a.Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao 266042, China
b.State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
zhanghao@qust.edu.cn (H.Z.)
skyan@buct.edu.cn skyan@qust.edu.cn (S.K.Y.)
Scan for full text
Effects of Interface on the Dynamic Hysteresis Loss and Static Mechanical Properties of Illite Filled SBR Composites[J]. 高分子科学(英文版), 2022,40(11):1493-1502.
Zhe-Peng Wang, Hao Zhang, Qiang Liu, et al. Effects of Interface on the Dynamic Hysteresis Loss and Static Mechanical Properties of Illite Filled SBR Composites[J]. Chinese Journal of Polymer Science, 2022,40(11):1493-1502.
Effects of Interface on the Dynamic Hysteresis Loss and Static Mechanical Properties of Illite Filled SBR Composites[J]. 高分子科学(英文版), 2022,40(11):1493-1502. DOI: 10.1007/s10118-022-2791-4.
Zhe-Peng Wang, Hao Zhang, Qiang Liu, et al. Effects of Interface on the Dynamic Hysteresis Loss and Static Mechanical Properties of Illite Filled SBR Composites[J]. Chinese Journal of Polymer Science, 2022,40(11):1493-1502. DOI: 10.1007/s10118-022-2791-4.
Development of alternative reinforcement fillers for carbon black has attracted widespread attention. Her, the reinforcement of illite modified by organic silane on styrene butadiene rubber (SBR) was explored. The increment of tensile strength and modulus at 300% strain of more than 7 times demonstrates its potential application as reinforcing filler for SBR.
Despite growing interest in nano-sized fillers, micro-sized fillers with desired compatibility are still used for reinforcing rubbers, owing to their lower production cost and easier processing relative to nano-sized fillers. Especially, the abundant and eco-friendly clay minerals are recognized as the materials of the twenty-first century. Herein, illite, a naturally occurring clay having dimension in micrometric scale, has been selected as filler to reinforce the SBR. To improve the compatibility of illite with SBR, the illite was modified by either bis[3-(triethoxysilyl)propyl] tetrasulfide (Si69-illite) or 3-mercaptopropyltriethoxysilane (KH580-illite). The interfacial interactions of SBR composites filled with pristine illite (illite/SBR) and Si69-illite (Si69-illite/SBR), or KH580-illite (KH580-illite/SBR) were characterized by bound rubber content and Payne effect measurements, while dynamic hysteresis losses of these uncured and cured composites were also analyzed under various strain amplitudes. It was found that the filler-rubber interactions were greatly improved for Si69-illite/SBR and KH580-illite/SBR systems compared to the illite/SBR composite. This leads to an increment of modulus at 300% strain of the composites from 3.46 MPa for illite/SBR to 7.70 MPa for Si69-illite/SBR and 12.96 MPa for KH580-illite/SBR. Moreover, lower rolling resistance and better wear resistance without compromising wet traction of Si69-illite/SBR and KH580-illite/SBR have been achieved. This demonstrates the high possibility of Si69 and KH580 modified illites as promising alternative fillers for reinforcing rubbers.
IlliteSBRCompositeDynamic hysteresis lossStatic mechanical properties
Byers, J.T., in Basic elastomer technology, American Chemical Society, Ohio, 2001, p. 82–111.
Xu, P.; Zhao, X.; Niu, D.; Hoch, M.; Ma, P.; Dong, W.; Chen, M.; Deshmukh, Y . Superior reinforcement of ethyl-co-vinyl acetate rubber composites by using nano-sized starch filler: the role of particle size and reactive compatibilization . Eur. Polym. J. , 2018 . 105 107 -114 . DOI:10.1016/j.eurpolymj.2018.05.019http://doi.org/10.1016/j.eurpolymj.2018.05.019 .
Zhang, Y.; Zhang, A.; Kang, L.; Zhang, Y . Mechanical properties and thermal stability of kaolinite/emulsion polymerization styrene butadiene rubber composite prepared by latex blending method . Polym. Sci., Ser. A , 2020 . 62 407 -421 . DOI:10.1134/S0965545X20040112http://doi.org/10.1134/S0965545X20040112 .
Barrera, C. S.; Cornish, K . Processing and mechanical properties of natural rubber/waste-derived nano filler composites compared to macro and micro filler composites . Ind. Crops Prod. , 2017 . 107 217 -231 . DOI:10.1016/j.indcrop.2017.05.045http://doi.org/10.1016/j.indcrop.2017.05.045 .
Dannenberg, E. M . Filler choices in the rubber industry . Rubber Chem. Technol. , 1982 . 55 860 -880 . DOI:10.5254/1.3535905http://doi.org/10.5254/1.3535905 .
Kausar, A., in Hybrid polymer composite materials, Woodhead Publishing, Duxford, 2017, p. 115−132.
Khalifa, A. Z.; Cizer, Ö.; Pontikes, Y.; Heath, A.; Patureau, P.; Bernal, S. A.; Marsh, A. T.M . Advances in alkali-activation of clay minerals . Cem. Concr. Res. , 2020 . 132 106050 DOI:10.1016/j.cemconres.2020.106050http://doi.org/10.1016/j.cemconres.2020.106050 .
Credico, B . D.; Cobani, E.; Callone, E.; Conzatti, L.; Cristofori, D.; D’Arienzo, M.; Dirè S.; Giannini, L.; Hanel, T.; Scotti, R.; Stagnaro, P.; Tadiello, L.; Morazzoni, F. Size-controlled self-assembly of anisotropic sepiolite fibers in rubber nanocomposites . Appl. Clay Sci. , 2018 . 152 51 -64 . DOI:10.1016/j.clay.2017.10.032http://doi.org/10.1016/j.clay.2017.10.032 .
Gualtieri, A . F.; Ferrari, S.; Leoni, M.; Grathoff, G.; Hugo, R.; Shatnawi, M.; Paglia, G.; Billinge, S. Structural characterization of the clay mineral illite-1M . J. Appl. Cryst. , 2008 . 41 402 -415 . DOI:10.1107/S0021889808004202http://doi.org/10.1107/S0021889808004202 .
Tamura, K.; Yokoyama, S.; Pascua, C. S.; Yamada, H . New age of polymer nanocomposites containing dispersed high-aspect-ratio silicate nanolayers . Chem. Mater. , 2008 . 20 2242 -2246 . DOI:10.1021/cm702860mhttp://doi.org/10.1021/cm702860m .
Pavlidou, S.; Papaspyrides, C. D . A review on polymer−layered silicate nanocomposites . Prog. Polym. Sci. , 2008 . 33 1119 -1198 . DOI:10.1016/j.progpolymsci.2008.07.008http://doi.org/10.1016/j.progpolymsci.2008.07.008 .
Reddy, K. R.; Reddy, C. V.; Babu, B.; Ravindranadh, K.; Naveen, S.; Raghu, A. V., in Modified clay and zeolite nanocomposite materials, Elsevier, Amsterdam, 2019, p. 197–218.
Wang, Z.; Wang, S.; Yu, X.; Zhang, H.; Yan, S . Study on the Use of CTAB-treated illite as an alternative filler for natural rubber . ACS Omega , 2021 . 6 19017 -19025 . DOI:10.1021/acsomega.1c02304http://doi.org/10.1021/acsomega.1c02304 .
Edwards, D. C . Polymer-filler interactions in rubber reinforcement . J. Mater. Sci. , 1990 . 25 4175 -4185 . DOI:10.1007/BF00581070http://doi.org/10.1007/BF00581070 .
Fan, Y.; Fowler, G. D.; Norris, C . Potential of a pyrolytic coconut shell as a sustainable biofiller for styrene-butadiene rubber . Ind. Eng. Chem. Res. , 2017 . 56 4779 -4791 . DOI:10.1021/acs.iecr.7b00405http://doi.org/10.1021/acs.iecr.7b00405 .
Du, M.; Guo, B.; Lei, Y.; Liu, M.; Jia, D . Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance . Polymer , 2008 . 49 4871 -4876 . DOI:10.1016/j.polymer.2008.08.042http://doi.org/10.1016/j.polymer.2008.08.042 .
Wei, K. K.; Leng, T. P.; Keat, Y. C.; Osman, H.; Ying, L. B . Enhancing compatibility in epoxy/vulcanized natural rubber (VNR)/Graphene nano-platelets (GNP) system using epoxidized natural rubber (ENR-50) . Compos. Part B-Eng. , 2019 . 174 107058 DOI:10.1016/j.compositesb.2019.107058http://doi.org/10.1016/j.compositesb.2019.107058 .
Pan, Y.; Zhang, M.; Zhang, J.; Zhu, X.; Bian, H.; Wang, C . Effect of silane coupling agent on modification of areca fiber/natural latex . Materials , 2020 . 13 4896 DOI:10.3390/ma13214896http://doi.org/10.3390/ma13214896 .
Radabutra, S.; Khemthong, P.; Saengsuwan, S . Effect of silane coupling agent pretreatment on the properties of rice straw particleboard bonded with prevulcanized natural rubber latex . J. Rubber Res. , 2021 . 24 157 -163 . DOI:10.1007/s42464-021-00081-zhttp://doi.org/10.1007/s42464-021-00081-z .
Funes, I. G.A.; Peralta M. E.; Pettinari, G. R.; Carlos, L.; Parolo, M. E . Facile modification of montmorillonite by intercalation and grafting: the study of the binding mechanisms of a quaternary alkylammonium surfactant . Appl. Clay Sci. , 2020 . 195 105738 DOI:10.1016/j.clay.2020.105738http://doi.org/10.1016/j.clay.2020.105738 .
Chu, L.; Kan, M.; Jerrams, S.; Zhang, R.; Xu, Z.; Liu, L.; Wen, S.; Zhang, L . Constructing chemical interface layers by using ionic liquid in graphene oxide/rubber composites to achieve high-wear resistance in environmental-friendly green tires . ACS Appl. Mater. Interfaces , 2022 . 14 5995 -6004 . DOI:10.1021/acsami.1c21605http://doi.org/10.1021/acsami.1c21605 .
Payne, A. R . The Dynamic properties of carbon black loaded natural rubber vulcanizates. Part II . Rubber Chem. Technol. , 1962 . VI 368 -372. .
Sun, J.; Song, Y.; Zheng, Q.; Tan, H.; Yu, J.; Li, H . Nonlinear rheological behavior of silica filled solution-polymerized styrene butadiene rubber . J. Polym. Sci., Part B: Polym. Phys. , 2007 . 45 2594 -2602 . DOI:10.1002/polb.21263http://doi.org/10.1002/polb.21263 .
Cantournet, S.; Desmorat, R.; Besson, J . Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model . Int. J. Solids Struct. , 2009 . 46 2255 -2264 . DOI:10.1016/j.ijsolstr.2008.12.025http://doi.org/10.1016/j.ijsolstr.2008.12.025 .
Mai, T. T.; Morishita, Y.; Urayama, K . Induced anisotropy by Mullins effect in filled elastomers subjected to stretching with various geometries . Polymer , 2017 . 126 29 -39 . DOI:10.1016/j.polymer.2017.08.012http://doi.org/10.1016/j.polymer.2017.08.012 .
Li, Z.; Xu, H.; Xia, X.; Song, Y.; Zheng, Q . Energy dissipation accompanying Mullins effect of nitrile butadiene rubber/carbon black nanocomposites . Polymer , 2019 . 171 106 -114 . DOI:10.1016/j.polymer.2019.03.043http://doi.org/10.1016/j.polymer.2019.03.043 .
Song, Y.; Yang, R.; Du, M.; Shi, X.; Zheng, Q . Rigid nanoparticles promote the softening of rubber phase in filled vulcanizates . Polymer , 2019 . 177 131 -138 . DOI:10.1016/j.polymer.2019.06.003http://doi.org/10.1016/j.polymer.2019.06.003 .
Reuvekamp, L.A.E.M.; Brinke, J.W. T.; Swaaij, P.J. V.; Noordermeer, J.W.M . Effects of time and temperature on the reaction of TESPT silane coupling agent during mixing with silica filler and tire rubber . Rubber Chem. Technol. , 2002 . 75 187 -198 . DOI:10.5254/1.3544972http://doi.org/10.5254/1.3544972 .
Lei, Y.; Tang, Z.; Zhu, L; Guo, B.; Jia, D . Thiol-containing ionic liquid for the modification of styrene–butadiene rubber/silica composites . J. Appl. Polym. Sci. , 2012 . 123 1252 -1260 . DOI:10.1002/app.34026http://doi.org/10.1002/app.34026 .
Lipińska, M.; Imiela, M . Morphology, rheology and curing of (ethylene-propylene elastomer/hydrogenate acrylonitrile-butadiene rubber) blends reinforced by POSS and organoclay . Polym. Test. , 2019 . 75 26 -37 . DOI:10.1016/j.polymertesting.2019.01.020http://doi.org/10.1016/j.polymertesting.2019.01.020 .
Lorenz, O.; Parks, C. R . The crosslinking efficiency of some vulcanizing agents in natural rubber . J. Polym. Sci. , 1961 . 50 299 -312 . DOI:10.1002/pol.1961.1205015404http://doi.org/10.1002/pol.1961.1205015404 .
Komadel, P.; Schmidt, D.; Madejová, J.; Číčel, B . Alteration of smectites by treatments with hydrochloric acid and sodium carbonate solutions . Appl. Clay Sci. , 1990 . 5 113 -122 . DOI:10.1016/0169-1317(90)90017-Jhttp://doi.org/10.1016/0169-1317(90)90017-J .
Konan, K. L.; Peyratout, C.; Smith, A.; Bonnet, J.-P.; Magnoux, P.; Ayrault, P. Surface modifications of illite in concentrated lime solutions investigated by pyridine adsorption. J. Colloid Interface Sci. 2012, 382, 17−21.
Othmani-Assmann, H.; Benna-Zayani, M.; Geiger, S.; Geiger, S.; Fraisse, B.; Kbir-Ariguib, N.; Trabelsi-Ayadi, M.; Ghermani, N. E.; Grossiord, J. L . Physico-chemical characterizations of tunisian organophilic bentonites . J. Phys. Chem. C , 2007 . 111 10869 -10877 . DOI:10.1021/jp068814ahttp://doi.org/10.1021/jp068814a .
Leblanc, J. L . Rubber–filler interactions and rheological properties in filled compounds . Prog. Polym. Sci. , 2002 . 27 627 -687 . DOI:10.1016/S0079-6700(01)00040-5http://doi.org/10.1016/S0079-6700(01)00040-5 .
Léopoldès, J.; Barrès, C.; Leblanc, J. L.; Georget, P . Influence of filler-rubber interactions on the viscoelastic properties of carbon-black-filled rubber compounds . J. Appl. Polym. Sci. , 2004 . 91 577 -588 . DOI:10.1002/app.13155http://doi.org/10.1002/app.13155 .
Kriaa, A.; Hamdi, N.; Srasra, E . Proton adsorption and acid base properties of Tunisian illites in aqueous solution . J. Struct. Chem. , 2009 . 50 273 -287 . DOI:10.1007/s10947-009-0039-6http://doi.org/10.1007/s10947-009-0039-6 .
Qian, M.; Zou, B.; Chen, Z.; Huang, W.; Wang, X.; Tang, B.; Liu, Q.; Zhu, Y . The influence of filler size and crosslinking degree of polymers on Mullins effect in filled NR/BR composites . Polymers , 2021 . 13 2284 DOI:10.3390/polym13142284http://doi.org/10.3390/polym13142284 .
Cichomski, E.; Tolpekina, T. V.; Schultz, S.; Noordermeer, J. W.M.; Dierkes, W. K.; Blume, A. Influence of silica-polymer bond microstructure on tire-performance indicators. in 11th Rubber Fall Colloquium, Hannover, Germany, 2014, p. 1–16.
Byers, J. T . Fillers for balancing passenger tire tread properties . Rubber Chem. Technol. , 2002 . 75 527 -547 . DOI:10.5254/1.3547681http://doi.org/10.5254/1.3547681 .
0
浏览量
8
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构