a.Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
b.State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
c.School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
cuishuxun@swjtu.edu.cn
Scan for full text
Jin-Xia Yang, Hu-Jun Qian, Zheng Gong, 等. TOC GraphicThe single-chain elasticity of POM obtained in nonane can be described well by the QM-FRC model when the rotating unit length is 0.144 nm (C―O bond length), indicating that the inherent elasticity of POM was obtained.[J]. Chinese Journal of Polymer Science, 2022,40(4):333-337.
Jin-Xia Yang, Hu-Jun Qian, Zheng Gong, et al. Stretching Elasticity and Flexibility of Single Polyformaldehyde Chain[J]. Chinese Journal of Polymer Science, 2022,40(4):333-337.
Jin-Xia Yang, Hu-Jun Qian, Zheng Gong, 等. TOC GraphicThe single-chain elasticity of POM obtained in nonane can be described well by the QM-FRC model when the rotating unit length is 0.144 nm (C―O bond length), indicating that the inherent elasticity of POM was obtained.[J]. Chinese Journal of Polymer Science, 2022,40(4):333-337. DOI: 10.1007/s10118-022-2679-3.
Jin-Xia Yang, Hu-Jun Qian, Zheng Gong, et al. Stretching Elasticity and Flexibility of Single Polyformaldehyde Chain[J]. Chinese Journal of Polymer Science, 2022,40(4):333-337. DOI: 10.1007/s10118-022-2679-3.
In this work, the single-chain elasticity of polyformaldehyde (POM) is studied, for the first time, by employing atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS). We find that the single-chain elasticity of POM in a nonpolar organic solvent (nonane) can be described well by a theoretical model (QM-FRC model), when the rotating unit length is 0.144 nm (C―O bond length). After comparison, POM is more flexible than polystyrene (a typical polymer with C―C backbone) at the single-chain level, which is reasonable since the C―O bond has a lower rotation barrier than C―C bond. This result indicates that the flexibility of a polymer chain can be tuned by the C―O bond proportion in backbone, which casts new light on the rational design of new synthetic polymers in the future.
PolyformaldehydeSingle molecule force spectroscopyInherent elasticityFlexibilityQM-FRC model
Mie, G.; Hengstenberg, J.; Staudinger, H.; Johner, H.; Signer, R . Der polymere Formaldehyd, ein Modell der Cellulose . Naturwissenschaften , 1927 . 15 379 -380. .
Mark, J. E. Physical properties of polymers handbook. Springer: New York, 2007.
Hama, H.; Tashiro, K . Structural changes in non-isothermal crystallization process of melt-cooled polyoxymethylene[II] evolution of lamellar stacking structure derived from SAXS and WAXS data analysis . Polymer , 2003 . 44 2159 -2168 . DOI:10.1016/S0032-3861(03)00093-4http://doi.org/10.1016/S0032-3861(03)00093-4 .
Bai, S.; Liu, J.; Wang, Q . Effect of PEO on nonisothermal crystallization of POM in POM/PEO blends . Polym. Mater. Sci. Eng. , 2007 . 23 136 -139. .
Carazzolo, G . Structure of the normal crystal form of polyoxymethylene . J. Polym. Sci., Part A: Polym. Chem. , 1963 . 1 1573 -1583. .
Komatsu, T.; Enoki, S.; Aoshima, A . The effects of pressure on drawing polyoxymethylene: 1. Processing . Polymer , 1991 . 32 1983 -1987 . DOI:10.1016/0032-3861(91)90162-Chttp://doi.org/10.1016/0032-3861(91)90162-C .
Brew, B.; Ward, I. M . Study of the production of ultra-high modulus polyoxymethylene by tensile drawing at high temperatures . Polymer , 1978 . 19 1338 -1344 . DOI:10.1016/0032-3861(78)90319-1http://doi.org/10.1016/0032-3861(78)90319-1 .
Grassie, N.; Roche, R. S . Some solution properties of polyoxymethylenes . J. Polym. Sci., Part C: Polym. Symp. , 1968 . 16 4207 -4213. .
Stockmayer, W. H.; Chan, L. L . Solution properties of polyoxymethylene . J. Polym. Sci., Part A-2 , 1966 . 4 437 -446 . DOI:10.1002/pol.1966.160040313http://doi.org/10.1002/pol.1966.160040313 .
Dudina, L. A.; Zharova, T. È.; Karmilova, L. V.; Yenikolopyan, N. S . The effect of stabilizing additives in the degradation of polyformaldehyde . Polym. Sci. U.S.S.R. , 1964 . 6 2137 -2144 . DOI:10.1016/0032-3950(64)90537-4http://doi.org/10.1016/0032-3950(64)90537-4 .
Janshoff, A.; Neitzert, M.; Oberdörfer, Y.; Fuchs, H . Force spectroscopy of molecular systems-single molecule spectroscopy of polymers and biomolecules . Angew. Chem. Int. Ed. , 2000 . 39 3212 -3237 . DOI:10.1002/1521-3773(20000915)39:18<3212::AID-ANIE3212>3.0.CO;2-Xhttp://doi.org/10.1002/1521-3773(20000915)39:18<3212::AID-ANIE3212>3.0.CO;2-X .
Li, H.; Cao, Y . Protein mechanics: from single molecules to functional biomaterials . Acc. Chem. Res. , 2010 . 43 1331 -1341 . DOI:10.1021/ar100057ahttp://doi.org/10.1021/ar100057a .
Li, I. T. S.; Walker, G. C . Signature of Hydrophobic hydration in a single polymer . Proc. Natl. Acad. Sci. U. S. A. , 2011 . 108 16527 -16532 . DOI:10.1073/pnas.1105450108http://doi.org/10.1073/pnas.1105450108 .
Liu, K.; Song, Y.; Feng, W.; Liu, N.; Zhang, W.; Zhang, X . Extracting a single polyethylene oxide chain from a single crystal by a combination of atomic force microscopy imaging and single-molecule force spectroscopy: toward the investigation of molecular interactions in their condensed states . J. Am. Chem. Soc. , 2011 . 133 3226 -3229 . DOI:10.1021/ja108022hhttp://doi.org/10.1021/ja108022h .
Lv, S.; Dudek, D. M.; Cao, Y.; Balamurali, M . M.; Gosline, J.; Li, H. Designed biomaterials to mimic the mechanical properties of muscles . Nature , 2010 . 465 69 -73 . DOI:10.1038/nature09024http://doi.org/10.1038/nature09024 .
Tian, F.; Li, G.; Zheng, B.; Liu, Y.; Shi, S.; Deng, Y.; Zheng, P . Verification of sortase for protein conjugation by single-molecule force spectroscopy and molecular dynamics simulations . Chem. Commun. , 2020 . 56 3943 -3946 . DOI:10.1039/D0CC00714Ehttp://doi.org/10.1039/D0CC00714E .
Wu, J.; Li, P.; Dong, C.; Jiang, H.; Bin, X.; Gao, X.; Qin, M.; Wang, W.; Bin, C.; Cao, Y . Rationally designed synthetic protein hydrogels with predictable mechanical properties . Nat. Commun. , 2018 . 9 620 DOI:10.1038/s41467-018-02917-6http://doi.org/10.1038/s41467-018-02917-6 .
Yang, P.; Song, Y.; Feng, W.; Zhang, W . Unfolding of a single polymer chain from the single crystal by air-phase single-molecule force spectroscopy: toward better force precision and more accurate description of molecular behaviors . Macromolecules , 2018 . 51 7052 -7060 . DOI:10.1021/acs.macromol.8b01544http://doi.org/10.1021/acs.macromol.8b01544 .
Zhao, P.; Xu, C.; Sun, C.; Xia, J.; Sun, L.; Li, J.; Xu, H . Exploring the difference of bonding strength between silver (I) and chalcogenides in block copolymer systems . Polym. Chem. , 2020 . 11 7087 -7093 . DOI:10.1039/D0PY01201Ghttp://doi.org/10.1039/D0PY01201G .
Cheng, B.; Cui, S . The important roles of water in protein folding: an approach by single molecule force spectroscopy . Chinese J. Polym. Sci. , 2018 . 36 379 -384 . DOI:10.1007/s10118-018-2082-2http://doi.org/10.1007/s10118-018-2082-2 .
Fu, L.; Wang, H.; Li, H . Harvesting mechanical work from folding-based protein engines: from single-molecule mechanochemical cycles to macroscopic devices . CCS Chem. , 2019 . 1 138 -147. .
Xing, H.; Li, Z.; Wang, W.; Liu, P.; Liu, J.; Song, Y.; Wu, Z . L.; Zhang, W.; Huang, F. Mechanochemistry of an interlocked poly[2]catenane: from single molecule to bulk gel . CCS Chem. , 2020 . 2 513 -523 . DOI:10.31635/ccschem.019.201900043http://doi.org/10.31635/ccschem.019.201900043 .
Xia, J.; Li, H.; Xu, H . Measuring the strength of S/Se based dynamic covalent bonds . Acta Polymerica Sinica (in Chinese) , 2020 . 51 205 -213. .
Xiang, W.; Li, Z.; Xu, C. Q.; Li, J.; Zhang, W.; Xu, H . Quantifying the bonding strength of gold-chalcogen bonds in block copolymer systems . Chem. - Asian J. , 2019 . 14 1481 -1486 . DOI:10.1002/asia.201900332http://doi.org/10.1002/asia.201900332 .
Cai, W.; Xu, D.; Qian, L.; Wei, J.; Xiao, C.; Qian, L.; Lu, Z.; Cui, S . Force-induced transition of π-π stacking in a single polystyrene chain . J. Am. Chem. Soc. , 2019 . 141 9500 -9503 . DOI:10.1021/jacs.9b03490http://doi.org/10.1021/jacs.9b03490 .
Zhang, F.; Gong, Z.; Cai, W.; Qian, H.; Lu, Z.; Cui, S. . Single-chain mechanics of cis-1,4-polyisoprene and polysulfide . Polymer , 2022 . 240 124473 DOI:10.1016/j.polymer.2021.124473http://doi.org/10.1016/j.polymer.2021.124473 .
Cao, M.; Liu, X.; Cui, S . Single-molecule mechanics of polyacrylamide under different liquid environments . Chem. J. Chinese Univ. , 2021 . 42 2982 -2988. .
Oesterhelt, F.; Rief, M.; Gaub, H. E . Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water . New J. Phys. , 1999 . 1 6.1 -6.11. .
Zhang, W.; Zhang, X . Single molecule mechanochemistry of macromolecules . Prog. Polym. Sci. , 2003 . 28 1271 -1295 . DOI:10.1016/S0079-6700(03)00046-7http://doi.org/10.1016/S0079-6700(03)00046-7 .
Bao, Y.; Luo, Z.; Cui, S . Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications on advanced polymer materials . Chem. Soc. Rev. , 2020 . 49 2799 -2827 . DOI:10.1039/C9CS00855Ahttp://doi.org/10.1039/C9CS00855A .
Li, I. T. S.; Walker, G. C . Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions . J. Am. Chem. Soc. , 2010 . 132 6530 -6540 . DOI:10.1021/ja101155hhttp://doi.org/10.1021/ja101155h .
Qian, L.; Cai, W.; Xu, D.; Bao, Y.; Lu, Z.; Cui, S . Single-molecule studies reveal that water is a special solvent for amylose and natural cellulose . Macromolecules , 2019 . 52 5006 -5013 . DOI:10.1021/acs.macromol.9b00179http://doi.org/10.1021/acs.macromol.9b00179 .
Luo, Z.; Zhang, A.; Chen, Y.; Shen, Z.; Cui, S . How big is big enough? Effect of length and shape of side chains on the single-chain enthalpic elasticity of a macromolecule . Macromolecules , 2016 . 49 3559 -3565 . DOI:10.1021/acs.macromol.6b00247http://doi.org/10.1021/acs.macromol.6b00247 .
Hugel, T.; Rief, M.; Seitz, M.; Gaub, H. E.; Netz, R. R . Highly stretched single polymers: atomic-force-microscope experiments versus ab-initio theory . Phys. Rev. Lett. , 2005 . 94 48301 -48304 . DOI:10.1103/PhysRevLett.94.048301http://doi.org/10.1103/PhysRevLett.94.048301 .
Cui, S.; Yu, Y.; Lin, Z . Modeling single chain elasticity of single-stranded DNA: a comparison of three models . Polymer , 2009 . 50 930 -935 . DOI:10.1016/j.polymer.2008.12.012http://doi.org/10.1016/j.polymer.2008.12.012 .
Wang, K.; Pang, X.; Cui, S . Inherent stretching elasticity of a single polymer chain with a carbon-carbon backbone . Langmuir , 2013 . 29 4315 -4319 . DOI:10.1021/la400626xhttp://doi.org/10.1021/la400626x .
Tadokoro, H.; Chatani, Y.; Yoshihara, T.; Tahara, S.; Murahashi, S . Structural studies on polyethers, [-CH2)m-O-]n. II. Molecular structure of polyethylene oxide . Macromol. Chem. Phys. , 1964 . 73 109 -127 . DOI:10.1002/macp.1964.020730109http://doi.org/10.1002/macp.1964.020730109 .
Price, C. C. Polyethers. American Chemical Society: Washington, 1975; Vol. 1.
Xu, J.; Cao, N.; Xiao, Y.; Luo, Z.; Bao, Y.; Cui, S . Revealing the relationship between the biocompatibility and the bound water of poly(ethylene glycol) by single-molecule force spectroscopy . Acta Polymerica Sinica (in Chinese) , 2020 . 51 754 -761. .
Liu, C.; Cui, S.; Wang, Z.; Zhang, X . Single chain mechanical property of poly(N-vinyl-2-pyrrolidone) and interaction with small molecules . J. Phys. Chem. B , 2005 . 109 14807 -14812 . DOI:10.1021/jp050227mhttp://doi.org/10.1021/jp050227m .
0
浏览量
7
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构