a.State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
b.Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
c.Nankai University School of Medicine, Nankai University, Tianjin, China Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300074, China
d.Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
huangfan@irm-cams.ac.cn (F.H.)
shilinqi@nankai.edu.cn (L.Q.S.)
纸质出版日期:2022-09-01,
网络出版日期:2022-07-12,
收稿日期:2022-03-30,
修回日期:2022-05-07,
录用日期:2022-05-09
Scan QR Code
Zhu, L.; Zhang, M. Q.; Jing, H. R.; Zhang, X. P.; Xu, L. L.; Ma, R. J.; Huang, F.; Shi, L. Q. Bioinspired self-assembly nanochaperone inhibits tau-derived PHF6 peptide aggregation in Alzheimer’s disease. Chinese J. Polym. Sci. 2022, 40, 1062–1070
Lin Zhu, Ming-Qing Zhang, Hao-Ren Jing, et al. Bioinspired Self-assembly Nanochaperone Inhibits Tau-Derived PHF6 Peptide Aggregation in Alzheimer’s Disease[J]. Chinese Journal of Polymer Science, 2022,40(9):1062-1070.
Zhu, L.; Zhang, M. Q.; Jing, H. R.; Zhang, X. P.; Xu, L. L.; Ma, R. J.; Huang, F.; Shi, L. Q. Bioinspired self-assembly nanochaperone inhibits tau-derived PHF6 peptide aggregation in Alzheimer’s disease. Chinese J. Polym. Sci. 2022, 40, 1062–1070 DOI: 10.1007/s10118-022-2799-9.
Lin Zhu, Ming-Qing Zhang, Hao-Ren Jing, et al. Bioinspired Self-assembly Nanochaperone Inhibits Tau-Derived PHF6 Peptide Aggregation in Alzheimer’s Disease[J]. Chinese Journal of Polymer Science, 2022,40(9):1062-1070. DOI: 10.1007/s10118-022-2799-9.
Inspired by natural heat shock protein
we fabricated a self-assembly nanochaperone based on mixed-shell polymeric micelle (MSPM) as a novel tau-targeted AD therapy. With tunable phase-separated microdomains on surface
the nanochaperone could effectively bind with PHF6 aggregates
inhibit PHF6 aggregation
block neuronal internalization
thus significantly alleviating PHF6 mediated neurotoxicity.
After repeated frustrations with amyloid beta (A
β
)-targeted clinical trials for Alzheimer’s disease (AD) in recent years
the therapeutic focus of AD has gradually shifted from A
β
to tau protein. The misfolding and aggregation of tau protein into neurofibrillary tangles (NFTs) cause neuron death and synaptic dysfunction
and the deposition of NFTs is more closely related to the severity of AD than A
β
plaques. Thus
it has great potential to target tau protein aggregation for AD treatment. The hexapeptide VQIVYK (known as PHF6) in tau protein has been found to play a dominant role for tau aggregation and was widely used as a model to design tau protein aggregation inhibitors. Here
inspired by natural heat shock protein (HSPs)
we fabricated a self-assembly nanochaperone based on mixed-shell polymeric micelle (MSPM) as a novel tau-targeted AD therapy. With tunable phase-separated microdomains on the surface
the nanochaperone could effectively bind with PHF6 aggregates
inhibit PHF6 aggregation
block neuronal internalization of PHF6 species
thus significantly alleviating PHF6 mediated neurotoxicity. Moreover
the as-prepared nanochaperone could work with proteinase to facilitate the degradation of PHF6 aggregates. This bioinspired nanochaperone demonstrated a new way to target tau protein and provided a promising strategy for AD treatment.
Alzheimer’s diseaseTau proteinPHF6NanochaperoneInhibition
Qian, X.; Hamad, B.; Dias-Lalcaca, G . The Alzheimer disease market . Nat. Rev. Drug Discovery , 2015 . 14 675 -676 . DOI:10.1038/nrd4749http://doi.org/10.1038/nrd4749 .
Du, Z.; Li, M.; Ren, J.; Qu, X . Current strategies for modulating Aβ aggregation with multifunctional agents . Acc. Chem. Res. , 2021 . 54 2172 -2184 . DOI:10.1021/acs.accounts.1c00055http://doi.org/10.1021/acs.accounts.1c00055 .
Ke, P. C.; Pilkington, E. H.; Sun, Y.; Javed, I.; Kakinen, A.; Peng, G.; Ding, F.; Davis, T. P . Mitigation of amyloidosis with nanomaterials . Adv. Mater. , 2020 . 32 1901690 DOI:10.1002/adma.201901690http://doi.org/10.1002/adma.201901690 .
Benek, O.; Korabecny, J.; Soukup, O . A Perspective on multi-target drugs for Alzheimer's disease . Trends Pharmacol. Sci. , 2020 . 41 434 -445 . DOI:10.1016/j.tips.2020.04.008http://doi.org/10.1016/j.tips.2020.04.008 .
Dubois, B.; Feldman, H. H.; Jacova, C.; Hampel, H.; Molinuevo, J. L.; Blennow, K.; Dekosky, S. T.; Gauthier, S.; Selkoe, D.; Bateman, R.; Cappa, S.; Crutch, S.; Engelborghs, S.; Frisoni, G. B.; Fox, N. C.; Galasko, D.; Habert, M. O.; Jicha, G. A.; Nordberg, A.; Pasquier, F.; Rabinovici, G.; Robert, P.; Rowe, C.; Salloway, S.; Sarazin, M.; Epelbaum, S.; de Souza, L. C.; Vellas, B.; Visser, P. J.; Schneider, L.; Stern, Y.; Scheltens, P.; Cummings, J. L . Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria . Lancet Neurol. , 2014 . 13 614 -629 . DOI:10.1016/S1474-4422(14)70090-0http://doi.org/10.1016/S1474-4422(14)70090-0 .
Busche, M. A.; Hyman, B. T . Synergy between amyloid-β and tau in Alzheimer’s disease . Nat. Neurosci. , 2020 . 23 1183 -1193 . DOI:10.1038/s41593-020-0687-6http://doi.org/10.1038/s41593-020-0687-6 .
Busche, M. A.; Wegmann, S.; Dujardin, S.; Commins, C.; Schiantarelli, J.; Klickstein, N.; Kamath, T. V.; Carlson, G. A.; Nelken, I.; Hyman, B. T . Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo . Nat. Neurosci. , 2019 . 22 57 -64 . DOI:10.1038/s41593-018-0289-8http://doi.org/10.1038/s41593-018-0289-8 .
Doody, R. S.; Raman, R.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; He, F.; Sun, X.; Thomas, R. G.; Aisen, P . S.; Alzheimer's Disease Cooperative Study Steering, C.; Siemers, E.; Sethuraman, G.; Mohs, R.; Semagacestat Study, G. A phase 3 trial of semagacestat for treatment of Alzheimer's disease . New Engl. J. Med. , 2013 . 369 341 -350 . DOI:10.1056/NEJMoa1210951http://doi.org/10.1056/NEJMoa1210951 .
Karran, E.; Hardy, J . A Critique of the Drug Discovery and Phase 3 Clinical programs targeting the amyloid hypothesis for Alzheimer disease . Ann. Neurol. , 2014 . 76 185 -205 . DOI:10.1002/ana.24188http://doi.org/10.1002/ana.24188 .
Relkin, N. R.; Thomas, R. G.; Rissman, R. A.; Brewer, J. B.; Rafii, M. S.; van Dyck, C. H.; Jack, C. R.; Sano, M.; Knopman, D. S.; Raman, R.; Szabo, P.; Gelmont, D. M.; Fritsch, S.; Aisen, P. S . A phase 3 trial of IV immunoglobulin for Alzheimer disease . Neurology , 2017 . 88 1768 -1775 . DOI:10.1212/WNL.0000000000003904http://doi.org/10.1212/WNL.0000000000003904 .
Giacobini, E.; Gold, G . Alzheimer disease therapy—moving from amyloid-beta to tau . Nat. Rev. Neurol. , 2013 . 9 677 -686 . DOI:10.1038/nrneurol.2013.223http://doi.org/10.1038/nrneurol.2013.223 .
Congdon, E. E.; Sigurdsson, E. M . Tau-targeting therapies for Alzheimer disease . Nat. Rev. Neurol. , 2018 . 14 399 -415 . DOI:10.1038/s41582-018-0013-zhttp://doi.org/10.1038/s41582-018-0013-z .
Chen, L.; Du, Y.; Zhang, K.; Liang, Z.; Li, J.; Yu, H.; Ren, R.; Feng, J.; Jin, Z.; Li, F.; Sun, J.; Zhou, M.; He, Q.; Sun, X.; Zhang, H.; Tian, M.; Ling, D . Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer's disease . ACS Nano , 2018 . 12 1321 -1338 . DOI:10.1021/acsnano.7b07625http://doi.org/10.1021/acsnano.7b07625 .
Wang, Y.; Mandelkow, E . Tau in physiology and pathology . Nat. Rev. Neurosci. , 2016 . 17 5 -21 . DOI:10.1038/nrg.2015.11http://doi.org/10.1038/nrg.2015.11 .
Li, C.; Gotz, J . Tau-based therapies in neurodegeneration: opportunities and challenges . Nat. Rev. Drug Discovery , 2017 . 16 863 -883 . DOI:10.1038/nrd.2017.155http://doi.org/10.1038/nrd.2017.155 .
Bejanin, A.; Schonhaut, D. R.; La Joie, R.; Kramer, J. H.; Baker, S. L.; Sosa, N.; Ayakta, N.; Cantwell, A.; Janabi, M.; Lauriola, M.; O'Neil, J. P.; Gorno-Tempini, M. L.; Miller, Z. A.; Rosen, H. J.; Miller, B. L.; Jagust, W. J.; Rabinovici, G. D . Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer's disease . Brain , 2017 . 140 3286 -3300 . DOI:10.1093/brain/awx243http://doi.org/10.1093/brain/awx243 .
Al Mamun, A.; Uddin, M. S.; Mathew, B.; Ashraf, G. M . Toxic tau: structural origins of tau aggregation in Alzheimer's disease . Neural Regen. Res. , 2020 . 15 1417 -1420 . DOI:10.4103/1673-5374.274329http://doi.org/10.4103/1673-5374.274329 .
Jouanne, M.; Rault, S.; Voisin-Chiret, A. S . Tau protein aggregation in Alzheimer's disease: An attractive target for the development of novel therapeutic agents . Eur. J. Med. Chem. , 2017 . 139 153 -167 . DOI:10.1016/j.ejmech.2017.07.070http://doi.org/10.1016/j.ejmech.2017.07.070 .
Xu, L.; Ding, Y.; Ma, F.; Chen, Y.; Chen, G.; Zhu, L.; Long, J.; Ma, R.; Liu, Y.; Liu, J.; Huang, F.; Shi, L . Engineering a pathological tau-targeted nanochaperone for selective and synergetic inhibition of tau pathology in Alzheimer's disease . Nano Today , 2022 . 43 101388 DOI:10.1016/j.nantod.2022.101388http://doi.org/10.1016/j.nantod.2022.101388 .
Zhu, L.; Xu, L.; Wu, X.; Deng, F.; Ma, R.; Liu, Y.; Huang, F.; Shi, L . Tau-targeted multifunctional nanoinhibitor for Alzheimer's disease . ACS Appl. Mater. Interfaces , 2021 . 13 23328 -23338 . DOI:10.1021/acsami.1c00257http://doi.org/10.1021/acsami.1c00257 .
Seidler, P. M.; Boyer, D. R.; Rodriguez, J. A.; Sawaya, M. R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D. S . Structure-based inhibitors of tau aggregation . Nat. Chem. , 2018 . 10 170 -176 . DOI:10.1038/nchem.2889http://doi.org/10.1038/nchem.2889 .
Wischik, C. M.; Harrington, C. R.; Storey, J. M. D . Tau-aggregation inhibitor therapy for Alzheimer's disease . Biochem. Pharmacol. , 2014 . 88 529 -539 . DOI:10.1016/j.bcp.2013.12.008http://doi.org/10.1016/j.bcp.2013.12.008 .
Ryan, P.; Patel, B.; Makwana, V.; Jadhav, H. R.; Kiefel, M.; Davey, A.; Reekie, T . A.; Rudrawar, S.; Kassiou, M. Peptides, peptidomimetics, and carbohydrate-peptide conjugates as amyloidogenic aggregation inhibitors for Alzheimer's disease . ACS Chem. Neurosci. , 2018 . 9 1530 -1551 . DOI:10.1021/acschemneuro.8b00185http://doi.org/10.1021/acschemneuro.8b00185 .
Bittar, A.; Bhatt, N.; Kayed, R . Advances and considerations in AD tau-targeted immunotherapy . Neurobiol. Dis. , 2020 . 134 104707 DOI:10.1016/j.nbd.2019.104707http://doi.org/10.1016/j.nbd.2019.104707 .
Kim, Y. E.; Hipp, M . S.; Bracher, A.; Hayer-Hartl, M.; Ulrich Hartl, F., Molecular chaperone functions in protein folding and proteostasis . Annu. Rev. Biochem. , 2013 . 82 323 -355 . DOI:10.1146/annurev-biochem-060208-092442http://doi.org/10.1146/annurev-biochem-060208-092442 .
Balchin, D.; Hayer-Hartl, M.; Hartl, F. U . In vivo aspects of protein folding and quality control . Science , 2016 . 353 7 DOI:10.1126/science.aah4245http://doi.org/10.1126/science.aah4245 .
Freilich, R.; Arhar, T.; Abrams, J. L.; Gestwicki, J. E . Protein-protein interactions in the molecular chaperone network . Acc. Chem. Res. , 2018 . 51 940 -949 . DOI:10.1021/acs.accounts.8b00036http://doi.org/10.1021/acs.accounts.8b00036 .
Huang, C.; Rossi, P.; Saio, T.; Kalodimos, C. G . Structural basis for the antifolding activity of a molecular chaperone . Nature , 2016 . 537 202 -206 . DOI:10.1038/nature18965http://doi.org/10.1038/nature18965 .
Gorantla, N. V.; Chinnathambi, S . Tau protein squired by molecular chaperones during Alzheimer's disease . J. Mol. Neurosci. , 2018 . 66 356 -368 . DOI:10.1007/s12031-018-1174-3http://doi.org/10.1007/s12031-018-1174-3 .
Pratt, W. B.; Gestwicki, J. E.; Osawa, Y.; Lieberman, A. P . Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases . Annu. Rev. Pharmacol. Toxicol. , 2015 . 55 353 -371 . DOI:10.1146/annurev-pharmtox-010814-124332http://doi.org/10.1146/annurev-pharmtox-010814-124332 .
Mok, S.-A.; Condello, C.; Freilich, R.; Gillies, A.; Arhar, T.; Oroz, J.; Kadavath, H.; Julien, O.; Assimon, V. A.; Rauch, J. N.; Dunyak, B. M.; Lee, J.; Tsai, F. T. F.; Wilson, M. R.; Zweckstetter, M.; Dickey, C. A.; Gestwicki, J. E . Mapping interactions with the chaperone network reveals factors that protect against tau aggregation . Nat. Struct. Mol. Biol. , 2018 . 25 384 DOI:10.1038/s41594-018-0057-1http://doi.org/10.1038/s41594-018-0057-1 .
Kundel, F.; De, S.; Flagmeier, P.; Horrocks, M. H.; Kjaergaard, M.; Shammas, S. L.; Jackson, S. E.; Dobson, C. M.; Klenerman, D . Hsp70 inhibits the nucleation and elongation of tau and sequesters tau aggregates with high affinity . ACS Chem. Biol. , 2018 . 13 636 -646 . DOI:10.1021/acschembio.7b01039http://doi.org/10.1021/acschembio.7b01039 .
Baughman, H. E. R.; Pham, T. H. T.; Adams, C. S.; Nath, A.; Klevit, R. E . Release of a disordered domain enhances HspB1 chaperone activity toward tau . Proc. Natl. Acad. Sci. U.S.A. , 2020 . 117 2923 -2929 . DOI:10.1073/pnas.1915099117http://doi.org/10.1073/pnas.1915099117 .
Young, Z. T.; Mok, S. A.; Gestwicki, J. E . Therapeutic strategies for restoring tau homeostasis . Cold Spring Harb. Perspect Med. , 2018 . 8 a024612 DOI:10.1101/cshperspect.a024612http://doi.org/10.1101/cshperspect.a024612 .
Von Bergen, M.; Friedhoff, P.; Biernat, J.; Heberle, J.; Mandelkow, E. M.; Mandelkow, E . Assembly of τ protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming β structure . Proc. Natl. Acad. Sci. U.S.A. , 2000 . 97 5129 -5134 . DOI:10.1073/pnas.97.10.5129http://doi.org/10.1073/pnas.97.10.5129 .
Ganguly, P.; Do, T. D.; Larini, L.; Lapointe, N. E.; Sercel, A. J.; Shade, M. F.; Feinstein, S. C.; Bowers, M. T.; Shea, J. E . Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3 . J. Phys. Chem. B , 2015 . 119 4582 -4593 . DOI:10.1021/acs.jpcb.5b00175http://doi.org/10.1021/acs.jpcb.5b00175 .
Chemerovski-Glikman, M.; Frenkel-Pinter, M.; Mdah, R.; Abu-Mokh, A.; Gazit, E.; Segal, D . Inhibition of the aggregation and toxicity of the minimal amyloidogenic fragment of tau by its pro-substituted analogues . Chem. Eur. J. , 2017 . 23 9618 -9624 . DOI:10.1002/chem.201701218http://doi.org/10.1002/chem.201701218 .
Belostozky, A.; Richman, M.; Lisniansky, E.; Tovchygrechko, A.; Chill, J. H.; Rahimipour, S . Inhibition of tau-derived hexapeptide aggregation and toxicity by a self-assembled cyclic d,l-alpha-peptide conformational inhibitor . Chem. Commun. , 2018 . 54 5980 -5983 . DOI:10.1039/C8CC01233Dhttp://doi.org/10.1039/C8CC01233D .
Fanni, A. M.; Vander Zanden, C. M.; Majewska, P. V.; Majewski, J.; Chi, E. Y . Membrane-mediated fibrillation and toxicity of the tau hexapeptide PHF6 . J. Biol. Chem. , 2019 . 294 15304 -15317 . DOI:10.1074/jbc.RA119.010003http://doi.org/10.1074/jbc.RA119.010003 .
Sievers, S. A.; Karanicolas, J.; Chang, H. W.; Zhao, A.; Jiang, L.; Zirafi, O.; Stevens, J . T.; Munch, J.; Baker, D.; Eisenberg, D. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation . Nature , 2011 . 475 96 -100 . DOI:10.1038/nature10154http://doi.org/10.1038/nature10154 .
Zheng, J.; Baghkhanian, A. M.; Nowick, J. S . A hydrophobic surface is essential to inhibit the aggregation of a tau-protein-derived hexapeptide . J. Am. Chem. Soc. , 2013 . 135 6846 -6852 . DOI:10.1021/ja310817dhttp://doi.org/10.1021/ja310817d .
Zhang, X. C.; Zhang, X. Y.; Zhong, M. L.; Zhao, P.; Guo, C.; Li, Y.; Wang, T.; Gao, H. L . Selection of a D-enantiomeric peptide specifically binding to PHF6 for inhibiting tau aggregation in transgenic mice . ACS Chem. Neurosci. , 2020 . 11 4240 -4253 . DOI:10.1021/acschemneuro.0c00518http://doi.org/10.1021/acschemneuro.0c00518 .
Huang, F.; Wang, J.; Qu, A.; Shen, L.; Liu, J.; Liu, J.; Zhang, Z.; An, Y.; Shi, L . Maintenance of amyloid β peptide homeostasis by artificial chaperones based on mixed-shell polymeric micelles . Angew. Chem. Int. Ed. , 2014 . 53 8985 -8990 . DOI:10.1002/anie.201400735http://doi.org/10.1002/anie.201400735 .
Huang, F.; Qu, A.; Yang, H.; Zhu, L.; Zhou, H.; Liu, J.; Long, J.; Shi, L . Self-assembly molecular chaperone to concurrently inhibit the production and aggregation of amyloid beta peptide associated with Alzheimer's disease . ACS Macro Lett. , 2018 . 7 983 -989 . DOI:10.1021/acsmacrolett.8b00495http://doi.org/10.1021/acsmacrolett.8b00495 .
Zhang, X.; Wang, L. Y.; Xu, J. F.; Chen, D. Y.; Shi, L. Q.; Zhou, Y. F.; Shen, Z. H. . Polymeric supramolecular systems: design, assembly and functions . Acta Polymerica Sinica (in Chinese) , 2019 . 50 973 -987 . DOI:10.11777/j.issn1000-3304.2019.19109http://doi.org/10.11777/j.issn1000-3304.2019.19109 .
Su, L. Z.; Liu, Y.; Li, Y. F.; An, Y. L.; Shi, L. Q . Responsive polymeric nanoparticles for biofilm-infection control . Chinese J. Polym. Sci. , 2021 . 39 1376 -1391 . DOI:10.1007/s10118-021-2610-3http://doi.org/10.1007/s10118-021-2610-3 .
Yang, H.; Li, X.; Zhu, L.; Wu, X.; Zhang, S.; Huang, F.; Feng, X.; Shi, L . Heat shock protein inspired nanochaperones restore amyloid-β homeostasis for preventative therapy of Alzheimer's disease . Adv. Sci. , 2019 . 6 1901844 DOI:10.1002/advs.201901844http://doi.org/10.1002/advs.201901844 .
Huang, F.; Shen, L.; Wang, J.; Qu, A.; Yang, H.; Zhang, Z.; An, Y.; Shi, L . Effect of the surface charge of artificial chaperones on the refolding of thermally denatured lysozymes . ACS Appl. Mater. Interfaces , 2016 . 8 3669 -3678 . DOI:10.1021/acsami.5b08843http://doi.org/10.1021/acsami.5b08843 .
Goux, W. J.; Kopplin, L.; Nguyen, A. D.; Leak, K.; Rutkofsky, M.; Shanmuganandam, V. D.; Sharma, D.; Inouye, H.; Kirschner, D. A . The formation of straight and twisted filaments from short tau peptides . J. Biol. Chem. , 2004 . 279 26868 -26875 . DOI:10.1074/jbc.M402379200http://doi.org/10.1074/jbc.M402379200 .
KrishnaKumar, V . G.; Paul, A.; Gazit, E.; Segal, D. Mechanistic insights into remodeled tau-derived PHF6 peptide fibrils by naphthoquinone-tryptophan hybrids . Sci. Rep. , 2018 . 8 71 DOI:10.1038/s41598-017-18443-2http://doi.org/10.1038/s41598-017-18443-2 .
Garcia-Chame, M. A.; Gutierrez-Sanz, O.; Ercan-Herbst, E.; Haustein, N.; Filipiak, M. S.; Ehrnhoefer, D. E.; Tarasov, A . A transistor-based label-free immunosensor for rapid detection of tau protein . Biosens. Bioelectron. , 2020 . 159 112129 DOI:10.1016/j.bios.2020.112129http://doi.org/10.1016/j.bios.2020.112129 .
Cho, N.-J.; Frank, C . W.; Kasemo, B.; Hook, F. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates . Nat. Protoc. , 2010 . 5 1096 -1106 . DOI:10.1038/nprot.2010.65http://doi.org/10.1038/nprot.2010.65 .
Wang, J.; Yin, T.; Huang, F.; Song, Y.; An, Y.; Zhang, Z.; Shi, L . Artificial chaperones based on mixed shell polymeric micelles: insight into the mechanism of the interaction of the chaperone with substrate proteins using forster resonance energy transfer . ACS Appl. Mater. Interfaces , 2015 . 7 10238 -10249 . DOI:10.1021/acsami.5b00684http://doi.org/10.1021/acsami.5b00684 .
Li, C.; Liu, X.; Zhang, Y.; Lv, J.; Huang, F.; Wu, G.; Liu, Y.; Ma, R.; An, Y.; Shi, L . Nanochaperones mediated delivery of insulin . Nano Lett. , 2020 . 20 1755 -1765 . DOI:10.1021/acs.nanolett.9b04966http://doi.org/10.1021/acs.nanolett.9b04966 .
Li, X.; Cai, X.; Zhang, Z.; Ding, Y.; Ma, R.; Huang, F.; Liu, Y.; Liu, J.; Shi, L . Mimetic heat shock protein mediated immune process to enhance cancer immunotherapy . Nano Lett. , 2020 . 20 4454 -4463 . DOI:10.1021/acs.nanolett.0c01230http://doi.org/10.1021/acs.nanolett.0c01230 .
Liu, Y.; Du, J. J.; Yan, M.; Lau, M. Y.; Hu, J.; Han, H.; Yang, O. O.; Liang, S.; Wei, W.; Wang, H.; Li, J. M.; Zhu, X. Y.; Shi, L. Q.; Chen, W.; Ji, C.; Lu, Y. F . Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication . Nat. Nanotechnol. , 2013 . 8 187 -192 . DOI:10.1038/nnano.2012.264http://doi.org/10.1038/nnano.2012.264 .
Selvin, P. R . The renaissance of fluorescence resonance energy transfer . Nat. Struct. Biol. , 2000 . 7 730 -734 . DOI:10.1038/78948http://doi.org/10.1038/78948 .
Goedert, M . The ordered assembly of tau is the gain-of-toxic function that causes human tauopathies . Alzheimers Dement. , 2016 . 12 1040 -1050 . DOI:10.1016/j.jalz.2016.09.001http://doi.org/10.1016/j.jalz.2016.09.001 .
Ghag, G.; Bhatt, N.; Cantu, D. V.; Guerrero-Munoz, M . J.; Ellsworth, A.; Sengupta, U.; Kayed, R. Soluble tau aggregates, not large fibrils, are the toxic species that display seeding and cross-seeding behavior . Protein Sci. , 2018 . 27 1901 -1909 . DOI:10.1002/pro.3499http://doi.org/10.1002/pro.3499 .
Frenkel-Pinter, M.; Richman, M.; Belostozky, A.; Abu-Mokh, A.; Gazit, E.; Rahimipour, S.; Segal, D . Selective inhibition of aggregation and toxicity of a tau-derived peptide using its glycosylated analogues . Chem. Eur. J. , 2016 . 22 5945 -5952 . DOI:10.1002/chem.201504950http://doi.org/10.1002/chem.201504950 .
Chesser, A. S.; Pritchard, S. M.; Johnson, G. V. W . Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease . Front. Neurol. , 2013 . 4 122 .
Whyte, L. S.; Lau, A. A.; Hemsley, K. M.; Hopwood, J. J.; Sargeant, T. J . Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer's disease . J. Neurochem. , 2017 . 140 703 -717 . DOI:10.1111/jnc.13935http://doi.org/10.1111/jnc.13935 .
0
浏览量
27
Downloads
4
CSCD
关联资源
相关文章
相关作者
相关机构