a.Amity Institute for Advanced Research and Studies (Materials & Devices), Amity University, Sector-125, Noida 201303, India
b.G L Bajaj Institute of Technology and Management, Greater Noida-201306, Uttar Pradesh, India
drprashantdb1980@gmail.com
Scan for full text
Prashant Shukla, Pooja Saxena. Polymer Nanocomposites in Sensor Applications: A Review on Present Trends and Future Scope[J]. Chinese Journal of Polymer Science, 2021,39(6):665-691.
Prashant Shukla, Pooja Saxena. Polymer Nanocomposites in Sensor Applications: A Review on Present Trends and Future Scope[J]. Chinese Journal of Polymer Science, 2021,39(6):665-691.
Prashant Shukla, Pooja Saxena. Polymer Nanocomposites in Sensor Applications: A Review on Present Trends and Future Scope[J]. Chinese Journal of Polymer Science, 2021,39(6):665-691. DOI: 10.1007/s10118-021-2553-8.
Prashant Shukla, Pooja Saxena. Polymer Nanocomposites in Sensor Applications: A Review on Present Trends and Future Scope[J]. Chinese Journal of Polymer Science, 2021,39(6):665-691. DOI: 10.1007/s10118-021-2553-8.
Polymers are crucial constituents of modern electronic devices. They can be used in their pristine, composite or nanocomposite forms for several domestic and industrial applications with innumerable unique possibilities. Polymer nanocomposites have gained wide theoretical interest and numerous practical applications in diverse fields of science and technology as they bestow the materials not only with virtuous processability but also with exceptional functionalities. It is evidenced that the electrical conductance of polymer nanocomposite is governed by the conductive filler networks within the polymer matrix. Hence, insignificant variation in the conductive networks can result in noteworthy variations in the output electric signal of polymer nanocomposite. Exploiting this stimuli-responsive performance of conductive networks to the physical parameters, polymer nanocomposites can be harnessed to fabricate novel sensitive sensors to detect vital physical parameters ,viz,. strain/stress, pressure, temperature, solvent or vapor. Technical and phenomenological studies on polymer nanocomposites are still enduring. Advanced explanations are being sought but the mechanisms governing the formation of several polymer nanocomposites are still topics of debate in the material science community. Their in-depth investigation requires copious scientific work. This review analytically sketches the synthesis, microstructures, physiochemical properties and the underlying mechanisms for stimuli-responsiveness to the physical parameters of the polymer nanocomposites as well as their applications in various sensitive sensors and detectors. Thus, it became evocative for this review to focus on their processing methodologies, physiochemical physiognomies, classification and probable potentials of polymer nanocomposites. This review primarily presents the current literature survey on polymer composites and the gap areas in the study encourages the objective of the present review article. Finally, the status, perspectives and the advantages of specific polymer nanocomposites at present are summarized. The attention of this review is drawn to the present trends, challenges and future scope in this field of study. Finally, the vital concern and future challenge in utilizing the stimulus responsive behavior of polymer nanocomposites to design versatile sensors for real time applications are elaborately discussed.
PolymersPolymer nanocompositesSensorsCNTGraphene
MacDiarmid, A. G. . Synthetic metals: a novel role for organic polymers (Nobel Lecture) . Angew. Chem. Int. Ed. , 2001 . 40 2581 -2590 . DOI:10.1002/1521-3773(20010716)40:14%3C2581::AID-ANIE2581%3E3.0.CO;2-2http://doi.org/10.1002/1521-3773(20010716)40:14%3C2581::AID-ANIE2581%3E3.0.CO;2-2 .
Ramakrishnan, S. . Conducting polymers from a laboratory curiosity to the market place . Resonance-J. Sci. Edu. , 1997 . 2 48 -58 . DOI:10.1007/s12045-011-0141-xhttp://doi.org/10.1007/s12045-011-0141-x .
Schultze, J. W.; Karabulutu, H. . Application potential of conducting polymers . Electrochim. Acta , 2005 . 50 1739 -1745 . DOI:10.1016/j.electacta.2004.10.023http://doi.org/10.1016/j.electacta.2004.10.023 .
Bakhshi, A. K.; Bhalla, G. . Electrically conducting polymers: materials of the twenty first century . J. Scientif. Indust. Res. , 2004 . 63 715 -728. .
Xia, Y.; Sun, K.; Ouyang, J. . Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices . Adv. Mater. , 2012 . 24 2436 -2440 . DOI:10.1002/adma.201104795http://doi.org/10.1002/adma.201104795 .
Giannelis, E. P.; Krishnamoorti, R.; Manias, E. . Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes . Adv. Polym. Sci. , 1999 . 138 107 -147 . DOI:10.1007/3-540-69711-X_3http://doi.org/10.1007/3-540-69711-X_3 .
Kai, W.; Hirota, Y.; Hua, L.; Inoue, Y. . Thermal and mechanical properties of a poly(ε-caprolactone)/graphite oxide composite . J. Appl. Poly. Sci. , 2008 . 107 1395 -1400 . DOI:10.1002/app.27210http://doi.org/10.1002/app.27210 .
Paul, D. R.; Robeson, L. M. . Polymer nanotechnology: nanocomposites . Polymer , 2008 . 49 3187 -3204 . DOI:10.1016/j.polymer.2008.04.017http://doi.org/10.1016/j.polymer.2008.04.017 .
Auffan, M.; Rose, J.; Bottero, J. Y.; Lowry, G. V.; Jolivet, J. P.; Wiesner, M. R. . Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective . Nat. Nanotechnol. , 2009 . 10 634 -641 . DOI:10.1038/nnano.2009.242http://doi.org/10.1038/nnano.2009.242 .
Xue, L.; Dai, S.; Li, Z. . Biodegradable shape-memory block co-polymers for fast self-expandable stents . Biomaterials , 2010 . 31 8132 -8140 . DOI:10.1016/j.biomaterials.2010.07.043http://doi.org/10.1016/j.biomaterials.2010.07.043 .
Kim, H.; Abdala, A. A.; Macoshko, C. W. . Graphene/polymer nanocomposites . Macromolecules , 2010 . 43 6515 -6530 . DOI:10.1021/ma100572ehttp://doi.org/10.1021/ma100572e .
Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. . Graphene based polymer nanocomposites . Polymer , 2011 . 52 5 -25 . DOI:10.1016/j.polymer.2010.11.042http://doi.org/10.1016/j.polymer.2010.11.042 .
Wu, D.; Zhang, F.; Liang, H.; Feng, X. . Nanocomposites and macroscopic materials: assembly of chemically modified graphene sheets . Chem. Soc. Rev. , 2012 . 42 6160 -6177 . DOI:10.1039/C2CS35179Jhttp://doi.org/10.1039/C2CS35179J .
Layek, R. K.; Nand, A. K. . A review on synthesis and properties of polymer functionalized graphene . Polymer , 2013 . 54 5087 -5103 . DOI:10.1016/j.polymer.2013.06.027http://doi.org/10.1016/j.polymer.2013.06.027 .
Hu, K.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. . Graphene-polymer nanocomposites for structural and functional applications . Prog. Polym. Sci. , 2014 . 39 1934 -1972 . DOI:10.1016/j.progpolymsci.2014.03.001http://doi.org/10.1016/j.progpolymsci.2014.03.001 .
Wang, M.; Duan, X.; Xu, Y.; Duan, X. . Functional three-dimensional graphene/polymer composites . ACS Nano , 2016 . 10 7231 -7247 . DOI:10.1021/acsnano.6b03349http://doi.org/10.1021/acsnano.6b03349 .
Phiri, J.; Gane, P.; Maloney, T. C. . General overview of graphene: production, properties and application in polymer composites . Mat. Sci. Eng. B , 2017 . 215 9 -28 . DOI:10.1016/j.mseb.2016.10.004http://doi.org/10.1016/j.mseb.2016.10.004 .
Kumar, S. K.; Brian, C.; Benicewicz, R. A.; Vaja Karen, W. . 50th Anniversary perspective: are polymer nanocomposites practical for applications? . Macromolecules , 2017 . 50 714 -731 . DOI:10.1021/acs.macromol.6b02330http://doi.org/10.1021/acs.macromol.6b02330 .
Huang, J.; Zhu, Y.; Jiang, W.; Tang, Q. . Parallel carbon nanotube stripes in polymer thin film with tunable microstructures and anisotropic conductive properties . Compos. Part A: Appl. Sci. Manuf. , 2015 . 69 240 -246 . DOI:10.1016/j.compositesa.2014.11.023http://doi.org/10.1016/j.compositesa.2014.11.023 .
Huang, J.; Zhu, Y.; Jiang, W.; Yin, J.; Tang, Q.; Yang, X. . Parallel carbon nanotube stripes in polymer thin film with remarkable conductive anisotropy . ACS Appl. Mater. Interfaces , 2014 . 6 1754 -1758 . DOI:10.1021/am404758dhttp://doi.org/10.1021/am404758d .
Mao, C.; Huang, J.; Zhu, Y.; Jiang, W.; Tang, Q.; Ma, X. . Tailored parallel graphene stripes in plastic film with conductive anisotropy by shear-induced self-assembly . J. Phys. Chem. Lett. , 2013 . 4 43 -47 . DOI:10.1021/jz301811bhttp://doi.org/10.1021/jz301811b .
Bovery, F.; Winslow, F. H. Chapter 1-The nature of macromolecules. In Macromolecules-an introduction to polymer science. Bovery, F.; Winslow, F. H. (eds.), Academic Press, 1979, 1−21.
Cervenka, A. Advantages and disadvantages of thermoset and thermoplastic matrices for continuous fibre composites. In Mechanics of composite materials and structures. Soares, C. M. M.; Freitas, M. J. M. (eds) NATO Science Series (Series E: Mathematical and Physical Sciences) 1999, 361, 291−298.
Friedrich, K.; Haupert, F.; Hou, M.; Klinkmuller, V. Fundamental aspects in manufacturing of thermoplastic composite materials In Advanced technology for design and fabrication of composite materials and science. Springer. Sih, G. C.; Carpinteri, A.; Surace, G. (eds) Dordrecht, 1995, 333−348
Mallick, P. Fibre reinforced composites: materials, manufacturing and design. 2nd Edition, Marcel Dekker Inc., New York, 1993.
Yin, Z.; Wu, S.; Zhou, X.; Huang, X.; Zhang, B.; Zhang, H. . Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells . Small , 2010 . 6 307 -312 . DOI:10.1002/smll.200901968http://doi.org/10.1002/smll.200901968 .
Sankaran, S.; Deshmukh, K.; Ahamed, M. B.; Pasha, S. K. K. . Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review . Compos. Part A: Appl. Sci. Manuf. , 2018 . 114 49 -71 . DOI:10.1016/j.compositesa.2018.08.006http://doi.org/10.1016/j.compositesa.2018.08.006 .
Chee, W. K., Lim, H. N., Huang, N. M., Harrison, I. . Nanocomposites of graphene/polymers: a review . RSC Adv. , 2015 . 5 68014 -68051 . DOI:10.1039/C5RA07989Fhttp://doi.org/10.1039/C5RA07989F .
Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S. Lee, J. H. . Recent advances in graphene based polymer composites . Prog. Polym. Sci. , 2010 . 35 1350 -1375 . DOI:10.1016/j.progpolymsci.2010.07.005http://doi.org/10.1016/j.progpolymsci.2010.07.005 .
Compton, O. C.; Nguyen, S. T. . Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials . Small , 2010 . 6 711 -723 . DOI:10.1002/smll.200901934http://doi.org/10.1002/smll.200901934 .
Huang, X.; Yin, Z.; Wu, S.; Qi, X.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. . Graphene-based materials: synthesis, characterization, properties, and applications . Small , 2011 . 7 1876 -1902 . DOI:10.1002/smll.201002009http://doi.org/10.1002/smll.201002009 .
Young, R. J.; Kinloch, I. A.; Gong, L.; Novoselov, K. . The mechanics of graphene nanocomposites: a review . Compos. Sci. Technol. , 2012 . 72 1459 -1476 . DOI:10.1016/j.compscitech.2012.05.005http://doi.org/10.1016/j.compscitech.2012.05.005 .
Bhattacharya, M. . Polymer nanocomposites-a comparison between carbon nanotubes, graphene, and clay as nanofillers . Materials , 2016 . 9 262 DOI:10.3390/ma9040262http://doi.org/10.3390/ma9040262 .
Yang, M.; Hou, Y.; Kotov, N. A. . Graphene-based multilayers: critical evaluation of materials assembly techniques . Nano Today , 2012 . 7 430 -447 . DOI:10.1016/j.nantod.2012.08.006http://doi.org/10.1016/j.nantod.2012.08.006 .
Sun, X.; Sun, H.; Li, H.; Peng, H. . Developing polymer composite materials: carbon nanotubes or graphene? . Adv. Mater. , 2013 . 25 5153 -5176 . DOI:10.1002/adma.201301926http://doi.org/10.1002/adma.201301926 .
Alam, F. E.; Dai, W.; Yang, M.; Du, S.; Li, X.; Yu, J.; Jiang, N.; Lin, C. T. . In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity . J. Mater. Chem. A , 2017 . 5 6164 -6169 . DOI:10.1039/C7TA00750Ghttp://doi.org/10.1039/C7TA00750G .
Narimissa, E.; Gupta, R. K.; Bhaskaran, M.; Sriram, S. . Influence of nano-graphite platelet concentration on onset of crystalline degradation in polylactide composites . Polym. Deg. Stabil. , 2012 . 97 829 -832 . DOI:10.1016/J.POLYMDEGRADSTAB.2012.02.010http://doi.org/10.1016/J.POLYMDEGRADSTAB.2012.02.010 .
Elham, A.; Masoumeh, G.; Saeed, S. . Electrochemical sensing based on carbon nanoparticles: a review . Sensor. Actuat. B , 2019 . 293 183 -209 . DOI:10.1016/j.snb.2019.04.075http://doi.org/10.1016/j.snb.2019.04.075 .
Cui, X.; Sun, S.; Han, B.; Yun, X.; Ouyang, J.; Zeng, S.; Ou, J. . Mechanical, thermal and electromagnetic properties of nanographite platelets modified cementitious composites . Compos. Part A: Appl. Sci. Manuf. , 2017 . 93 49 -58 . DOI:10.1016/j.compositesa.2016.11.017http://doi.org/10.1016/j.compositesa.2016.11.017 .
Kubacka, A.; Serrano, C.; Ferrer, M.; Lunsdorf, H.; Bielecki, P.; Cerrada, M. A. L.; Gracia, M. . High performance dual action polymer- TiO2 nanocomposite film via melting processing . Nano Lett. , 2007 . 7 2529 -2534 . DOI:10.1021/nl0709569http://doi.org/10.1021/nl0709569 .
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V. . Electric field effect in atomically thin carbon films . Science , 2004 . 306 666 -669 . DOI:10.1126/science.1102896http://doi.org/10.1126/science.1102896 .
Xia, J.; Chen, F.; Li, J.; Tao, N. . Measurement of the quantum capacitance of graphene . Nat. Nanotechnol. , 2009 . 4 505 -509 . DOI:10.1038/nnano.2009.177http://doi.org/10.1038/nnano.2009.177 .
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A. . Graphene-based composite materials . Nature , 2006 . 442 282 -286 . DOI:10.1038/nature04969http://doi.org/10.1038/nature04969 .
Ajayan, P. M. . Nanotubes from carbon . Chem. Rev. , 1999 . 99 1787 -1799 . DOI:10.1021/cr970102ghttp://doi.org/10.1021/cr970102g .
Huang, J.; Mao, C.; Zhu, Y.; Jiang, W.; Yang, X. . Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds . Carbon , 2014 . 73 267 -274 . DOI:10.1016/j.carbon.2014.02.063http://doi.org/10.1016/j.carbon.2014.02.063 .
Chen, J.; Cui, X.; Zhu, Y.; Jiang, W.; Sui, K. . Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of π-π interactions and dipole-dipole interactions . Carbon , 2017 . 114 441 -448 . DOI:10.1016/j.carbon.2016.12.048http://doi.org/10.1016/j.carbon.2016.12.048 .
Cui, X.; Chen, J.; Zhu, Y.; Jiang, W. . Natural sunlight-actuated shape memory materials with reversible shape change and self-healing abilities based on carbon nanotubes filled conductive polymer composites . Chem. Eng. J. , 2020 . 382 122823 DOI:10.1016/j.cej.2019.122823http://doi.org/10.1016/j.cej.2019.122823 .
Hishiyama, Y.; Kaburagi, Y.; Inagaki, M. Chemistry and physics of carbon. Marcel Dekker Inc. 1991, 23, 2−68.
Fim, F.; Guterres, J. M.; Basso, N. R. S.; Galland, G. B. . Polyethylene/graphite nanocomposites obtained by in situ polymerization . J. Polym. Sci., Part A: Polym. Chem. , 2010 . 48 692 DOI:10.1002/pola.23822http://doi.org/10.1002/pola.23822 .
Cho, D.; Lee, S.; Yang, G.; Fukushima, H.; Drzal, L. T. . Dynamic mechanical and thermal properties of phenylethynyl terminated polyimide composites reinforced with expanded graphite nanoplatelets . Macromol. Mater. Eng. , 2005 . 290 -179 . DOI:10.1002/mame.200400281http://doi.org/10.1002/mame.200400281 .
Sumin, K.; Drzal, L. T. . Comparison of exfoliated graphite nanoplatelets (xGnP) and CNTs for Reinforcement of EVA nanocomposites fabricated by solution compounding method and three screw rotating systems . J. Adh. Sci. Technol. , 2009 . 23 1623 -1638 . DOI:10.1163/156856109X440984http://doi.org/10.1163/156856109X440984 .
Ramanathan, T.; Abdala, A.; Stankovich, S. . Functionalized graphene sheets for polymer nanocomposites . Nat. Nanotechnol. , 2008 . 3 327 -331 . DOI:10.1038/nnano.2008.96http://doi.org/10.1038/nnano.2008.96 .
Xu, D.; Sridhar, V.; Pham, T. T.; Kim, J. K. . Dispersion, mechanical and thermal properties of nano graphite platelets reinforced flouro-elastomer composites . e-Polymers , 2008 . 8 23 DOI:10.1515/epoly.2008.8.1.237http://doi.org/10.1515/epoly.2008.8.1.237 .
Chen, J. ; Cui, X.; Sui, K.; Zhu. Y.; Jiang, W. . Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure . Compos. Sci. Technol. , 2017 . 140 99 -105 . DOI:10.1016/j.compscitech.2016.12.029http://doi.org/10.1016/j.compscitech.2016.12.029 .
Tjong, S. C.; Mai, Y. W. Physical properties and applications of polymer nanocomposites. 1st Edition Woodhead Publishing, United Kingdom, 2010.
Alateyah, A. L.; Dhakal, H. N.; Zhang, Z. Y. . Processing, properties, and applications of polymer nanocomposites based on layer silicates: a review . Adv. Polym. Technol. , 2013 . 32 21368 -21403 . DOI:10.1002/adv.21368http://doi.org/10.1002/adv.21368 .
Sahu, D.; Sarkar, N.; Mohapatra, P.; Swain, S. K. . Nano gold hybrid polyvinyl alcohol films for sensing of Cu2+ ions . Chem. Select , 2019 . 4 9784 -9793 . DOI:10.1002/slct.201902167http://doi.org/10.1002/slct.201902167 .
Sahu, D.; Sarkar, N.; Sahoo, G.; Mohapatra, P.; Sarat, S. K. . Nano silver imprinted polyvinyl alcohol nanocomposite thin films for Hg2+ sensor . Sensor. Actuat. B: Chem. , 2017 . 246 96 -107 . DOI:10.1016/j.snb.2017.01.038http://doi.org/10.1016/j.snb.2017.01.038 .
Rueda, M. M.; Auscher, M.; Fulchiron, R.; Perie, T.; Martin, G.; Sonntag, P.; Cassagnau, P. . Rheology and applications of highly filled polymers. A review of current understanding . Prog. Polym. Sci. , 2017 . 66 22 -53 . DOI:10.1016/j.progpolymsci.2016.12.007http://doi.org/10.1016/j.progpolymsci.2016.12.007 .
Sun, H.; Chiu, Y.; Chen, W. . Renewable polymeric materials for electronic applications . Polym. J. , 2017 . 49 61 -73 . DOI:10.1038/pj.2016.95http://doi.org/10.1038/pj.2016.95 .
Das, T. K.; Prusty, S. . Graphene-based polymer composites and their applications . Polym. Plast. Technol. Eng. , 2013 . 52 319 -333 . DOI:10.1080/03602559.2012.751410http://doi.org/10.1080/03602559.2012.751410 .
Hulanick, A.; Glab, S.; Ingman, F. . Chemical sensors definitions and classifications . Pure Appl. Chem. , 1991 . 63 1247 -1250 . DOI:10.1351/pac199163091247http://doi.org/10.1351/pac199163091247 .
Aswal, D. K.; Gupta, S. K. Science and technology of chemiresistive gas sensor, Nova Science Publishers, New York. 2007, 33−94.
Ramgir, N.; Datta, N.; Kaur, M.; Kailasaganapathi, S.; Debnath, A. K.; Aswal, D. K.; Gupta, S. K. . Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects . Colloids Surf. A: Physiochem. Eng. Asp. , 2013 . 439 101 -116 . DOI:10.1016/j.colsurfa.2013.02.029http://doi.org/10.1016/j.colsurfa.2013.02.029 .
Tran, H. D.; Li, D.; Kaner, R. B. . 1D conducting polymer nanostructures: one dimensional conducting polymer nanostructures: bulk synthesis and applications . Adv. Mater. , 2009 . 21 1487 -1499 . DOI:10.1002/adma.200802289http://doi.org/10.1002/adma.200802289 .
Wang, T.; Huang, D.; Yang, Z. . A review on graphene-based gas/vapor sensors with unique properties and potential applications . Nano-Micro Lett. , 2016 . 8 95 -119 . DOI:10.1007/s40820-015-0073-1http://doi.org/10.1007/s40820-015-0073-1 .
Yoon, H.; Xie, J.; Abraham, J. K.; Varadan, V. K.; Ruffin, P. B. . An adaptive inverse method of control for a piezoelectric actuator . Smart Mater. Struct. , 2006 . 15 14 -20 . DOI:10.1088/0964-1726/15/1/004http://doi.org/10.1088/0964-1726/15/1/004 .
Grozdanov, A.; Tomova, A.; Dimitrov, A.; Polymer nanocomposite films as a potential Sensor. In Advanced sensors for safety and security. NATO science for peace and security series B: physics and biophysics. Vaseashta A.; Khudaverdyan S. (eds) 2013, 151-162. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-94-007-7003-4_12http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-94-007-7003-4_12
An, K. H.; Jeong, S. Y.; Hwang, H. R.; Lee, Y. H. . Enhanced sensitivity of a gas sensor incorporating single walled carbon nanotube-polypyrrole nanocomposites . Adv. Mater. , 2004 . 16 1005 -1009 . DOI:10.1002/adma.200306176http://doi.org/10.1002/adma.200306176 .
Al-Mashat, L. L.; Shin, K.; Kalantar-Zadeh, K.; Plessis, J. D.; Han, S. H.; Kojima, R. W.; Kaner, R. B.; Li, D.; Gou, X. L.; Ippolito, S. J.; Wlodarski, W. . Graphene/polyaniline nanocomposite for hydrogen sensing . Phys. Chem. C , 2010 . 114 16168 -16173 . DOI:10.1021/jp103134uhttp://doi.org/10.1021/jp103134u .
Yu, X.; Zhang, W.; Zhang, P.; Su, Z. . Fabrication technologies and sensing applications of graphene-based composite films: advances and challenges . Biosens. Bioelectron. , 2017 . 89 72 -84 . DOI:10.1016/j.bios.2016.01.081http://doi.org/10.1016/j.bios.2016.01.081 .
Chen, J.; Li, H.; Yu, Q.; Hu, Y.; Cui, X.; Zhu, Y.; Jiang, W. . Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers . Compos. Sci. Technol. , 2018 . 168 388 -396 . DOI:10.1016/j.compscitech.2018.10.025http://doi.org/10.1016/j.compscitech.2018.10.025 .
Chen, J.; Zhu, Y.; Jiang, W. . A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer . Compos. Sci. Technol. , 2020 . 186 107938 DOI:10.1016/j.compscitech.2019.107938http://doi.org/10.1016/j.compscitech.2019.107938 .
Omar, N. A. S.; Fen, Y. W.; Saleviter, S.; Kamil, Y. M.; Mohd, W.; Mustaqim, E.; Daniyal, M.; Abdullah, J.; Mahdi, M. A. . Experimental evaluation on surface plasmon resonance sensor performance based on sensitive hyperbranched polymer nanocomposite thin films . Sensor. Actuat. A: Phys. , 2020 . 303 111830 DOI:10.1016/j.sna.2020.111830http://doi.org/10.1016/j.sna.2020.111830 .
Thompson, C. M.; Smith, J. G.; Connell, J. W. . Polyimides prepared from 4,4’-(2-diphenylphosphinyl-1,4-phenylenedioxy) diphthalic anhydride for potential space applications . High Perform. Polym. , 2003 . 15 181 -195 . DOI:10.1177%2F0954008303015002003http://doi.org/10.1177%2F0954008303015002003 .
Samwel, S. W. . Low earth orbital atomic oxygen erosion effect on space craft material . Space Res. J. , 2014 . 7 1 -13 . DOI:10.3923/SRJ.2014.1.13http://doi.org/10.3923/SRJ.2014.1.13 .
Buczala, D. M.; Brunsvold, A. L.; Minton, T. K. . Erosion of Kapton H® by hyperthermal atomic oxygen . J. Spacecrafts Rockets , 2006 . 43 421 -425 . DOI:10.2514/1.16402http://doi.org/10.2514/1.16402 .
Wanasinghe, D.; Aslani, F.; Ma, G.; Habibi, D. . Review of polymer composites with diverse nanofillers for electromagnetic interference shielding . Nanomater. , 2020 . 10 541 -586 . DOI:10.3390/nano10030541http://doi.org/10.3390/nano10030541 .
Carpi, F.; Rossi, D. . Colours from electroactive polymers: electrochromic, electroluminescent and laser devices based on organic materials . Optics and Laser Technol , 2006 . 38 292 -305 . DOI:10.1016/j.optlastec.2005.06.019http://doi.org/10.1016/j.optlastec.2005.06.019 .
Plesu, N.; Ilia, G.; Pascariu, A.; Vlase, G. . Preparation, degradation of polyaniline doped with organic phosphorus acids and corrosion essays of polyaniline-acrylic blends . Synth. Metals , 2006 . 156 230 -238 . DOI:10.1016/j.synthmet.2005.11.006http://doi.org/10.1016/j.synthmet.2005.11.006 .
Snook, G. A.; Kao, P.; Best, A. S. . Conducting-polymer-based super capacitor devices and electrodes . J. Power Sources , 2011 . 196 1 DOI:10.1016/j.jpowsour.2010.06.084http://doi.org/10.1016/j.jpowsour.2010.06.084 .
Rong, A. M.; Zhang, M.; Ruan, W. . Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review . Mater. Sci. Technol. , 2006 . 22 787 -796 . DOI:10.1179/174328406X101247http://doi.org/10.1179/174328406X101247 .
Sree, U. B.; Yamamoto, Y.; Deore, B.; Shugi, H.; Nagaoka, T. . Characterization of polypyrrole nanofilms for membrane based sensors . Synth. Met. , 2002 . 131 161 -165 . DOI:10.1016/S0379-6779(02)00179-0http://doi.org/10.1016/S0379-6779(02)00179-0 .
Wang, J.; Bunimovich, Y. L.; Sui, G.; Savvas, S.; Wang, J.; Guo, Y. . Electrochemical fabrication of conducting polymer nanowires in an integrated micro fluidic system . Chem. Commun. , 2006 . 3075 -3077 . DOI:10.1039/B604426Chttp://doi.org/10.1039/B604426C .
Ma, Y.; Zhang, J.; Zhang, G.; He, H. . Polyaniline nanowires on Si surfaces fabricated with DNA templates . J. Am. Chem. Soc. , 2004 . 126 7097 -7101 . DOI:10.1021/ja039621thttp://doi.org/10.1021/ja039621t .
Alexandre, M.; Dubois, P. . Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials . Mater. Sci. Eng. , 2008 . R 28 1 -63 . DOI:10.1016/S0927-796X(00)00012-7http://doi.org/10.1016/S0927-796X(00)00012-7 .
Ray, S. S.; Okamoto, M. . Polymer/layered silicate nanocomposites: a review from preparation to processing . Prog. Polym. Sci. , 2003 . 28 1539 -1641 . DOI:10.3390/ma2030992http://doi.org/10.3390/ma2030992 .
Buryachenko, V. A.; Roy, A.; Lafdi, K.; Anderson, K. L.; Chellapilla, S. . Multi-scale mechanics of nanocomposites including interface: experimental and numerical investigation . Compos. Sci. Technol. , 2005 . 65 2435 -2465 . DOI:10.1016/j.compscitech.2005.08.005http://doi.org/10.1016/j.compscitech.2005.08.005 .
Xie, X. L.; Mai, Y. W.; Zhou, X. P. . Dispersion and alignment of carbon nanotubes in polymer matrix: a review . Mater. Sci. Eng. , 2005 . R 49 89 -112 . DOI:10.1016/j.mser.2005.04.002http://doi.org/10.1016/j.mser.2005.04.002 .
Luo, Y.; Zhang, Y.; Zhao, Y.; Fang, X.; Ren, J.; Weng, W.; Jiang, Y.; Sun, H.; Wang, B.; Cheng, X. and Peng, H. . Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries . J. Mater. Chem. A , 2015 . 3 17553 -17557 . DOI:10.1039/C5TA04457Jhttp://doi.org/10.1039/C5TA04457J .
Feynman, R. P.; There's plenty of room at the bottom[1959]. J. Microelectromechanical Systems 1992, 1, 60-66. https://resolver.caltech.edu/CaltechES:23.5.1960Bottomhttps://resolver.caltech.edu/CaltechES:23.5.1960Bottom.
David, A. J.; John, F. W. . The Interface and Interphase in polymer matrix composites: effect on mechanical properties and methods for identification . Polym. Rev. , 2012 . 52 321 -354 . DOI:10.1080/15583724.2012.710288http://doi.org/10.1080/15583724.2012.710288 .
Li, S.; Qin, J.; Fornara, A.; Toprak, M.; Muhammed, M.; Kim, D. K. . Synthesis and magnetic properties of bulk transparent PMMA/Fe-oxide nanocomposites . Nanotechnology , 2009 . 20 185607 DOI:10.1088/0957-4484/20/18/185607http://doi.org/10.1088/0957-4484/20/18/185607 .
Wu, Y.; Jia, P.; Xu, L.; Chen, Z.; Xiao, L.; Sun, J.; Zhang, J.; Huang, Y.; Bielawski, C. W.; Geng, J. . Tuning the surface properties of graphene oxide by surface-initiated polymerization of epoxides: an efficient method for enhancing gas separation . ACS Appl. Mater. Interfaces , 2017 . 9 4998 -5005 . DOI:10.1021/acsami.6b14895http://doi.org/10.1021/acsami.6b14895 .
Chen, X.; Huang, H.; Shu, X.; Liu, S.; Zhao, J. . Preparation and properties of a novel graphene fluoroxide/polyimide nanocomposite film with a low dielectric constant . RSC Adv. , 2017 . 7 1956 -1965 . DOI:10.1039/C6RA25343Ahttp://doi.org/10.1039/C6RA25343A .
Sharma, M.; Gao, S.; Mader, E.; Sharma, H.; Wei, L. Y.; Bijwe, J. . Carbon fiber surfaces and composite interphases . Compos. Sci. Technol. , 2014 . 102 35 -50 . DOI:10.1016/j.compscitech.2014.07.005http://doi.org/10.1016/j.compscitech.2014.07.005 .
Karger-Kocsis, J.; Mahmood, H.; Pegoretti, A. . Recent advances in fiber/matrix interphase engineering for polymer composites . Prog. Mat. Sci. , 2015 . 73 1 -43 . DOI:10.1016/j.pmatsci.2015.02.003http://doi.org/10.1016/j.pmatsci.2015.02.003 .
Salvetat, J. P.; Briggs, A. D.; Bonard, J. M.; Bacsa, R. R.; Kulik, A. J.; Stockli, T.; Burnham, N. A.; Forro, L. A. . Elastic and shear moduli of single-walled carbon nanotube ropes . Phy. Rev. Lett. , 1999 . 82 944 -947 . DOI:10.1103/PhysRevLett.82.944http://doi.org/10.1103/PhysRevLett.82.944 .
Zhang, Y. Q.; Lee, J. H.; Jang, H. J.; Nah, C. W. . Preparing PP/clay nanocomposites using a swelling agent . Compos. Part B: Eng. , 2004 . 35 133 -138 . DOI:10.1016/S1359-8368(03)00068-4http://doi.org/10.1016/S1359-8368(03)00068-4 .
Supova, M.; Martynkova, G. S.; Barabaszova, K. . Effect of nanofillers dispersion in polymer matrices: a review . Sci. Adv. Mat. , 2011 . 3 1 -25 . DOI:10.1166/sam.2011.1136http://doi.org/10.1166/sam.2011.1136 .
Needleman, A.; Borders, T. L.; Brinson, L. C. . Effect of an interphase region on debonding of a CNT reinforced polymer composite . Compos. Sci. Technol. , 2010 . 70 2207 -2215 . DOI:10.1016/j.compscitech.2010.09.002http://doi.org/10.1016/j.compscitech.2010.09.002 .
Safaei, M.; Sheidaei, A.; Baniassadi, M. . An interfacial debonding-induced damage model for graphite nanoplatelet polymer composites . Comput. Mater. Sci. , 2015 . 96 191 -199 . DOI:10.1016/j.commatsci.2014.08.036http://doi.org/10.1016/j.commatsci.2014.08.036 .
Liu, H.; Brinson, L. C. . Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites . Compos. Sci. Technol. , 2008 . 68 1502 -1512 . DOI:10.1016/j.compscitech.2007.10.033http://doi.org/10.1016/j.compscitech.2007.10.033 .
Balberg, I. . Recent developments in continuum percolation . Philos. Mag. Part B , 1987 . 56 991 -1003 . DOI:10.1080/13642818708215336http://doi.org/10.1080/13642818708215336 .
Kruckel, J.; Stary, Z.; Triebel, C.; Schubert, D. W.; Munstedt, H. . Conductivity of polymethylmethacrylate filled with carbon black or carbon fibres under oscillatory shear . Polymer , 2012 . 53 395 -402 . DOI:10.1016/j.polymer.2011.11.041http://doi.org/10.1016/j.polymer.2011.11.041 .
Mutiso, R. M.; Winey, K. I. . Electrical properties of polymer nanocomposites containing rod-like nanofillers . Prog. Polym. Sci. , 2015 . 40 63 -84 . DOI:10.1016/j.progpolymsci.2014.06.002http://doi.org/10.1016/j.progpolymsci.2014.06.002 .
Alig, I.; Potschke, P.; Lellinger, D.; Skipa, T.; Pegel, S.; Kasaliwal, G. R.; Villmow, T. . Establishment, morphology and properties of carbon nanotube networks in polymer melts . Polymer , 2012 . 53 4 -28 . DOI:10.1016/j.polymer.2011.10.063http://doi.org/10.1016/j.polymer.2011.10.063 .
Bauhofer, W.; Kovacs, J. Z. . A review and analysis of electrical percolation in carbon nanotube polymer composites . Compos. Sci. Technol. , 2009 . 69 1486 -1498 . DOI:10.1016/j.compscitech.2008.06.018http://doi.org/10.1016/j.compscitech.2008.06.018 .
Zeng, Y.; Liu, P.; Du, J.; Zhao, L.; Ajayan, P. M.; Cheng, H. M. . Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube-polymer interactions . Carbon , 2010 . 48 3551 -3558 . DOI:10.1016/j.carbon.2010.05.053http://doi.org/10.1016/j.carbon.2010.05.053 .
Bréchet, Y.; Cavaillé, J. Y.; Chabert, E.; Chazeau, L.; Dendievel, R.; Flandin, L.; Gauthier, C. . Polymer based nanocomposites: effect of filler-filler and filler-matrix interactions . Adv. Eng. Mater. , 2001 . 3 571 DOI:10.1002/1527-2648(200108)3:8<571::AID-ADEM571>3.0.CO;2-Mhttp://doi.org/10.1002/1527-2648(200108)3:8<571::AID-ADEM571>3.0.CO;2-M .
Ma, H. M.; Gao, X. L. . A three-dimensional Monte Carlo model for electrically conductive polymer matrix composites filled with curved fibers . Polymer , 2008 . 49 4230 -4238 . DOI:10.1016/j.polymer.2008.07.034http://doi.org/10.1016/j.polymer.2008.07.034 .
Bao, W. S.; Meguid, S. A.; Zhu, Z. H.; Pan, Y.; Weng, G. J. . A novel approach to predict the electrical conductivity of multifunctional nanocomposites . Mech. Mater. , 2012 . 46 129 -138 . DOI:10.1016/j.mechmat.2011.12.006http://doi.org/10.1016/j.mechmat.2011.12.006 .
Lu, W.; Chou, T. W.; Thostenson, E. T. . A three-dimensional model of electrical percolation thresholds in carbon nanotube-based composites . Appl. Phys. Lett. , 2010 . 96 223106 DOI:10.1063/1.3443731http://doi.org/10.1063/1.3443731 .
Li, C.; Thostenson, E. T.; Chou, T. W. . Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites . Compos. Sci. Technol. , 2008 . 68 1445 -1452 . DOI:10.1016/j.compscitech.2007.10.056http://doi.org/10.1016/j.compscitech.2007.10.056 .
Chen, Y.; Wang, S.; Pan, F.; Zhang, J. . A numerical study on electrical percolation of polymer-matrix composites with hubrid fillers of carbon nanotubes and carbon black . J. Nanomater. , 2014 . 9 614797 -614806 . DOI:10.1155/2014/614797http://doi.org/10.1155/2014/614797 .
Gong, S.; Zhu, Z. H.; Meguid, S. A. . Anisotropic electrical conductivity of polymer composites with aligned carbon nanotubes . Polymer , 2015 . 56 498 -506 . DOI:10.1016/j.polymer.2014.11.038http://doi.org/10.1016/j.polymer.2014.11.038 .
Cho, H. W.; Nam, S.; Lim, S.; Kim, D.; Kim, H.; Sung, B. J. . Effects of size and interparticle interaction of silica nanoparticles on dispersion and electrical conductivity of silver/epoxy nanocomposites . J. Appl. Phys. , 2014 . 115 154307 DOI:10.1063/1.4871669http://doi.org/10.1063/1.4871669 .
Feng, Y.; Ning, N.; Zhang, L.; Tian, M.; Zou, H.; Mi, J. . Evolution of conductive network and properties of nanorod/polymer composite under tensile strain . J. Chem. Phys. , 2013 . 139 024903 DOI:10.1063/1.4812752http://doi.org/10.1063/1.4812752 .
Cho, H. W.; Kim, S. W.; Kim, J.; Kim, U. J.; Im, K.; Park, J. J.; Sung, B. J. . Conductive network formation of carbon nanotubes in elastic polymer microfibers and its effect on the electrical conductance: Experiment and simulation . J. Chem. Phys. , 2016 . 144 194903 DOI:10.1063/1.4949759http://doi.org/10.1063/1.4949759 .
Ambrosetti, G.; Grimaldi, C.; Balberg, I.; Maeder, T.; Danani, A.; Ryser, A. . Solution of the tunneling-percolation problem in the nanocomposite regime . Phys. Rev. B , 2010 . 81 155434 DOI:10.1103/PhysRevB.81.155434http://doi.org/10.1103/PhysRevB.81.155434 .
Ambrosetti, G.; Johner, N.; Grimaldi, C.; Maeder, T.; Ryser, P.; and Danani, P. . Electron tunneling in conductor-insulator composites with spherical fillers . J. Appl. Phys. , 2009 . 106 016103 DOI:10.1063/1.3159040http://doi.org/10.1063/1.3159040 .
Ambrosetti, G.; Johner, N.; Grimaldi, C.; Danani, A.; and Ryser, P. . Percolative properties of hard oblate ellipsoids of revolution with a soft shell . Phys. Rev. E , 2008 . 78 061126 DOI:10.1103/PhysRevE.78.061126http://doi.org/10.1103/PhysRevE.78.061126 .
Chatterjee, A. P. . Connectedness percolation in polydisperse rod systems: a modified Bethe lattice approach . J. Chem. Phys. , 2010 . 132 224905 DOI:10.1063/1.3436716http://doi.org/10.1063/1.3436716 .
Chatterjee, A. P. . Connectedness percolation in monodisperse rod systems: clustering effects . J. Phys.: Condens. Matter , 2011 . 23 375101 DOI:10.1088/0953-8984/23/37/375101http://doi.org/10.1088/0953-8984/23/37/375101 .
Chatterjee, A. P. . Geometric percolation in polydisperse systems of finite-diameter rods: effects due to particle clustering and inter-particle correlations . J. Chem. Phys. , 2012 . 137 134903 DOI:10.1063/1.4755957http://doi.org/10.1063/1.4755957 .
Chatterjee, A. P. . A percolation-based model for the conductivity of nanofiber composites . J. Chem. Phys. , 2013 . 139 224904 DOI:10.1063/1.4840098http://doi.org/10.1063/1.4840098 .
Chatterjee, A. P. . A lattice-based approach to percolation in penetrable sphere systems . J. Stat. Phys. , 2014 . 156 586 -592 . DOI:10.1007/s10955-014-1013-zhttp://doi.org/10.1007/s10955-014-1013-z .
Chatterjee, A. P. . Percolation in polydisperse systems of aligned rods: a lattice-based analysis . J. Chem. Phys. , 2014 . 140 204911 DOI:10.1063/1.4879217http://doi.org/10.1063/1.4879217 .
Chatterjee, A. P. . Percolation thresholds for polydisperse circular disks: A lattice-based exploration . J. Chem. Phys. , 2014 . 141 034903 DOI:10.1063/1.4890280http://doi.org/10.1063/1.4890280 .
Chatterjee, A. P. . A lattice model for connectedness percolation in mixtures of rods and disks . J. Phys.: Condens. Matter. , 2015 . 27 315303 DOI:10.1088/0953-8984/27/31/315303http://doi.org/10.1088/0953-8984/27/31/315303 .
Chatterjee, A. P. . Connectedness percolation in isotropic systems of monodisperse spherocylinders . J. Phys.: Condens. Matter , 2015 . 27 375302 DOI:10.1088/0953-8984/27/37/375302http://doi.org/10.1088/0953-8984/27/37/375302 .
Kyrylyuk, A. V.; Schoot, P. V. . Continuum percolation of carbon nanotubes in polymeric and colloidal media . Proc. Natl. Acad. Sci. , 2008 . 105 8221 DOI:10.1073/pnas.0711449105http://doi.org/10.1073/pnas.0711449105 .
Kyrylyuk, A., Hermant, M., Schilling, T. . Controlling electrical percolation in multicomponent carbon nanotube dispersions . Nat. Nanotechnol. , 2011 . 6 364 -369 . DOI:10.1038/nnano.2011.40http://doi.org/10.1038/nnano.2011.40 .
Otten, R. H.; Schoot, P. V. . Continuum percolation of polydisperse nanofillers . Phys. Rev. Lett. , 2009 . 103 225704 DOI:10.1103/PhysRevLett.103.225704http://doi.org/10.1103/PhysRevLett.103.225704 .
Otten, R. H.; Schoot, P. V. . Connectivity percolation of polydisperse anisotropic nanofillers . J. Chem. Phys. , 2011 . 134 094902 DOI:10.1063/1.3559004http://doi.org/10.1063/1.3559004 .
Nigro, B.; Grimaldi, C. . Impact of tunneling anisotropy on the conductivity of nanorod dispersions . Phys. Rev. B , 2014 . 90 094202 DOI:10.1103/PhysRevB.90.094202http://doi.org/10.1103/PhysRevB.90.094202 .
Gangopadhyay, R.; De, A. . Conducting polymer nanocomposites: a brief overview . Chem. Mater. , 2000 . 12 608 -622 . DOI:10.1021/cm990537fhttp://doi.org/10.1021/cm990537f .
Mutiso, R. M.; Sherrott, M. C.; Li, J.; Winey, K. I. . Simulations and generalized model of the effect of filler size dispersity on electrical percolation in rod networks . Phys. Rev. B , 2012 . 86 214306 DOI:10.1103/PhysRevB.86.214306http://doi.org/10.1103/PhysRevB.86.214306 .
White, S. I.; Di Donna, B. A.; Mu, M.; Lubensky, T. C.; Winey, K. I. . Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment . Phys. Rev. B , 2009 . 79 024301 DOI:10.1103/PhysRevB.79.024301http://doi.org/10.1103/PhysRevB.79.024301 .
Rahatekar, S. S.; Hamm, M.; Shaffer, S. P.; Elliott, J. A. . Mesoscale modeling of electrical percolation in fiber-filled systems . J. Chem. Phys. , 2005 . 123 134702 DOI:10.1063/1.2031147http://doi.org/10.1063/1.2031147 .
Chatterjee, A. P.; Grimaldi, C. . Random geometric graph description of connectedness percolation in rod systems . Phys. Rev. E , 2015 . 92 032121 DOI:10.1103/PhysRevE.92.032121http://doi.org/10.1103/PhysRevE.92.032121 .
Chatterjee, A. P.; Grimaldi, C. . Tunneling conductivity in anisotropic nanofiber composites: a percolation-based model . J. Phys.: Condens. Matter , 2015 . 27 145302 DOI:10.1088/0953-8984/27/14/145302http://doi.org/10.1088/0953-8984/27/14/145302 .
Du, F.; Fischer, J. E.; Winey, K. I. . Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites . Phys. Rev. B , 2005 . 72 121404 DOI:10.1103/PhysRevB.72.121404http://doi.org/10.1103/PhysRevB.72.121404 .
Behnam, A.; Guo, J.; Ural, A. . Effects of nanotube alignment and measurement direction on percolation resistivity in single-walled carbon nanotube films . J. Appl. Phys. , 2007 . 102 044313 DOI:10.1063/1.2769953http://doi.org/10.1063/1.2769953 .
Zeng, X.; Xu, X.; Shenai, P. M.; Kovalev, E.; Baudot, C.; Mathews, N.; Zhao, Y. . Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites . J. Phys. Chem. C , 2011 . 115 21685 -90 . DOI:10.1021/jp207388nhttp://doi.org/10.1021/jp207388n .
Silva, J.; Ribeiro, S.; Lanceros-Mendez, S.; Simoes, R. . The influence of matrix mediated hopping conductivity, filler concentration, aspect ratio and orientation on the electrical response of carbon nanotube/polymer nanocomposites . Compos. Sci. Technol. , 2011 . 71 643 DOI:10.1016/j.compscitech.2011.01.005http://doi.org/10.1016/j.compscitech.2011.01.005 .
Balberg, I.; Anderson, C. H.; Alexander, S.; Wagner, N. . Excluded volume and its relation to the onset of percolation . Phys. Rev. B , 1984 . 30 3933 DOI:10.1103/PhysRevB.30.3933http://doi.org/10.1103/PhysRevB.30.3933 .
Guo, Z. ; Zhao, Y.; Ding, Y.; Dong, X.; Chen, L.; Cao, J.; Wang, C.; Xia, Y.; Peng, H.; Wang, Y. . Multi-functional flexible aqueous sodium-ion batteries with high safety . Chem , 2017 . 3 348 -362 . DOI:10.1016/j.chempr.2017.05.004http://doi.org/10.1016/j.chempr.2017.05.004 .
Chen, X; Sun, H.; Yang, Z.; Guan, G.; Zhang, Z.; Qiu, L.; Peng, H. . A novel “energy fiber” by coaxially integrating dye-sensitized solar cell and electrochemical capacitor . J. Mater. Chem. A , 2014 . 2 (6 ):1897 -1902 . DOI:10.1039/C3TA13712Khttp://doi.org/10.1039/C3TA13712K .
Peng, H., Sun, X., Cai, F. . Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres . Nat. Nanotechnol. , 2009 . 4 738 -741 . DOI:10.1038/nnano.2009.264http://doi.org/10.1038/nnano.2009.264 .
Shen, J.; Han, X.; Lee, L. J. . Nanoscaled reinforcement of polystyrene foams using carbon nanofibers . J. Cell Plast. , 2006 . 42 105 -126 . DOI:10.1177%2F0021955X06060947http://doi.org/10.1177%2F0021955X06060947 .
Qian, D.; Dickney, E. C.; Andrews, R.; Rantell, T. . Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites . Appl. Phys. Lett. , 2000 . 76 2868 -2870 . DOI:10.1063/1.126500http://doi.org/10.1063/1.126500 .
Chae, D. W.; Kim, B. C. . Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing . Polym. Adv. Technol. , 2006 . 16 846 -850 . DOI:10.1002/pat.673http://doi.org/10.1002/pat.673 .
Shen, J. W.; Huang, W. Y.; Zuo, S. W.; Hou, J. . Polyethylene/grafted polyethylene/graphite nanocomposites: Preparation, structure, and electrical properties . J. Appl. Polym. Sci. , 2005 . 97 51 -59 . DOI:10.1002/app.21729http://doi.org/10.1002/app.21729 .
Raravikar, N. R.; Schadler, L. S.; Vijayaraghavan, A.; Zhao, Y. P.; Wei, B. Q.; Ajayan, P. M. . Synthesis and characterization of thickness-aligned carbon nanotube-polymer composite films . Chem. Mater. , 2005 . 17 974 -983 . DOI:10.1021/cm0485254http://doi.org/10.1021/cm0485254 .
Jia, Z.; Wang, Z.; Xu, C.; Liang, J.; Wei, B.; Wu, D.; Zhu, S. . Study on poly(methyl methacrylate)/carbon nanotube composites . Mater. Sci. Eng. A , 1999 . 27 395 -400 . DOI:10.1016/S0921-5093(99)00263-4http://doi.org/10.1016/S0921-5093(99)00263-4 .
Huang, C.; Cheng, Q. . Learning from nacre: Constructing polymer nanocomposites . Compos. Sci. Technol. , 2017 . 150 141 -166 . DOI:10.1016/j.compscitech.2017.07.021http://doi.org/10.1016/j.compscitech.2017.07.021 .
Li, S.; Toprak, M. S.; Jo, Y. S.; Dobson, J.; Kim, D. K.; Muhammed, M. . Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA . Adv. Mater. , 2007 . 19 4347 -52 . DOI:10.1002/adma.200700736http://doi.org/10.1002/adma.200700736 .
Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. . A stepwise Huisgen cycloaddition process: copper (I)-catalyzed regioselective “ligation” of azides and terminal alkynes . Angew. Chem. Int. Ed. , 2002 . 41 2596 -2599 . DOI:10.1002/1521-3773(20020715)41:14%3C2596::AID-ANIE2596%3E3.0.CO;2-4http://doi.org/10.1002/1521-3773(20020715)41:14%3C2596::AID-ANIE2596%3E3.0.CO;2-4 .
Siemsen, P.; Livingston, R. C.; Diederich, F. . Acetylenic coupling: a powerful tool in molecular construction . Angew. Chem. Int. Ed. , 2000 . 39 2632 -2657 . DOI:10.1002/1521-3773(20000804)39:15%3C2632::AID-NIE2632%3E3.0.CO;2-Fhttp://doi.org/10.1002/1521-3773(20000804)39:15%3C2632::AID-NIE2632%3E3.0.CO;2-F .
Jean-François, L.; Börner, H. G.; Weichenhan, K. . Combining ATRP and “click” chemistry: a promising platform toward functional biocompatible polymers and polymer bioconjugates . Macromolecules , 2006 . 39 6376 -6383 . DOI:10.1021/ma061557nhttp://doi.org/10.1021/ma061557n .
Binder, W. H.; Sachsenhofer, R. . ‘Click’ chemistry in polymer and materials science . Macromol. Rapid Commun. , 2007 . 28 15 -54 . DOI:10.1002/marc.200600625http://doi.org/10.1002/marc.200600625 .
Xi, W.; Scott, T. F.; Kloxin, C. J.; Browman, C. N. . Click chemistry in materials science . Adv. Funct. Mater. , 2014 . 24 2572 -2590 . DOI:10.1002/adfm.201302847http://doi.org/10.1002/adfm.201302847 .
Castelain, M.; Martinez, G.; Marcos, C.; Eliis, G.; Salavagione, H. J. . Effect of click-chemistry approaches for graphene modification on the electrical, thermal, and mechanical properties of polyethylene/graphene nanocomposites . Macromolecules , 2013 . 46 8980 -8987 . DOI:10.1021/ma401606dhttp://doi.org/10.1021/ma401606d .
Salavagione, H. J.; Díaz, S. Q.; Jimenez, P. E.; Martínez, G.; Ania, F.; Flores, A.; Gómez-Fatou, M. A. . Development of advanced elastomeric conductive nanocomposites by selective chemical affinity of modified graphene . Macromolecules , 2016 . 49 4948 -4956 . DOI:10.1021/acs.macromol.6b00490http://doi.org/10.1021/acs.macromol.6b00490 .
Kashiwagi, T.; Du, F.; Douglas, J. F.; Winey, K. I.; Harris, R. H. Jr.; Shields, J. R. . Nanoparticle networks reduce the flammability of polymer nanocomposites . Nat. Mater. , 2005 . 4 928 -933 . DOI:10.1038/nmat1502http://doi.org/10.1038/nmat1502 .
May, P.; Khan, U.; O'Neill, A.; Coleman, J. N. . Approaching the theoretical limit for reinforcing polymers with graphene . J. Mater. Chem. , 2012 . 22 1278 -1282 . DOI:10.1039/C1JM15467Bhttp://doi.org/10.1039/C1JM15467B .
Grimmer, C. S.; Dharan, C. K. H. . High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites . J. Mater. Sci. , 2008 . 43 4487 -4492 . DOI:10.1007/s10853-008-2651-9http://doi.org/10.1007/s10853-008-2651-9 .
Kim, K. T.; Jo, W. H. . Non-destructive functionalization of multi-walled carbon nanotubes with naphthalene-containing polymer for Nylon66/multi-walled carbon nanotube composites . Carbon , 2011 . 49 819 -826 . DOI:10.1016/j.carbon.2010.10.021http://doi.org/10.1016/j.carbon.2010.10.021 .
Yuan, W.; Chan-Park, M. B. . Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film . ACS Appl. Mater. Interfaces , 2012 . 4 2065 -2073 . DOI:10.1021/am300038dhttp://doi.org/10.1021/am300038d .
Coleman, J. N.; Cadek, M.; Blake, R.; Nicolosi, V.; Ryan, K. P.; Belton, C.; Fonseca, A.; Nagy, J. B.; Gun'ko, Y. K.; Blau, W. J. . High performance nanotube-reinforced plastics: understanding the mechanism of strength increase . Adv. Funct. Mater. , 2004 . 14 791 -798 . DOI:10.1002/adfm.200305200http://doi.org/10.1002/adfm.200305200 .
Aoyama, S.; Park, Y. T.; Ougizawa, T.; Macosko, C. W. . Melt crystallization of poly(ethylene terephthalate): comparing addition of graphene vs. carbon nanotubes . Polymer , 2014 . 55 2077 -2085 . DOI:10.1016/j.polymer.2014.02.055http://doi.org/10.1016/j.polymer.2014.02.055 .
Calcagno, C. I. W.; Mariani, C. M.; Teixeira, S. R.; Mauler, R. S. . The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites . Polymer , 2007 . 48 966 -974 . DOI:10.1016/j.polymer.2006.12.044http://doi.org/10.1016/j.polymer.2006.12.044 .
Liao, K. H.; Aoyama, S.; Abdala, A. A.; Macosko, C. W. . Does graphene change Tg of nanocomposites? . Macromolecules , 2014 . 47 8311 -8319 . DOI:10.1021/ma501799zhttp://doi.org/10.1021/ma501799z .
Chou, C. C.; McAtee, J. L. . Decomposition of alkylammonium cations adsorbed on vermiculite under ambient conditions . Clay and Clay Miner , 1969 . 17 339 -346 . DOI:10.1016/0169-1317(90)90022-Hhttp://doi.org/10.1016/0169-1317(90)90022-H .
Xie, W.; Gao, Z.; Pan, W. P.; Hunter, D.; Singh, A.; Vaia, R. . Thermal degradation chemistry of alkyl quaternary ammonium Montmorillonite . Chem. Mater. , 2001 . 13 2979 -2990 . DOI:10.1021/cm010305shttp://doi.org/10.1021/cm010305s .
Wang, Y.; Tebyetekerwa, M.; Liu, Y.; Wang, M.; Zhu, J.; Xu, J.; Zhang, C.; Liu, T. . Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection . Chem. Eng. J. , 2020 . 127637 DOI:10.1016/j.cej.2020.127637http://doi.org/10.1016/j.cej.2020.127637 .
Li, L. B.; Zhang, Y.; Lu, H. . Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage . Nat. Commun. , 2020 . 11 62 DOI:10.1038/s41467-019-13959-9http://doi.org/10.1038/s41467-019-13959-9 .
Kumar, S.; Sarita, N. M.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.H. . Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications . Prog. Polym. Sci. , 2018 . 80 1 -38 . DOI:10.1016/j.progpolymsci.2018.03.001http://doi.org/10.1016/j.progpolymsci.2018.03.001 .
McClory, C.; Chin, S. J.; McNally, T. . Polymer/carbon nanotube composites . Aust. J. Chem. , 2009 . 62 762 -785 . DOI:10.1071/CH09131http://doi.org/10.1071/CH09131 .
Wang, Y.; Shan, J. W.; Weng, G. J. . Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunnelling . J. Appl. Phys. , 2015 . 118 065101 DOI:10.1063/1.4928293http://doi.org/10.1063/1.4928293 .
Smith, A. T.; LaChance, A. M.; Zeng, S.; Liu, B.; Sun, L. . Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites . Nano Mater. Sci. , 2019 . 1 31 -47 . DOI:10.1016/j.nanoms.2019.02.004http://doi.org/10.1016/j.nanoms.2019.02.004 .
Nanostructured and Amorphous Materials Incorporated. Available online: http://www.nanoamor.comhttp://www.nanoamor.com (accessed on 6 December 2015).
Cheap Tubes. Available online: http://www.cheaptubes.com/http://www.cheaptubes.com/ (accessed on 6 December 2015).
Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. . A review of the synthesis and applications of polymer-nanoclay composites . Appl. Sci. , 2018 . 8 1696 DOI:10.3390/app8091696http://doi.org/10.3390/app8091696 .
0
浏览量
6
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构