1.Materials Technology Program, School of Energy, Environment and Materials, King Mongkut’s University of Technology Thonburi, Bangkok 10140,Thailand
Jatuphorn.woo@kmutt.ac.th
Scan for full text
Mohammad Hossein Azarian, Jatuphorn Wootthikanokkhan. An Alternative Technique for Compounding and Fabrication of Lithium Ion Conductive PVB Films with Enhanced Thermal Properties and Electrochromic Performance[J]. Chinese Journal of Polymer Science, 2022,40(10):1213-1222.
Mohammad Hossein Azarian, Jatuphorn Wootthikanokkhan. An Alternative Technique for Compounding and Fabrication of Lithium Ion Conductive PVB Films with Enhanced Thermal Properties and Electrochromic Performance[J]. Chinese Journal of Polymer Science, 2022,40(10):1213-1222.
Mohammad Hossein Azarian, Jatuphorn Wootthikanokkhan. An Alternative Technique for Compounding and Fabrication of Lithium Ion Conductive PVB Films with Enhanced Thermal Properties and Electrochromic Performance[J]. Chinese Journal of Polymer Science, 2022,40(10):1213-1222. DOI: 10.1007/s10118-022-2729-x.
Mohammad Hossein Azarian, Jatuphorn Wootthikanokkhan. An Alternative Technique for Compounding and Fabrication of Lithium Ion Conductive PVB Films with Enhanced Thermal Properties and Electrochromic Performance[J]. Chinese Journal of Polymer Science, 2022,40(10):1213-1222. DOI: 10.1007/s10118-022-2729-x.
A pilot electrochromic cell with a configuration of ITO/PVB electrolyte/WO,3,/ITO was prepared ,via, the laminating of PVB solid electrolyte film between ITO and ITO/WO,3, substrates, at 100 °C using heat gun and pressing them with clamps. The WO,3, thin film was firstly deposited on ITO glasses by sol-gel technique via spin-coating method.
This research concerns the development of lithium ions conductive electrolyte from poly(vinyl butyral) (PVB) resin for use as a special interlayer film in electrochromic glass. To obtain the final PVB film with high ionic conductivity and thermal stability, a masterbatch was firstly prepared by mixing of PVB resin with lithium salt (LiClO,4,) and additives in an aqueous ethanol solution. After this, the dried masterbatch were converted into final films by an extrusion process. In this study, PVB film with the highest ionic conductivity value of 4.85×10,−6, was obtained when the masterbatch was diluted with the neat PVB resin at the weight ratio of 2:1 in the extruder prior to fabrication. The results from cyclic voltammetry over 100 cycles, showed that performance of the electrochromic device (ITO/WO,3,/PVB electrolyte/ITO) fabricated by using the above PVB film is stable and reversible. In overall, this work demonstrates that ion conductive PVB films with compromised ionic conductivity and thermal stability can be prepared ,via, an extrusion process without the need to modify chemical structure of PVB. This was carried out through the masterbatch approach, by introducing LiClO,4, salts into the plasticized PVB ,via, a solution mixing process prior to converting it into a final film ,via, the extrusion process.
Ionic conductivityPoly(vinyl butyral)Masterbatch mixingSolid polymer electrolyteElectrochromic glassSafety glass
Tan, X. Y.; Wang, H.; Kim, T. G. Electrochromic Smart Windows: An Energy-Efficient Technology. Springer Nature Switzerland AG. 2020.
Chandra, M. V. L.; Karthikeyan, S.; Selvasekarapandian, S . Characterization of high ionic conducting PVAc-PMMA blend-based polymer electrolyte for electrochemical applications . Ionics , 2016 . 22 2409 -2420 . DOI:10.1007/s11581-016-1763-5http://doi.org/10.1007/s11581-016-1763-5 .
Wootthikanokkhan, J.; Jaruphan, P.; Azarian, M. H.; Yosthisud, J . Effects of ethylene-acrylic acid ionomer on thermomechanical and electrochromic properties of electrochromic devices using gelatin-based electrolytes . J. Appl. Polym. Sci. , 2020 . 137 e49362 DOI:10.1002/app.49362http://doi.org/10.1002/app.49362 .
Barbosaa, P. C.; Rodriguesa, L. C.; Silva, M. M.; Smitha, M. J.; Parolab, A. J . Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes . Electrochim. Acta , 2010 . 55 1495 -1502 . DOI:10.1016/j.electacta.2009.03.031http://doi.org/10.1016/j.electacta.2009.03.031 .
Sim, L. N.; Sentanin, F. C.; Pawlicka, A.; Yahya, R.; Arof, A. K . Development of polyacrylonitrile-based polymer electrolytes incorporated with lithium bis(trifluoromethane)sulfonimide for application in electrochromic device . Electrochim. Acta , 2017 . 229 22 -30 . DOI:10.1016/j.electacta.2017.01.098http://doi.org/10.1016/j.electacta.2017.01.098 .
Azarian, M. H.; Wootthikanokkhan, J . Gelatin-based solid electrolytes for chromogenic windows applications : a review . Ionics , 2020 . 26 5841 -5851 . DOI:10.1007/s11581-020-03774-4http://doi.org/10.1007/s11581-020-03774-4 .
Cholant, C. M.; Rodrigues, M. P.; Peres, L. L.; Balboni, R. D. C.; Krüger, L. U.; Placido, D. N . Study of the conductivity of solid polymeric electrolyte based on PVA/GA blend with addition of acetic acid . J. Solid State Electrochem. , 2020 . 24 1867 -1875 . DOI:10.1007/s10008-020-04605-2http://doi.org/10.1007/s10008-020-04605-2 .
Lee, H. J.; Lee, C.; Song, J.; Yun, Y. J.; Jun, Y.; Ah, C. S . Electrochromic devices based on ultraviolet-cured poly(methyl methacrylate) gel electrolytes and their utilisation in smart window applications . J. Mater. Chem. C , 2020 . 8 8747 -8754 . DOI:10.1039/D0TC00420Khttp://doi.org/10.1039/D0TC00420K .
Huang, L.; Peng, C.; Hu, C.; Lu, H.; Chen, C;. Yang, D . Spectroelectrochemical and adhesion properties of chemically synthesized ion conducting poly(vinyl butyral) in Prussian blue and poly(3,4-ethylenedioxythiophene) laminated electrochromic glazing. . Sol. Energy Mater. Sol. Cells , 2017 . 171 258 -266 . DOI:10.1016/j.solmat.2017.06.051http://doi.org/10.1016/j.solmat.2017.06.051 .
Carrot, C.; Bendaoud, A.; Pillon, C. Polyvinyl Butyral, in Handbook of Thermoplast, CRS Press, 2015, p. 90.
Rottmann, M.; Heckner, K . Large-area electrochromic glazing with ion-conducting PVB interlayer and two complementary electrodeposited electrochromic layers . Sol. Energy Mater. Sol. Cells , 2006 . 90 469 -476 . DOI:10.1016/j.solmat.2005.01.019http://doi.org/10.1016/j.solmat.2005.01.019 .
Aguilar, J.O.; De Fuente, M. C.; Chan, F . Adhesion strength in laminated glazings containing multilayer solar control coatings . J. Mech. Sci. Technol. , 2012 . 26 1725 -1730 . DOI:10.1007/s12206-012-0437-0http://doi.org/10.1007/s12206-012-0437-0 .
Ficke, H. Electrochromic Technology Development for Automotive Windows”, Technical data sheet from Du Pont Co. Ltd.
Stenzel, H.; Kraft, A.; Heckner, K. H.; Rottmann, M.; Papenfuhs, B.; Steuer, M. 2012, U.S. Pat., 8,188,182, B2
Liu, R.; He, B.; Chen, X . Degradation of poly(vinyl butyral) and its stabilization by bases . Polym. Degrad. Stabil. , 2008 . 93 846 -853 . DOI:10.1016/j.polymdegradstab.2008.01.008http://doi.org/10.1016/j.polymdegradstab.2008.01.008 .
Tup, M.; Mnsk, D.; Kaprkov, V., PVB Sheet Recycling and Degradation, by D. Achilias (Ed.), Material Recycl. - Trends Perspect., 2012, p. 133.
El-Din, N. M. S.; Sabaa, M. W . Thermal degradation of poly(vinyl butyral) laminated safety glass . Polym. Degrad. Stabil. , 1995 . 47 283 -288 . DOI:10.1016/0141-3910(94)00118-Rhttp://doi.org/10.1016/0141-3910(94)00118-R .
Zhang, F.; Dong, G.; Liu, J.; Ye, S.; Diao, X . Polyvinyl butyral-based gel polymer electrolyte films for solid-state laminated electrochromic devices . Ionics , 2017 . 23 1879 -1888 . DOI:10.1007/s11581-017-1996-yhttp://doi.org/10.1007/s11581-017-1996-y .
Chen, K. F.; Liu, C. H.; Huang, H. K.; Tsai, C. H.; Chen, F. R . Polyvinyl butyral-based thin film polymeric electrolyte for dye-sensitized solar cell with long-term stability . Int. J. Electrochem. , 2013 . 8 3524 -3539 . DOI:10.1016/j.electacta.2013.01.029http://doi.org/10.1016/j.electacta.2013.01.029 .
Tajima, K.; Hotta, H.; Yamada, Y.; Okada, M.; Yoshimura, K . Electrochromic switchable mirror glass fabricated using adhesive electrolyte layer . Appl. Phys. Lett. , 2012 . DOI:10.1063/1.4772938http://doi.org/10.1063/1.4772938 .
Azarian, M. H.; Wootthikanokkhan, J . In situ sol-gel synthesis of tungsten trioxide networks in polymer electrolyte: dual-functional solid state chromogenic smart film . J. Appl. Polym. Sci. , 2020 . e49863 DOI:10.1002/app.49863http://doi.org/10.1002/app.49863 .
Shen, E. D.; Österholm, A. M.; Reynolds, J. R . Out of sight but not out of mind: the role of counter electrodes in polymer-based solid-state electrochromic devices . J. Mater. Chem. C , 2015 . 3 9715 -9725 . DOI:10.1039/c5tc01964hhttp://doi.org/10.1039/c5tc01964h .
Li, Y.; Wang, J.; Tang, J.; Liu, Y.; He, Y . Conductive performances of solid polymer electrolyte films based on PVB/LiClO4 plasticized by PEG200, PEG400 and PEG600 . J. Power Sources , 2009 . 187 305 -311 . DOI:10.1016/j.jpowsour.2008.11.126http://doi.org/10.1016/j.jpowsour.2008.11.126 .
Fernández, M. D.; Fernández, M. J.; Hoces, P . Synthesis of poly(vinyl butyral)s in homogeneous phase and their thermal properties . J. Appl. Polym. Sci. , 2006 . 102 5007 -5017 . DOI:10.1002/app.25004http://doi.org/10.1002/app.25004 .
Sim, L. H.; Gan, S. N.; Chan, C. H.; Yahya, R . ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly(ethylene oxide) blends . Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. , 2010 . 76 287 -292 . DOI:10.1016/j.saa.2009.09.031http://doi.org/10.1016/j.saa.2009.09.031 .
Lim, Y. S.; Jung, H.; Hwang, H . Fabrication of PEO-PMMA-LiClO4-based solid polymer electrolytes containing silica aerogel particles for all-solid-state lithium batteries . Energies , 2018 . 11 2559 DOI:10.3390/en11102559http://doi.org/10.3390/en11102559 .
Sônego, M.; Costa, L. C.; Ambrósio, J. D . Flexible thermoplastic composite of polyvinyl butyral (PVB) and waste of rigid Polyurethane foam . Polímeros. , 2015 . 25 175 -180 . DOI:info:doi/10.1590/0104-1428.1944http://doi.org/info:doi/10.1590/0104-1428.1944 .
Dhaliwal, A. K.; Hay, J. N . The characterization of polyvinyl butyral by thermal analysis . Thermochimica Acta , 2002 . 391 245 -255 . DOI:10.1016/S0040-6031(02)00187-9http://doi.org/10.1016/S0040-6031(02)00187-9 .
Yu, J.; Sun, L. Ma, C.; Qiao, Y.; Yao, H . Thermal degradation of PVC: a review . Waste Management , 2015 . 48 300 -314 . DOI:10.1016/j.wasman.2015.11.041http://doi.org/10.1016/j.wasman.2015.11.041 .
Stenze, H.; Kraft, A.; Heckner, K. H.; Rottmann, M.; Steuer, M.; Papenfuhs, B. Electrochromic glazing with an ion-conducting PVB interlayer. Conference: GPD Glass Processing, Finnland, Conference Proceedings Book, 2003, p. 423.
Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications. 2E, ed., Wiley, 2008, p.386.
0
浏览量
6
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构