a.College of Material and Chemical Engineering, Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China
b.College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
c.National Center for International Joint Research of Micro-Nano Molding Technology, School of Mechanics & Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
mlwzzu@163.com (L.W.M.)
xianhu.liu@zzu.edu.cn (X.H.L.)
Scan for full text
Zhong-Zhu Liu, Guo-Qiang Zheng, Hong-Hui Shi, 等. Simultaneous Enhancement of Toughness and Strength of Stretched
Zhong-Zhu Liu, Guo-Qiang Zheng, Hong-Hui Shi, et al. Simultaneous Enhancement of Toughness and Strength of Stretched
Zhong-Zhu Liu, Guo-Qiang Zheng, Hong-Hui Shi, 等. Simultaneous Enhancement of Toughness and Strength of Stretched
Zhong-Zhu Liu, Guo-Qiang Zheng, Hong-Hui Shi, et al. Simultaneous Enhancement of Toughness and Strength of Stretched
Herein, isotactic polypropylene films with small ,β,-nucleating agent content were fabricated ,via, a melt-extrusion-stretched technology with intended “shear-free” in barrel and die. Compared with neat films, the tensile strength, elongation at break and strain energy density at break of ,i,PP film with 0.05 wt% ,β,-nucleating agent are significantly improved by 13.8%, 39.6% and 90.6%, respectively, indicating the simultaneously enhanced toughness and strength. Additionally, the ,β,-crystal content gradually increases with increasing ,β,-NA content, while the relative total daughter content of ,α,- and ,β,-crystal exhibits opposite tendency. Moreover, nucleation and crystal growth induced by various ,β,-NA contents are different. This work proves an efficient strategy to enhance mechanical properties of isotactic polypropylene film ,via, controlling elongation flow and addition of appropriate ,β,-NA content.
Melt-extrusionIsotactic polypropyleneβ-Nucleating agentCrystallizationMechanical properties
Lotz, B.; Wittmann, J. C.; Lovinger, A. J. . Structure and morphology of poly(propylenes): a molecular analysis . Polymer , 1996 . 37 4979 -4992 . DOI:10.1016/0032-3861(96)00370-9http://doi.org/10.1016/0032-3861(96)00370-9 .
Liu, Z. Z.; Li, L. L.; Zheng, G. Q.; Liu, C. T.; Mi, L. W.; Li, Q.; Liu, X. H. . Effect of small amount of multi-walled carbon nanotubes on crystallization and thermal-mechanical properties of overflow microinjection molded isotactic polypropylene . Compos. Commun. , 2020 . 21 100381 DOI:10.1016/j.coco.2020.100381http://doi.org/10.1016/j.coco.2020.100381 .
Lovinger, A. J.; Chua, J. O.; Gryte, C. C. . Studies on the α and β forms of isotactic polypropylene by crystallization in a temperature gradient . J. Polym. Sci., Part B: Polym. Phys. , 1977 . 15 641 -656 . DOI:10.1002/pol.1977.180150405http://doi.org/10.1002/pol.1977.180150405 .
Zhang, C. Y.; Wang, B.; Yang, J. H.; Ding, D. W.; Yan, X. R.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Guo Z. H. . Synergies among the self-assembled β-nucleating agent and the sheared isotactic polypropylene matrix . Polymer , 2015 . 60 40 -49 . DOI:10.1016/j.polymer.2015.01.026http://doi.org/10.1016/j.polymer.2015.01.026 .
Byelov, D.; Panine, P.; Remerie, K. Biemond, E.; Alfonso, G. C.; de Jeu, W. H. . Crystallization under shear in isotactic polypropylene containing nucleators . Polymer , 2008 . 49 3076 -3083 . DOI:10.1016/j.polymer.2008.04.051http://doi.org/10.1016/j.polymer.2008.04.051 .
Chen, Y. H.; Yang, H. Q.; Yang, S.; Zhang, Q. Y.; Li, Z. M. . Temperature-dependent β-crystal growth in isotactic polypropylene with β-nucleating agent after shear flow . Chinese J. Polym. Sci. , 2017 . 35 1540 -1551 . DOI:10.1007/s10118-017-1990-xhttp://doi.org/10.1007/s10118-017-1990-x .
Varga, J.; Menyhárd, A. . Effect of solubility and nucleating duality of N,N'-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene . Macromolecules , 2007 . 40 2422 -2431 . DOI:10.1021/ma062815jhttp://doi.org/10.1021/ma062815j .
Mai, F.; Wang, K.; Yao, M. J.; Deng H.; Chen, F.; Fu, Q. . Superior reinforcement in melt-spun polyethylene/multiwalled carbon nanotube fiber through formation of a shish-kebab structure . J. Phys. Chem. B , 2010 . 114 10693 -10702 . DOI:10.1021/jp1019944http://doi.org/10.1021/jp1019944 .
Uchiyama, Y.; Iwasaki, S.; Ueoka, C.; Fukui, T.; Okamoto, K.; Yamaguchi, M. . Molecular orientation and mechanical anisotropy of polypropylene sheet containing N,N'-dicyclohexyl-2,6-naphthalenedicarboxamide . J. Polym. Sci., Part B: Polym. Phys. , 2009 . 47 424 -433 . DOI:10.1002/polb.21647http://doi.org/10.1002/polb.21647 .
Liu, Z. Z.; Liu, X. H.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y.; Yin, R.; Guo Z. H. . Mechanical enhancement of melt-stretched β-nucleated isotactic polypropylene: the role of lamellar branching of β-crystal . Polym. Test. , 2017 . 58 227 -235 . DOI:10.1016/j.polymertesting.2017.01.002http://doi.org/10.1016/j.polymertesting.2017.01.002 .
Zheng, G. Q.; Li, S. W.; Zhang, X. L.; Liu, C. T.; Dai, K.; Chen, J. B.; Li, Q.; Peng, X. F.; Shen, C. Y. . Negative effect of stretching on the development of β-phase in β-nucleated isotactic polypropylene . Polym. Int. , 2011 . 60 1016 -1023 . DOI:10.1002/pi.3033http://doi.org/10.1002/pi.3033 .
Wu, Z. Q.; Wang, G.; Zhang, M. W.; Wang, K.; Fu, Q. . Facilely assess the soluble behaviour of the β-nucleating agent by gradient temperature field for the construction of heterogeneous crystalline-frameworks in iPP . Soft Matter. , 2015 . 12 594 -601. .
Liu, Z. Z.; Liu, X. H.; Li, L. L.; Zheng, G. Q.; Liu, C. T.; Qin, Q.; Mi, L. W. . Crystalline structure and remarkably enhanced tensile property of β-isotactic polypropylene via overflow microinjection molding . Polym. Test. , 2019 . 76 448 -454 . DOI:10.1016/j.polymertesting.2019.04.002http://doi.org/10.1016/j.polymertesting.2019.04.002 .
Zhang, Y. F.; Lin, X. F.; Hu, H. . Combined effect of chemically compound graphene oxide-calcium pimelate on crystallization behavior, morphology and mechanical properties of isotactic polypropylene . Polym. Adv. Technol. , 2020 . 31 2301 -2311. .
Zhang, Y. F.; Lin, X. F.; Yan, L.; Li, Y.; He, B. . Synergistic nucleation effect of calcium sulfate whisker and β-nucleating agent dicyclohexyl-terephthalamide in isotactic polypropylene . J. Therm. Anal. Calorim. , 2020 . 139 343 -352 . DOI:10.1007/s10973-019-08424-0http://doi.org/10.1007/s10973-019-08424-0 .
Broda, J.; Baczek, M.; Fabia, J.; Binias, D.; Fryczkowski, R. . Nucleating agents based on graphene and graphene oxide for crystallization of the β-form of isotactic polypropylene . J. Mater. Sci. , 2020 . 55 1436 -1450 . DOI:10.1007/s10853-019-04045-yhttp://doi.org/10.1007/s10853-019-04045-y .
Liu, X. H.; Dai, K.; Hao, X. Q.; Zheng, G. Q.; Liu, C. T.; Schubert, D. W.; Shen, C. Y. . Crystalline structure of injection molded β-isotactic polypropylene analysis of the oriented shear zone . Ind. Eng. Chem. Res. , 2013 . 52 11996 -12002 . DOI:10.1021/ie401162chttp://doi.org/10.1021/ie401162c .
Liu, Z. Z.; Liu, X. H.; Liu, C. T.; Shen, C. Y.; Dai, K.; Zheng, G. Q. . New insight into lamellar branching of β-nucleated isotactic polypropylene upon melt-stretching: WAXD and SAXS study . J. Mater. Sci. , 2015 . 50 599 -604 . DOI:10.1007/s10853-014-8618-0http://doi.org/10.1007/s10853-014-8618-0 .
Fujiyama, M.; Wakino, T.; Kawasaki, Y. . Structure of skin layer in injection-molded polypropylene . J. Appl. Polym. Sci. , 2010 . 35 29 -49. .
Shen, J. F.; Zhou, Y. F.; Lu, Y.; Wang, B. H.; Shen, C. Y.; Chen, J. B.; Zhang, B. . Later stage melting of isotactic polypropylene . Macromolecules , 2020 . 53 2136 -2144 . DOI:10.1021/acs.macromol.9b01880http://doi.org/10.1021/acs.macromol.9b01880 .
Larin, B.; Avila-Orta, C. A.; Somani, R. H.; Hsiao, B. S.; Marom, G. . Combined effect of shear and fibrous fillers on orientation-induced crystallization in discontinuous aramid fiber/isotactic polypropylene composites . Polymer , 2008 . 49 295 -302 . DOI:10.1016/j.polymer.2007.11.024http://doi.org/10.1016/j.polymer.2007.11.024 .
Sabino, M. A.; Ronca, G.; Müller, A. J. . Heterogeneous nucleation and self-nucleation of poly(p-dioxanone) . J. Mater. Sci. , 2000 . 35 5071 -5084 . DOI:10.1023/A:1004831731756http://doi.org/10.1023/A:1004831731756 .
Chang, B. B.; Schneider, K.; Patil, N.; Stephan, R.; Gert, H. . Microstructure characterization in a single isotactic polypropylene spherulite by synchrotron microfocus wide angle X-ray scattering . Polymer , 2018 . 142 387 -393 . DOI:10.1016/j.polymer.2018.03.061http://doi.org/10.1016/j.polymer.2018.03.061 .
Bassett, D. C. . Polymer spherulites: a modern assessment . J. Macrom. Sci., Part B , 2003 . 42 227 -256 . DOI:10.1081/MB-120017116http://doi.org/10.1081/MB-120017116 .
Norton, D. R.; Keller, A. . The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene . Polymer , 1985 . 26 704 -716 . DOI:10.1016/0032-3861(85)90108-9http://doi.org/10.1016/0032-3861(85)90108-9 .
Quan, L. J.; Zhang, X. D.; Xia, W. L.; Chen, Y. H.; Gong, L.; Liu, Z. G.; Zhang, Q. Y.; Zhong, G. J.; Li, Z. M.; Hsiao, B. S. . In situ synchrotron X-ray scattering studies on the temperature dependence of oriented β-crystal growth in isotactic polypropylene . Polym. Test. , 2020 . 90 106660 DOI:10.1016/j.polymertesting.2020.106660http://doi.org/10.1016/j.polymertesting.2020.106660 .
Luo, F.; Geng, C. Z.; Wang,; Deng, H.; Chen, F.; Fu, Q.; Na, B. . New understanding in tuning toughness of β-polypropylene: the role of β-nucleated crystalline morphology . Macromolecules , 2009 . 42 9325 -9331 . DOI:10.1021/ma901651fhttp://doi.org/10.1021/ma901651f .
Liu, Z. Z.; Zheng, G. Q.; Zheng, H. L.; Dai, K.; Liu, C. T.; Chen, J. B.; Shen, C. Y. . Microstructure and mechanical properties of isotactic polypropylene films fabricated via melt-extrusion and uniaxial-stretching . J. Macromol. Sci., Part B Phys. , 2016 . 55 158 -174 . DOI:10.1080/00222348.2015.1124980http://doi.org/10.1080/00222348.2015.1124980 .
Hoffman, J. D. . Role of reptation in the rate of crystallization of polyethylene fractions from the melt . Polymer , 1982 . 23 656 -670 . DOI:10.1016/0032-3861(82)90048-9http://doi.org/10.1016/0032-3861(82)90048-9 .
Na, B.; Zhang, Q.; Fu, Q. . Viscous-force-dominated tensile deformation behavior of oriented polyethylene . Macromolecules , 2006 . 39 2584 -2591 . DOI:10.1021/ma052496ghttp://doi.org/10.1021/ma052496g .
Karger-Kocsis, J.; Varga, J. . Effects of β-α transformation on the static and dynamic tensile behavior of isotactic polypropylene . J. Appl. Polym. Sci. , 1998 . 62 291 -300. .
Karger-Kocsis, J. . How does "phase transformation toughening" work in semicrystalline polymers? . Polym. Eng. Sci. , 2010 . 36 203 -210. .
Chu, F.; Yamaoka, T.; Ide, H.; Kimura, Y. . Microvoid formation process during the plastic deformation of β-form polypropylene . Polymer , 1994 . 35 3442 -3448 . DOI:10.1016/0032-3861(94)90906-7http://doi.org/10.1016/0032-3861(94)90906-7 .
Huy, T.; Adhikari, R.; Lüpke, T.; Henning, S.; Michler, G. H. . Molecular deformation mechanisms of isotactic polypropylene in α- and β-crystal forms by FTIR spectroscopy . J. Polym. Sci., Part B: Polym. Phys. , 2004 . 42 4478 -4488 . DOI:10.1002/polb.20117http://doi.org/10.1002/polb.20117 .
Chang, B. B.; Schneider, K.; Vogel, R.; Heinrich, G. . Influence of nucleating agent self-assembly on structural evolution of isotactic polypropylene during uniaxial stretching . Polymer , 2018 . 138 329 -342 . DOI:10.1016/j.polymer.2018.01.081http://doi.org/10.1016/j.polymer.2018.01.081 .
Kawai, T.; Soeno, S.; Kuroda, S. I.; Kuroda, S. I.; Koido, S.; Nemoto, T.; Tamada, M. . Deformation induced void formation and growth in β nucleated isotactic polypropylene . Polymer , 2019 . 178 121523 DOI:10.1016/j.polymer.2019.05.065http://doi.org/10.1016/j.polymer.2019.05.065 .
Shi, S. Y.; Pan, Y. M.; Lu, B.; Zheng, G. Q.; Liu, C. T.; Dai, K.; Shen, C. Y. . Realizing the simultaneously improved toughness and strength of ultra-thin LLDPE parts through annealing . Polymer , 2013 . 54 6843 -6852 . DOI:10.1016/j.polymer.2013.10.020http://doi.org/10.1016/j.polymer.2013.10.020 .
Liu, Z. Z.; Zheng, G. Q.; Dai, K.; Liu, C. T,; Shen, C. Y. . Simultaneously improving tensile strength and toughness of melt-spun β-nucleated isotactic polypropylene fibers . J. Appl. Polym. Sci. , 2016 . 133 43454 .
Sakuri, S.; Surojo, E.; Ariawan, D. . Experimental investigation on mechanical characteristics of composite reinforced cantala fiber (CF) subjected to microcrystalline cellulose and fumigation treatments . Compos. Commun. , 2020 . 21 100419 DOI:10.1016/j.coco.2020.100419http://doi.org/10.1016/j.coco.2020.100419 .
Awad, S. A.; Khalaf, E. M. . Investigation of improvement of properties of polypropylene modified by nano silica composites . Compos. Commun. , 2019 . 12 59 -63 . DOI:10.1016/j.coco.2018.12.008http://doi.org/10.1016/j.coco.2018.12.008 .
Fujiyama, M. . Structure and properties of injection moldings of β-crystal nucleator-added PP . Int. Polym. Process. , 1998 . 13 291 -298 . DOI:10.3139/217.980291http://doi.org/10.3139/217.980291 .
Luo, F.; Wang, K.; Ning, N. Y.; Geng, C. Z. . Dependence of mechanical properties on β-form content and crystalline morphology for β-nucleated isotactic polypropylene . Polym. Adv. Technol. , 2011 . 22 2044 -2054 . DOI:10.1002/pat.1718http://doi.org/10.1002/pat.1718 .
0
浏览量
5
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构