F.; Zhao, H. J. Blending based polyacrylonitrile/poly(vinyl alcohol) membrane for rechargeable lithium ion batteries.J. Membr. Sci.2018,560, 30−37..
Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolytes for lithium polymer batteries.J. Mater. Chem. A2016,4, 10038−10069..
Xiao, W.; Wang, Z.; Zhang, Y.; Fang, R.; Yuan, Z.; Miao, C.; Yan, X.; Jiang, Y. Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2for lithium ion batteries.J. Power Sources2018,382, 128−134..
Nakajima, H.; Ohno, H. Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives.Polym.2005,46, 11499−11504..
Xu, D.; Wang, B.; Wang, Q.; Gu, S.; Li, W.; Jin, J.; Chen, C.; Wen, Z. High-strength internal cross-linking bacterial cellulose-network-based gel polymer electrolyte for dendrite-suppressing and high-rate lithium batteries.ACS Appl. Mater. Interfaces2018,10, 17809−17819..
Lu, Q.; He, Y.; Yu, Q.; Li, B.; Kaneti, Y. V.; Yao, Y.; Kang, F.; Yang, Q. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte.Adv. Mater.2017,29, 1604460..
Hsu, C.; Liu, R.; Hsu, C.; Kuo, P. High thermal and electrochemical stability of PVDF-graft-PAN copolymer hybrid PEO membrane for safety reinforced lithium-ion battery.RSC Adv.2016,6, 18082−18088..
Tang, Z. H.; Liu, D.; Lyu, X. L.; Liu, Y. D.; Liu, Y.; Yang, W. L.; Shen, Z. H.; Fan, X. H. Ultra-stretchable ion gels based on physically cross-linked polymer networks.J. Mater. Chem. C2022,10, 10926−10934..
Tan, L.; Tan, B. Hypercrosslinked porous polymer materials: design, synthesis, and applications.Chem. Soc. Rev.2017,46, 3322−3356..
Luo, Y.; Li, B.; Wang, W.; Wu, K.; Tan, B. Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2capturing materials.Adv. Mater.2012,24, 5703−5707..
Yang, Y.; Tan, B.; Wood, C. D. Solution-processable hypercrosslinked polymers by low cost strategies: a promising platform for gas storage and separation.J. Mater. Chem. A2016,4, 15072−15080..
Zhou, B. H.; Yang, M. L.; Zuo, C.; Chen, G.; He, D.; Zhou, X. P.; Liu, C. M.; Xie, X. L.; Xue, Z. G. Flexible, self-healing, and fire-resistant polymer electrolytes fabricatedviaphotopolymerization for all-solid-state lithium metal batteries.ACS Macro Lett.2020,9, 525−532..
Xiao, Q.; Deng, C.; Wang, Q.; Zhang, Q.; Yue, Y.; Ren, S.In situcross-linked gel polymer electrolyte membranes with excellent thermal stability for lithium ion batteries.ACS Omega2019,4, 95−103..
Wang, S.; Zhou, L.; Tufail, M. K.; Yang, L.; Zhai, P.; Chen, R.; Yang, W.In-situsynthesized non-flammable gel polymer electrolyte enable highly safe and dendrite-free lithium metal batteries.Chem. Eng. J.2021,415, 128846..
Naderi, R.; Gurung, A.; Zhou, Z.; Varnekar, G.; Chen, K.; Zai, J.; Qian, X.; Qiao, Q. Activation of passive nanofillers in composite polymer electrolyte for higher performance lithium-ion batteries.Adv. Sustainable Syst.2017,1, 1700043..
Gong, C.; Liu, H.; Zhang, B.; Wang, G.; Cheng, F.; Zheng, G.; Wen, S.; Xue, Z.; Xie, X. High level of solid superacid coated poly(vinylidene fluoride) electrospun nanofiber composite polymer electrolyte membranes.J. Membr. Sci.2017,535, 113−121..
Gao, T. N.; Wang, T.; Wu, W.; Liu, Y.; Huo, Q.; Qiao, Z. A.; Dai, S. Solvent-induced self-assembly strategy to synthesize well-defined hierarchically porous polymers.Adv. Mater.2019,31, 1806254..
Qi, X. T.; Zhang, Z.; Tu, C. B.; Zhu, C.; Wei, J. C.; Yang, Z. Y. Covalent grafting interface engineering to prepare highly efficient and stable polypropylene/mesoporous SiO2separator for Li-ion batteries.Appl. Surf. Sci.2021,541, 148405..
Carvalho, D. V.; Loeffler, N.; Kim, G. T.; Passerini, S. High temperature stable separator for lithium batteries based on SiO2and hydroxypropyl guar gum.Membranes2015,5, 632−645..
Sheng, L.; Xie, X.; Arbizzani, C.; Bargnesi, L.; Bai, Y. Z.; Liu, G. J.; Dong, H. Y.; Wang, T.; He, J. P. A tailored ceramic composite separator with electron-rich groups for high-performance lithium metal anode.J. Membr. Sci.2022,657, 120644..
Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives.Chem. Soc. Rev.2011,40, 2525−2540..
Wang, J.; Wang, C.; Wang, W.; Li, W.; Lou, J. Carboxymethylated nanocellulose-based gel polymer electrolyte with a high lithium ion transfer number for flexible lithium-ion batteries application.Chem. Eng. J.2022,428, 132604..
0
浏览量
76
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构