a.State Grid Sichuan Electric Power Research Institute, Chengdu 610041, China
b.The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (Ministry of Education), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University,Chengdu 610064, China
2022322030100@stu.scu.edu.cn (L.Z.)
haibor7@163.com (H.B.Z.)
纸质出版日期:2024-07-01,
网络出版日期:2024-03-29,
收稿日期:2023-12-31,
修回日期:2024-02-22,
录用日期:2024-02-26
Scan for full text
Zeng, X. L.; Lan, X. S.; Wang, Y.; Zhang, L.; Guo, D. M.; Zhao, H. B. Highly transparent fire-resistant coatings with intumescent three-source integration. Chinese J. Polym. Sci. 2024, 42, 907–915
Xiao-Liang Zeng, Xin-Sheng Lan, Yan Wang, et al. Highly Transparent Fire-resistant Coatings with Intumescent Three-source Integration[J]. Chinese Journal of Polymer Science, 2024,42(7):907-915.
Zeng, X. L.; Lan, X. S.; Wang, Y.; Zhang, L.; Guo, D. M.; Zhao, H. B. Highly transparent fire-resistant coatings with intumescent three-source integration. Chinese J. Polym. Sci. 2024, 42, 907–915 DOI: 10.1007/s10118-024-3100-1.
Xiao-Liang Zeng, Xin-Sheng Lan, Yan Wang, et al. Highly Transparent Fire-resistant Coatings with Intumescent Three-source Integration[J]. Chinese Journal of Polymer Science, 2024,42(7):907-915. DOI: 10.1007/s10118-024-3100-1.
A new eco-friendly strategy to develop highly transparent fire-resistant coatings with intumescent three-source integration is proposed. Once exposed to fire
this coating can respond quickly and puff to form a stable foam-like insulation layer
making it a potential application for protecting wooden materials
particularly on ancient buildings and precious furniture.
Wood
a readily available and sustainable natural resource
has found widespread use in construction and furniture. However
its inherent flammability poses a potential fire risk. Although intumescent fire-retardant coatings effectively mitigate this risk
achieving high transparency in such coatings presents a significant challenge. In our approach
we employed a cross-linked network of phytic acid anion and
N
-[3-(trimethoxysilyl) propyl
]
-
N
N
N
-trimethylammonium cation to create a transparent "three-in-one" intumescent coating. The collaborative P/N/Si flame-retardant effect markedly improved the intumescent char-forming capability
preventing the wood from rapid decomposition. This resulted in a substantial reduction in heat release (13.9% decrease in THR) and an increased limiting oxygen index (LOI) value of 35.5%. Crucially
the high transparency of the coating ensured minimal impact on the wood's appearance
allowing the natural wood grains to remain clearly visible. This innovative approach provides a straightforward method for developing transparent intumescent flame-retardant coatings suitable for wooden substrates. The potential applications extend to preserving ancient buildings and heritage conservation efforts.
Fire-resistant coatingFlame retardancyWoodTransparency
Zhang, M. F.; Wang, D.; Li, T.; Jiang, J.; Bai, H. Y.; Wang, S. B.; Wang, Y.; Dong, W. F. Multifunctional flame-retardant, thermal insulation, and antimicrobial wood-based composites.Biomacromolecules2023,24, 957−966..
Kolibaba, T. J.; Vest, N. A.; Grunlan, J. C. Polyelectrolyte photopolymer complexes for flame retardant wood.Mater. Chem. Front.2022,6, 1630−1636..
Zhao, X. J.; Liang, Z. W.; Huang, Y. B.; Hai, Y.; Zhong, X. D.; Xiao, S.; Jiang, S. H. Influence of phytic acid on flame retardancy and adhesion performance enhancement of poly(vinyl alcohol) hydrogel coating to wood substrate.Prog. Org. Coatings2021,161, 106453..
Yi, L.; Yang, Q.; Yan, L.; Wang, N. A facile strategy to construct ZnO nanoparticles reinforced transparent fire-retardant coatings for achieving antibacterial activity and long-term fire protection of wood substrates.J. Building Eng.2023,72, 106630..
Wang, K. H.; Wang, S. H.; Meng, D.; Chen, D.; Mu, C. Z.; Li, H. F.; Sun, J.; Gu, X. Y.; Zhang, S. A facile preparation of environmentally-benign and flame-retardant coating on wood by comprising polysilicate and boric acid.Cellulose2021,28, 11551−11566..
Zhong, J.; Huang, Y. S.; Chen, Y. T.; Li, L. P.; Guo, C. G. Synthesis of eugenol-modified epoxy resin and application on wood flame retardant coating.Indust. Crops Products2022,183, 114979..
Lu, J. H.; Jiang, P.; Chen, Z. L.; Li, L. M.; Huang, Y. X. Flame retardancy, thermal stability, and hygroscopicity of wood materials modified with melamine and amino trimethylene phosphonic acid.Constr. Building Mater.2021,267, 121042..
Barthélemy, J. Avoiding predictable surprises: lessons from the fire at Notre Dame de Paris.Organizational Dynamics2023,52, 100966..
Song, K. L.; Ganguly, I.; Eastin, I.; Dichiara, A. High temperature and fire behavior of hydrothermally modified wood impregnated with carbon nanomaterials.J. Hazard. Mater.2020,384, 121283..
Yan, D.; Chen, D.; Tan, J.; Yuan, L. P.; Huang, Z. Z.; Zou, D. F.; Sun, P. H.; Tao, Q.; Deng, J. Y.; Hu, Y. C., Synergistic flame retardant effect of a new N-P flame retardant on poplar wood density board.Polym. Degrad. Stabil. 2023, 211, 110331..
Sykam, K.; Hussain, S. S.; Sivanandan, S.;Narayan, R.; Basak, P. Non-halogenated UV-curable flame retardants for wood coating applications: review.Prog. Org. Coatings2023,179, 107549..
Puyadena, M.; Etxeberria, I.; Martin, L.; Mugica, A.; Agirre, A.; Cobos, M.; Gonzalez, A.; Barrio, A.; Irusta, L. Polyurethane/acrylic hybrid dispersions containing phosphorus reactive flame retardants as transparent coatings for wood.Prog. Org. Coatings2022,170, 107005..
Zhang, J. Y.; Zeng, F. R.; Liu, B. W.; Wang, Z. H.; Lin, X. C.; Zhao, H. B.; Wang, Y. Z. A biomimetic closed-loop recyclable, long-term durable, extreme-condition resistant, flame-retardant nanocoating synthesized by reversible flocculation assembly.Mater. Horiz.2023,10, 4551−4561..
Li, L. M.; Chen, Z. L.; Lu, J. H.; Wei, M.; Huang, Y. X.; Jiang, P. Combustion behavior and thermal degradation properties of wood impregnated with intumescent biomass flame retardants: phytic acid, hydrolyzed collagen, and glycerol.ACS Omega2021,6, 3921−3930..
Hao, W. T.; Zheng, Q. N.; Zhong, Y. N. J.; Meng, X. K.; Wang, H. L.; Qiu, L. Z.; Lu, H. B.; Huang, Y. P.; Yang, W. An eco-friendly and facile method to prepare waterborne polyurethane based fire-resistant&waterproof coatings for wood protection.Prog. Org. Coatings2023,185, 107892..
Chen, M. X.; Dai, J. Y.; Zhang, L. Y.; Wang, S. P.; Liu, J. K.; Wu, Y. G.; Ba, X. W.; Liu, X. Q. The role of renewable protocatechol acid in epoxy coating modification: significantly improved antibacterial and adhesive properties.Chinese J. Polym. Sci.2024,42, 63−72..
Li, C. B.; Wang, F.; Sun, R. Y.; Nie, W. C.; Song, F.; Wang, Y. Z. A multifunctional coating towards superhydrophobicity, flame retardancy and antibacterial performances.Chem. Eng. J.2022,450, 138031..
Wang, Z. H.; Liu, B. W.; Zeng, F. R.; Lin, X. C.; Zhang, J. Y.; Wang, X. L.; Wang, Y. Z.; Zhao, H. B. Fully recyclable multifunctional adhesive with high durability, transparency, flame retardancy, and harsh-environment resistance.Sci. Adv.2022,8, eadd8527..
Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2T x-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management.Nano Res.2022,15, 5601−5609..
Wang, T.; Long, M. C.; Zhao, H. B.; An, W. L.; Xu, S. M.; Deng, C.; Wang, Y. Z. Temperature-responsive intumescent chemistry toward fire resistance and super thermal insulation under extremely harsh conditions.Chem. Mater.2021,33, 6018−6028..
Tian, Y. C.; Wang, C. Y.; Ai, Y. F.; Tang, L. C.; Cao, K. Phytate-based transparent and waterproof intumescent flame-retardant coating for protection of wood.Mater. Chem. Phys.2023,294, 127000..
Yan, L.; Xu, Z. S.; Liu, D. L. Synthesis and application of novel magnesium phosphate ester flame retardants for transparent intumescent fire-retardant coatings applied on wood substrates.Prog. Org. Coatings2019,129, 327−337..
Zhang, L.; Zheng, G. Q.; Chen, X. L.; Guo, S. Q.; Zeng, F. R.; Liu, B. W.; Zeng, X. L.; Lan, X. S.; Wang, Y. Z.; Zhao, H. B. Smart self-puffing phosphite-protonated siloxane network enables multifunctional transparent protection.ACS Mater. Lett.2023,5, 2398−2407..
Wang, Y. C.; Zhao, J. P. Benign design of intumescent flame retardant coating incorporated various carbon sources.Constr. Building Mater.2020,236, 117433..
Jin, W. J.; He, W. L.; Gu, L.; Cheng, X. W.; Guan, J. P. An eco-friendly and intumescent P/N/S-containing flame retardant coating for polyamide 6 fabric.Eur. Polym. J.2022,180, 111610..
Liu, B. W.; Zhao, H. B.; Wang, Y. Z. Advanced flame-retardant methods for polymeric materials.Adv. Mater.2022,34, e2107905..
Yang, J. Y.; Xia, Y.; Zhao, J.; Yi, L. F.; Song, Y. J.; Wu, H.; Guo, S. Y.; Zhao, L. J.; Wu, J. R. Flame-retardant and self-healing biomass aerogels based on electrostatic assembly.Chinese J. Polym. Sci.2020,38, 1294−1304..
Bui, H. L.; Huang, C. J. Tough polyelectrolyte hydrogels with antimicrobial property via incorporation of natural multivalent phytic acid.Polymers2019,11, 1721..
Zhang, T.; Yan, H. Q.; Shen, L.; Fang, Z. P.; Zhang, X. M.; Wang, J. J.; Zhang, B. Y. Chitosan/phytic acid polyelectrolyte complex: a green and renewable intumescent flame retardant system for ethylene-vinyl acetate copolymer.Industr. Engin. Chem. Res.2014,53, 19199−19207..
Huang, H.; Wu, C.; Wu, S. Q.; Pan, R. Q.; Yin, L. H.; Jin, X. Y.; Pan, Y. W.; Wang, H. B.; Yan, X. J.; Hong, C. Q.; Han, W. B.; Zhang, X. H. Super-flexible, thermostable and superhydrophobic polyimide/silicone interpenetrating aerogels for conformal thermal insulating and strain sensing applications.Chem. Eng. J.2022,441, 136032..
Suttie, E.; Ekstedt, J. Evaluation of a method to determine discoloration of paints on wood due to tannin staining from knots.Surface Coatings Inter. Part B: Coatings Transactions2004,87, 57−61..
Yalcin, M.; Pelit, H.; Akcay, C.; Cakicier, N. Surface properties of tannin-impregnated and varnished beech wood after exposure to accelerated weathering.Coloration Technol.2017,133, 334−340..
Coniglio, R.; Gaschler, W.; Clavijo, L. Water-based system to prevent the yellowing of opaque coatings on knotted pine wood.J. Coatings Technol. Res.2023,20, 781−788..
Borodina, E.; Karpov, S. I.; Selemenev, V. F.; Schwieger, W.; Maracke, S.; Fröba, M.; Rößner, F. Surface and texture properties of mesoporous silica materials modified by silicon-organic compounds containing quaternary amino groups for their application in base-catalyzed reactions.Microporous Mesoporous Mater.2015,203, 224−231..
Wang, L. Y.; Li, L. S.; Fan, Q. H.; Chu, T. X.; Wang, Y.; Xu, Y. L. Thermal stability and flammability of several quaternary ammonium ionic liquids.J. Molecular Liquids2023,382, 121920..
Zhang, L.; Liu, B. W.; Wang, Y. Z.; Fu, T.; Zhao, H. B. P-doped PANI/AgMWs nano/micro coating towards high-efficiency flame retardancy and electromagnetic interference shielding.Compos. Part B Eng.2022,238, 109944..
Sun, R. Y.; Wang, F.; Li, C. B.; Deng, Z. P.; Song, F.; Wang, Y. Z. Formulation of environmentally robust flame-retardant and superhydrophobic coatings for wood materials.Constr. Building Mater.2023,392, 131873..
Schartel, B.; Hull, T. R. Development of fire-retarded materials—interpretation of cone calorimeter data.Fire Mater.2007,31, 327−354..
Shi, X. H.; Chen, L.; Liu, B. W.; Long, J. W.; Xu, Y. J.; Wang, Y. Z. Carbon fibers decorated by polyelectrolyte complexes toward their epoxy resin composites with high fire safety.Chinese J. Polym. Sci.2018,36, 1375−1384..
Liu, Z.; Fan, X. L.; Zhang, J. L.; Chen, L. X.; Tang, Y. S.; Kong, J.; Gu, J. W. PBO fibers/fluorine-containing liquid crystal compound modified cyanate ester wave-transparent laminated composites with excellent mechanical and flame retardance properties.J. Mater. Sci. Technol.2023,152, 16−29..
Wu, T.; Yang, F. H.; Tao, J.; Zhao, H. B.; Yu, C. B.; Rao, W. H. Design of P-decorated POSS towards flame-retardant, mechanically-strong, tough and transparent epoxy resins.J. Colloid Interface Sci.2023,640, 864−876..
Wei, C. X.; Gao, T. Y.; Xu, Y.; Yang, W. J.; Dai, G. J.; Li, R.; Zhu, S. E.; Yuen, R. K. K.; Yang, W.; Lu, H. D. Synthesis of bio-based epoxy containing phosphine oxide as a reactive additive toward highly toughened and fire-retarded epoxy resins.Chinese J. Polym. Sci.2023,41, 1733−1746..
Xie, H. L.; Lai, X. J.; Li, H. Q.; Gao, J. F.; Zeng, X. R.; Huang, X. Y.; Lin, X. Y. A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities.Chem. Eng. J.2019,369, 8−17..
Fu, C.; Ye, W.; Zhai, Z. J.; Zhang, J.; Li, P. Y.; Xu, B. Y.; Li, X. L.; Gao, F.; Zhai, J. G.; Wang, D. Y. Self-cleaning cotton fabrics with good flame retardancyviaone-pot approach.Polym. Degrad. Stabil.2021,192, 109700..
Rao, W. H.; Tao, J.; Yang, F. H.; Wu, T.; Yu, C. B.; Zhao, H. B. Growth of copper organophosphate nanosheets on graphene oxide to improve fire safety and mechanical strength of epoxy resins.Chemosphere2023,311, 137047..
Niu, H. X.; Ding, H. L.; Huang, J. L.; Wang, X.; Song, L.; Hu, Y. A Furan-based phosphaphenanthrene-containing derivative as a highly efficient flame-retardant agent for epoxy thermosets without deteriorating thermomechanical performances.Chinese J. Polym. Sci.2022,40, 233−240..
Yu, C. B.; Wu, T.; Yang, F. H.; Wang, H.; Rao, W. H.; Zhao, H. B. Interfacial engineering to construct P-loaded hollow nanohybrids for flame-retardant and high-performance epoxy resins.J. Colloid Interface Sci.2022,628, 851−863..
Li, R. M.; Deng, C.; Deng, C. L.; Dong, L. P.; Di, H. W.; Wang, Y. Z. An efficient method to improve simultaneously the water resistance, flame retardancy and mechanical properties of POE intumescent flame-retardant systems.RSC Adv.2015,5, 16328−16339..
Wang, T. S.; Liu, T.; Ma, T. T.; Li, L. P.; Wang, Q. W.; Guo, C. G. Study on degradation of phosphorus and nitrogen composite UV-cured flame retardant coating on wood surface.Prog. Org. Coatings2018,124, 240−248..
0
浏览量
113
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构