Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, Saint Petersburg 199004, Russia
batischevaelisaveta@gmail.com (E.V.B.)
smirnov_michael@mail.ru (M.A.S.)
Scan for full text
Batishcheva, E. V.; Smirnov, N. N.; Bobrova, N. V.; Sokolova, M. P.; Smirnov, M. A. Ion-conducting membranes based on bacterial cellulose nanofibers modified by poly(sodium acrylate-co-2-acrylamido-2-methylpropanesulfonic acid). Chinese J. Polym. Sci. 2024, 42, 333–343
Elizaveta V. Batishcheva, Nikolay N. Smirnov, Natalya V. Bobrova, et al. Ion-conducting Membranes Based on Bacterial Cellulose Nanofibers Modified by Poly(sodium acrylate-
Batishcheva, E. V.; Smirnov, N. N.; Bobrova, N. V.; Sokolova, M. P.; Smirnov, M. A. Ion-conducting membranes based on bacterial cellulose nanofibers modified by poly(sodium acrylate-co-2-acrylamido-2-methylpropanesulfonic acid). Chinese J. Polym. Sci. 2024, 42, 333–343 DOI: 10.1007/s10118-023-3054-8.
Elizaveta V. Batishcheva, Nikolay N. Smirnov, Natalya V. Bobrova, et al. Ion-conducting Membranes Based on Bacterial Cellulose Nanofibers Modified by Poly(sodium acrylate-
Green ion-conducting membranes based on bacterial cellulose nanofibers with grafted acrylic copolymer was elaborated. High ion mobility and low activation energy of conductivity of prepared membrane allow supercapacitor cell to operate at an ultra-high current density.
Green method for preparation of ion-conducting membranes (ICM) based on bacterial cellulose nanofibers (CNF) modified by a copolymer of sodium acrylate and 2-acrylamido-2-methylpropanesulfonic acid was elaborated. FTIR and NMR data confirmed grafting of polyacrylate onto cellulose surface. Formation of porous structure of the ICM was controlled by SEM and AFM. The maximal ionic conductivity of the membranes reaches 1.5 and 3.1 mS·cm,−1, (60 °C and 98% relative humidity) when they are saturated with water or H,2,SO,4, (1 mol·L,−1,) electrolyte, respectively. Prepared ICM was tested as a separator in a symmetrical supercapacitor with electrodes based on polyaniline hydrogel. The assembled cell demonstrate ability to operate at high current density up to 100 A·g,−1, maintaining specific capacitance 165 F·g,−1,. Maximal specific capacitance of 289 F·g,−1, was achieved at current density 1 A·g,−1,. Retaining of 90% of initial capacitance after 10000 of charge-discharge cycles proves high electrochemical stability of prepared ICM.
Bacterial celluloseIon conductivityPorous membraneSupercapacitor
deOliveira,C.C.N.;Angelkorte,G.;Rochedo,P.R.R.;Szklo,A.Theroleofbiomaterialsfortheenergytransitionfromthelensofanationalintegratedassessmentmodel.Clim. Change2021, 167,57..
Jian,M.;Zhang,Y.;Liu,Z.Naturalbiopolymersforflexiblesensingandenergydevices.Chinese J. Polym. Sci.2020, 38,459−490..
Wang,Y.;RuizDiaz,D.F.;Chen,K.S.;Wang,Z.;Adroher,X.C.Materials,technologicalstatus,andfundamentalsofPEMfuelcells—areview.Mater. Today2020, 32,178−203..
Lizundia,E.;Kundu,D.Advancesinnaturalbiopolymer-basedelectrolytesandseparatorsforbatteryapplications.Adv. Funct. Mater.2021, 31,1−29..
Wang,S.;Zhang,L.;Zeng,Q.;Liu,X.;Lai,W.Y.;Zhang,L.Cellulosemicrocrystalswithbrush-likearchitecturesasflexibleall-solid-statepolymerelectrolyteforlithium-ionbattery.ACS Sustainable Chem. Eng.2020, 8,3200−3207..
Wang,S.;He,J.;Li,Q.;Wang,Y.;Liu,C.;Cheng,T.;Lai,W.Y.Highlyelasticenergystoragedevicebasedonintrinsicallysuper-stretchablepolymerlithium-ionconductorwithhighconductivity.Fundam. Res2022,DOI:10.1016/j.fmre.2022.06.003.
Wang,S.;Bai,M.;Liu,C.;Li,G.;Lu,X.;Cai,H.;Liu,C.;Lai,W.Y.Highlystretchablemultifunctionalpolymerionicconductorwithhighconductivitybasedonorganic-inorganicdualnetworks.Chem. Eng. J.2022, 440,135824..
Okonkwo,P.C.;Collins,E.;Okonkwo,E.ApplicationofBiopolymerCompositesinSuperCapacitor,inBiopolymer Composites in Electronics,Elsevier, 2017 :bll487–503..
Musa,M.T.;Shaari,N.;Kamarudin,S.K.;Wong,W.Y.Recentbiopolymersusedformembranefuelcells:characterizationanalysisperspectives.Int. J. Energy Res.2022, 46,16178−16207..
Palanisamy,G.;Oh,T.H.;Thangarasu,S.Modifiedcelluloseproton-exchangemembranesfordirectmethanolfuelcells.Polymers 2023 ,15,639..
Winter,M.;Brodd,R.J.Whatarebatteries,fuelcells,andsupercapacitors.Chem. Rev.2004, 104,4245−4269..
Ng,W.W.;Thiam,H.S.;Pang,Y.L.;Chong,K.C.;Lai,S.O.Astate-of-artonthedevelopmentofnafion-basedmembraneforperformanceimprovementindirectmethanolfuelcells.Membranes 2022 ,12,S06..
Xu,T.C.;Wang,C.S.;Hu,Z.Y.;Zheng,J.J.;Jiang,S.H.;He,S.J.;Hou,H.Q.Highstrengthandstableprotonexchangemembranebasedonperfluorosulfonicacid/polybenzimidazole.Chinese J. Polym. Sci.2022, 40,764−771..
Walkowiak-Kulikowska,J.;Wolska,J.;Koroniak,H.Biopolymermembranesinfuelcellapplications,inBiopolymer Membranes and Films,Elsevier, 2020 :bll423–476..
Bayer,T.;Cunning,B.V.;Šmíd,B.;Selyanchyn,R.;Fujikawa,S.;Sasaki,K.;Lyth,S.M.Spraydepositionofsulfonatedcellulosenanofibersaselectrolytemembranesinfuelcells.Cellulose2021, 28,1355−1367..
Reddy,M.S.B.;Ponnamma,D.;Choudhary,R.;Sadasivuni,K.K.Acomparativereviewofnaturalandsyntheticbiopolymercompositescaffolds.Polymers 2021 ,13,1105..
Selyanchyn,O.;Selyanchyn,R.;Lyth,S.M.Areviewofprotonconductivityincellulosicmaterials.Front. Energy Res.2020, 8,1−17..
Smirnov,M.A.;Sokolova,M.P.;Bobrova,N.V.;Toikka,A.M.;Morganti,P.;Lahderanta,E.Synergisticeffectofchitinnanofibersandpolyacrylamideonelectrochemicalperformanceoftheirternarycompositewithpolypyrrole.J. Energy Chem.2018, 27,843−853..
Vijayakumar,V.;Nam,S.Y.Areviewofrecentchitosananionexchangemembranesforpolymerelectrolytemembranefuelcells.Membranes2022, 12,1−12..
Vorobiov,V.K.;Smirnov,M.A.;Bobrova,N.V.;Sokolova,M.P.Chitosan-supporteddeepeutecticsolventasbio-basedelectrolyteforflexiblesupercapacitor.Mater. Lett.2021, 283,128889..
Wang,B.;Han,X.;Wang,Y.;Kang,L.;Yang,Y.;Cui,L.;Zhong,S.;Cui,X.Fabricationofalginate-basedmulti-crosslinkedbiomembranesfordirectmethanolfuelcellapplication.Carbohydr. Polym.2023, 300,120261..
Tiwari,T.;Srivastava,N.Exploringthepossibilityofstarch-basedelectrolytemembraneinMFCapplication.Macromol. Symp.2019, 388,1−8..
Mohanapriya,S.;Rambabu,G.;Bhat,S.D.;Raj,V.Pectinbasednanocompositemembranesasgreenelectrolytesfordirectmethanolfuelcells.Arab. J. Chem.2020, 13,2024−2040..
Hernández-Flores,G.;Andrio,A.;Compañ,V.;Solorza-Feria,O.;Poggi-Varaldo,H.M.Synthesisandcharacterizationoforganicagar-basedmembranesformicrobialfuelcells.J. Power Sources 2019 ,435,.
KumarGupta,P.;SaiRaghunath,S.;VenkateshPrasanna,D.;Venkat,P.;Shree,V.;Chithananthan,C.;Choudhary,S.;Surender,K.;Geetha,K.Anupdateonoverviewofcellulose,itsstructureandapplications,inCellulose,IntechOpen, 2019 :bll1–21.
Heinze,T.;ElSeoud,O.A.;Koschella,A.Productionandcharacteristicsofcellulosefromdifferentsources, 2018 .
Gadim,T.D.O.;Loureiro,F.J.A.;Vilela,C.;Rosero-Navarro,N.;Silvestre,A.J.D.;Freire,C.S.R.;Figueiredo,F.M.L.Protonicconductivityandfuelcelltestsofnanocompositemembranesbasedonbacterialcellulose.Electrochim. Acta2017, 233,52−61..
Batishcheva,E.V.;Sokolova,D.N.;Fedotova,V.S.;Sokolova,M.P.;Nikolaeva,A.L.;Vakulyuk,A.Y.;Shakhbazova,C.Y.;Ribeiro,M.C.C.;Karttunen,M.;Smirnov,M.A.Strengtheningcellulosenanopaperviadeepeutecticsolventandultrasound-inducedsurfacedisorderingofnanofibers.Polymers 2022 ,14,78..
Wang,Y.R.;Yin,C.C.;Zhang,J.M.;Wu,J.;Yu,J.;Zhang,J.Functionalcellulosematerialsfabricatedbyusingionicliquidsasthesolvent.Chinese J. Polym. Sci.2023, 41,483−499..
Lin,D.;Liu,Z.;Shen,R.;Chen,S.;Yang,X.Bacterialcelluloseinfoodindustry:currentresearchandfutureprospects.Int. J. Biol. Macromol.2020, 158,1007−1019..
Smirnov,M.A.;Fedotova,V.S.;Sokolova,M.P.;Nikolaeva,A.L.;Elokhovsky,V.Y.;Karttunen,M.Polymerizablecholine-andimidazolium-basedionicliquidsreinforcedwithbacterialcellulosefor3D-printing.Polymers 2021 ,13,3044..
Sathish,S.K.;Vitta,S.Bacterial Cellulose Based Nanocomposites for Electronic and Energy Applications.Elsevier. 2020 ..
Ramírez-Carmona,M.;Gálvez-Gómez,M.P.;González-Perez,L.;Pinedo-Rangel,V.;Pineda-Vasquez,T.;Hotza,D.Productionofbacterialcellulosehydrogelanditsevaluationasaprotonexchangemembrane.J. Polym. Environ. 2023 ,31,2462−2472..
Smirnov,M.A.;Vorobiov,V.K.;Sokolova,M.P.;Bobrova,N.V.;Lahderanta,E.;Hiltunen,S.;Yakimansky,A.V.Electrochemicalpropertiesofsupercapacitorelectrodesbasedonpolypyrroleandenzymaticallypreparedcellulosenanofibers.Polym. Sci. - Ser. C.2018, 60,228−239..
Shu,Y.;Bai,Q.;Fu,G.;Xiong,Q.;Li,C.;Ding,H.;Shen,Y.;Uyama,H.Hierarchicalporouscarbonsfrompolysaccharidescarboxymethylcellulose,bacterialcellulose,andcitricacidforsupercapacitor.Carbohydr. Polym.2020, 227,115346..
Lahiri,D.;Nag,M.;Dutta,B.;Dey,A.;Sarkar,T.;Pati,S.;Edinur,H.A.;Kari,Z.A.;Noor,N.H.M.;Ray,R.R.Bacterialcellulose:production,characterizationandapplicationasantimicrobialagent.Int. J. Mol. Sci.2021, 22,1−18..
Mishra,S.;Singh,P.K.;Pattnaik,R.;Kumar,S.;Ojha,S.K.;Srichandan,H.;Parhi,P.K.;Jyothi,R.K.;Sarangi,P.K.Biochemistry,synthesis,andapplicationsofbacterialcellulose:areview.Front. Bioeng. Biotechnol.2022, 10,1−12..
Jiang,G.;Zhang,J.;Qiao,J.;Jiang,Y.;Zarrin,H.;Chen,Z.;Hong,F.Bacterialnanocellulose/Nafioncompositemembranesforlowtemperaturepolymerelectrolytefuelcells.J. Power Sources2015, 273,697−706..
Gadim,T.D.O.;Vilela,C.;Loureiro,F.J.A.;Silvestre,A.J.D.;Freire,C.S.R.;Figueiredo,F.M.L.Nafion®andnanocellulose:apartnershipforgreenerpolymerelectrolytemembranes.Ind. Crops Prod.2016, 93,212−218..
Samaniego,A.J.;Espiritu,R.Prospectsonutilizationofbiopolymermaterialsforionexchangemembranesinfuelcells.Green Chem. Lett. Rev.2022, 15,253−275..
Dahlström,C.;LópezDurán,V.;Keene,S.T.;Salleo,A.;Norgren,M.;Wågberg,L.IonconductivitythroughTEMPO-mediatedoxidatedandperiodateoxidatedcellulosemembranes.Carbohydr. Polym.2020, 233,115829..
Rana,H.H.;Park,J.H.;Gund,G.S.;Park,H.S.Highlyconducting,extremelydurable,phosphorylatedcellulose-basedionogelsforrenewableflexiblesupercapacitors.Energy Storage Mater.2020, 25,70−75..
Yue,L.;Zheng,Y.;Xie,Y.;Liu,S.;Guo,S.;Yang,B.;Tang,T.Preparationofacarboxymethylatedbacterialcellulose/polyanilinecompositegelmembraneanditscharacterization.RSC Adv.2016, 6,68599−68605..
Yue,L.;Xie,Y.;Zheng,Y.;He,W.;Guo,S.;Sun,Y.;Zhang,T.;Liu,S.Sulfonatedbacterialcellulose/polyanilinecompositemembraneforuseasgelpolymerelectrolyte.Compos. Sci. Technol.2017, 145,122−131..
Sriruangrungkamol,A.;Chonkaew,W.Modificationofnanocellulosemembranebyimpregnationmethodwithsulfosuccinicacidfordirectmethanolfuelcellapplications.Polym. Bull.2021, 78,3705−3728..
Hao,Y.;Qu,J.;Tan,L.;Liu,Z.;Wang,Y.;Lin,T.;Yang,H.;Peng,J.;Zhai,M.Synthesisandpropertyofsuperabsorbentpolymerbasedoncellulosegrafted2-acrylamido-2-methyl-1-propanesulfonicacid.Int. J. Biol. Macromol.2023, 233,123643..
Anirudhan,T.S.;Rejeena,S.R.Poly(acrylicacid- co-acrylamide- co-2-acrylamido-2-methyl-1-propanesulfonicacid)-graftednanocellulose/poly(vinylalcohol)compositeforthe in vitrogastrointestinalreleaseofamoxicillin.J. Appl. Polym. Sci.2014, 131,8657−8668..
Prosvirnina,A.P.;Bugrov,A.N.;Dobrodumov,A.V.;Vlasova,E.N.;Fedotova,V.S.;Nikolaeva,A.L.;Vorobiov,V.K.;Sokolova,M.P.;Smirnov,M.A.Bacterialcellulosenanofibersmodificationwith3-(trimethoxysilyl)propylmethacrylateasacrosslinkingandreinforcingagentfor3DprintableUV-curableinks.J. Mater. Sci.2022, 57,20543−20557..
Fager,C.;Gebäck,T.;Hjärtstam,J.;Röding,M.;Olsson,A.;Lorén,N.;vonCorswant,C.;Särkkä,A.;Olsson,E.Correlating3DporousstructureinpolymerfilmswithmasstransportpropertiesusingFIB-SEMtomography.Chem. Eng. Sci. X.2021, 12,100109..
Tessmar,J.;Holland,T.;Mikos,A.SaltLeachingforPolymerScaffolds,inScaffolding In Tissue Engineering,CRCPress, 2005 ,bll111–124.
Laatikainen,M.;Lindstrom,M.Generalsorptionisothermforswellingmaterials.Acta Polytech. Scand. Technol. Ser.1987, 178,105−116..
Smirnov,M.A.;Sokolova,M.P.;Bobrova,N.V.;Kasatkin,I.A.;Lahderanta,E.;Elyashevich,G.K.Capacitancepropertiesandstructureofelectroconductinghydrogelsbasedoncopoly(aniline-P-phenylenediamine)andpolyacrylamide.J. Power Sources2016, 304,102−110..
Gaylord,N.Proposednewmechanismforcatalyzedanduncatalyzedgraftpolymerizationontocellulose.J. Polym. Sci., Part C: Polym Symp.1972, 172,153−172..
Kalia,S.;Sabaa,M.W.inPolysaccharide based graft copolymers,SpringerLink, 2013 ..
Jacek,P.;Kubiak,K.;Ryngajłło,M.;Rytczak,P.;Paluch,P.;Bielecki,S.ModificationofbacterialnanocellulosepropertiesthroughmutationofmotilityrelatedgenesinKomagataeibacterhanseniiATCC53582.N. Biotechnol.2019, 52,60−68..
Gelenter,M.D.;Wang,T.;Liao,S.Y.;O’Neill,H.;Hong,M.2H-13Ccorrelationsolid-stateNMRforinvestigatingdynamicsandwateraccessibilitiesofproteinsandcarbohydrates.J. Biomol. NMR. 2017 ,68,257–270..
Fedotova,V.S.;Sokolova,M.P.;Vorobiov,V.K.;Sivtsov,E.V.;Lukasheva,N.V.;Smirnov,M.A.Waterinfluenceonthephysico-chemicalpropertiesand3Dprintabilityofcholineacrylate—bacterialcelluloseinks.Polymers 2023 ,15,2156..
Porwal,S.;Diwedi,A.;Kamal,M.13CNMRandRamanstudiesoffullerene-basedpoly(acrylamides).Int. J. Org. Chem. 2012 ,02,377–386..
Devrim,Y.G.;Rzaev,Z.M.O.;Pişkin,E.Synthesisandcharacterizationofpoly[((maleicanhydride)- alt-styrene)- co-(2-acrylamido-2-methyl-1-propanesulfonicacid)].Macromol. Chem. Phys.2006, 207,111−121..
Qiao,J.;Hamaya,T.;Okada,T.Newhighlyproton-conductingmembranepoly(vinylpyrrolidone)(PVP)modifiedpoly(vinylalcohol)/2-acrylamido-2-methyl-1-propanesulfonicacid(PVA-PAMPS)forlowtemperaturedirectmethanolfuelcells(DMFCs).Polymer2005, 46,10809−10816..
Mondal,M.I.H.Mechanismofstructureformationofmicrobialcelluloseduringnascentstage.Cellulose2013, 20,1073−1088..
Jiang,G.;Qiao,J.;Hong,F.Applicationofphosphoricacidandphyticacid-dopedbacterialcelluloseasnovelproton-conductingmembranestoPEMFC.Int. J. Hydrogen Energy.2012, 37,9182−9192..
Ni,C.;Wang,H.;Zhao,Q.;Liu,B.;Sun,Z.;Zhang,M.;Hu,W.;Liang,L.Crosslinkingeffectinnanocrystallinecellulosereinforcedsulfonatedpoly(aryletherketone)protonexchangemembranes.Solid State Ionics2018, 323,5−15..
Selyanchyn,O.;Bayer,T.;Klotz,D.;Selyanchyn,R.;Sasaki,K.;Lyth,S.M.Cellulosenanocrystalscrosslinkedwithsulfosuccinicacidassustainableprotonexchangemembranesforelectrochemicalenergyapplications.Membranes 2022 ,12,658..
Gadim,T.D.O.;Figueiredo,A.G.P.R.;Rosero-Navarro,N.C.;Vilela,C.;Gamelas,J.A.F.;Barros-Timmons,A.;Neto,C.P.;Silvestre,A.J.D.;Freire,C.S.R.;Figueiredo,F.M.L.Nanostructuredbacterialcellulose-poly(4-styrenesulfonicacid)compositemembraneswithhighstoragemodulusandprotonicconductivity.ACS Appl. Mater. Interfaces.2014, 6,7864−7875..
BagusPambudi,A.;Priyangga,A.;Hartanto,D.;Atmaja,L.Fabricationandcharacterizationofmodifiedmicrocrystallinecellulosemembraneasprotonexchangemembranefordirectmethanolfuelcell.Mater. Today Proc.2020, 46,1855−1859..
Vilela,C.;Silva,A.C.Q.;Domingues,E.M.;Gonçalves,G.;Martins,M.A.;Figueiredo,F.M.L.;Santos,S.A.O.;Freire,C.S.R.Conductivepolysaccharides-basedproton-exchangemembranesforfuelcellapplications:thecaseofbacterialcelluloseandfucoidan.Carbohydr. Polym.2020, 230,115604..
Guccini,V.;Carlson,A.;Yu,S.;Lindbergh,G.;Lindström,R.W.;Salazar-Alvarez,G.Highlyprotonconductivemembranesbasedoncarboxylatedcellulosenanofibresandtheirperformanceinprotonexchangemembranefuelcells.J. Mater. Chem. A2019, 7,25032−25039..
Eikerling,M.;Kornyshev,A.A.Protontransferinasingleporeofapolymerelectrolytemembrane.J. Electroanal. Chem.2001, 502,1−14..
Vayenas,C.G.;Tsampas,M.N.;Katsaounis,A.FirstprinciplesanalyticalpredictionoftheconductivityofNafionmembranes.Electrochim. Acta2007, 52,2244−2256..
Zhou,J.;Zhang,R.;Xu,R.;Li,Y.;Tian,W.;Gao,M.;Wang,M.;Li,D.;Liang,X.;Xie,L.;Liang,K.;Chen,P.;Kong,B.Super-assembledhierarchicalcelluloseaerogel-gelatinsolidelectrolyteforimplantableandbiodegradablezincionbattery.Adv. Funct. Mater. 2022 ,32,2111406..
An,Y.;Yang,Y.;Hu,Z.;Guo,B.;Wang,X.;Yang,X.;Zhang,Q.;Wu,H.High-performancesymmetricsupercapacitorsbasedoncarbonnanosheetsframeworkwithgraphenehydrogelarchitecturederivedfromcelluloseacetate.J. Power Sources2017, 337,45−53..
Li,H.;Cao,L.;Zhang,H.;Tian,Z.;Zhang,Q.;Yang,F.;Yang,H.;He,S.;Jiang,S.Intertwinedcarbonnetworksderivedfrompolyimide/cellulosecompositeasporouselectrodeforsymmetricalsupercapacitor.J. Colloid Interface Sci.2022, 609,179−187..
Chen,L.F.;Huang,Z.H.;Liang,H.W.;Guan,Q.F.;Yu,S.H.Bacterial-cellulose-derivedcarbonnanofiber@MnO2andnitrogen-dopedcarbonnanofiberelectrodematerials:Anasymmetricsupercapacitorwithhighenergyandpowerdensity.Adv. Mater.2013, 25,4746−4752..
Li,K.;Li,P.;Sun,Z.;Shi,J.;Huang,M.;Chen,J.;Liu,S.;Shi,Z.;Wang,H.All-cellulose-basedquasi-solid-statesupercapacitorwithnitrogenandborondual-dopedcarbonelectrodesexhibitinghighenergydensityandexcellentcyclicstability.Green Energy Environ. 2022 ,8,1091−1101..
Smirnov,M.A.;Tarasova,E.V.;Vorobiov,V.K.;Kasatkin,I.A.;Mikli,V.;Sokolova,M.P.;Bobrova,N.V.;Vassiljeva,V.;Krumme,A.;Yakimanskiy,A.V.Electroconductivefibrousmatpreparedbyelectrospinningofpolyacrylamide- g-polyanilinecopolymersaselectrodematerialforsupercapacitors.J. Mater. Sci.2019, 54,4859−4873..
Smirnov,M.A.;Vorobiov,V.K.;Kasatkin,I.A.;Vlasova,E.N.;Sokolova,M.P.;Bobrova,N.V.Long-termelectrochemicalstabilityofpolyaniline-andpolypyrrole-basedhydrogels.Chem. Pap.2021, 75,5103−5112..
Sun,Z.;Thielemans,W.Interconnectedandhighcyclingstabilitypolypyrrolesupercapacitorsusingcellulosenanocrystalsandcommonlyusedinorganicsaltsasdopants.J. Energy Chem.2023, 76,165−174..
Tanguy,N.R.;Wu,H.;Nair,S.S.;Lian,K.;Yan,N.Lignincellulosenanofibrilsasanelectrochemicallyfunctionalcomponentforhigh-performanceandflexiblesupercapacitorelectrodes.ChemSusChem.2021, 14,1057−1067..
Sun,Y.;Yang,Y.;Fan,L.;Zheng,W.;Ye,D.;Xu,J.Polypyrrole/SnCl2modifiedbacterialcelluloseelectrodeswithhigharealcapacitanceforflexiblesupercapacitors.Carbohydr. Polym.2022, 292,119679..
Smirnov,M.A.;Sokolova,M.P.;Geydt,P.;Smirnov,N.N.;Bobrova,N.V.;Toikka,A.M.;Lahderanta,E.Dualdopedelectroactivehydrogelicfibrousmatwithhigharealcapacitance.Mater. Lett.2017, 199,192−195..
0
浏览量
56
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构